1 | """Implementation of Redfearn's formula to compute UTM projections from latitude and longitude |
---|
2 | |
---|
3 | """ |
---|
4 | |
---|
5 | def degminsec2decimal_degrees(dd,mm,ss): |
---|
6 | assert abs(mm) == mm |
---|
7 | assert abs(ss) == ss |
---|
8 | |
---|
9 | if dd < 0: |
---|
10 | sign = -1 |
---|
11 | else: |
---|
12 | sign = 1 |
---|
13 | |
---|
14 | return sign * (abs(dd) + mm/60. + ss/3600.) |
---|
15 | |
---|
16 | def decimal_degrees2degminsec(dec): |
---|
17 | |
---|
18 | if dec < 0: |
---|
19 | sign = -1 |
---|
20 | else: |
---|
21 | sign = 1 |
---|
22 | |
---|
23 | dec = abs(dec) |
---|
24 | dd = int(dec) |
---|
25 | f = dec-dd |
---|
26 | |
---|
27 | mm = int(f*60) |
---|
28 | ss = (f*60-mm)*60 |
---|
29 | |
---|
30 | return sign*dd, mm, ss |
---|
31 | |
---|
32 | def redfearn(lat, lon, false_easting=None, false_northing=None): |
---|
33 | """Compute UTM projection using Redfearn's formula |
---|
34 | |
---|
35 | lat, lon is latitude and longitude in decimal degrees |
---|
36 | |
---|
37 | If false easting and northing are specified they will override |
---|
38 | the standard |
---|
39 | """ |
---|
40 | |
---|
41 | |
---|
42 | from math import pi, sqrt, sin, cos, tan |
---|
43 | |
---|
44 | |
---|
45 | |
---|
46 | #GDA Specifications |
---|
47 | a = 6378137.0 #Semi major axis |
---|
48 | inverse_flattening = 298.257222101 #1/f |
---|
49 | K0 = 0.9996 #Central scale factor |
---|
50 | zone_width = 6 #Degrees |
---|
51 | |
---|
52 | longitude_of_central_meridian_zone0 = -183 |
---|
53 | longitude_of_western_edge_zone0 = -186 |
---|
54 | |
---|
55 | if false_easting is None: |
---|
56 | false_easting = 500000 |
---|
57 | |
---|
58 | if false_northing is None: |
---|
59 | if lat < 0: |
---|
60 | false_northing = 10000000 #Southern hemisphere |
---|
61 | else: |
---|
62 | false_northing = 0 #Northern hemisphere) |
---|
63 | |
---|
64 | |
---|
65 | #Derived constants |
---|
66 | f = 1.0/inverse_flattening |
---|
67 | b = a*(1-f) #Semi minor axis |
---|
68 | |
---|
69 | e2 = 2*f - f*f# = f*(2-f) = (a^2-b^2/a^2 #Eccentricity |
---|
70 | e = sqrt(e2) |
---|
71 | e2_ = e2/(1-e2) # = (a^2-b^2)/b^2 #Second eccentricity |
---|
72 | e_ = sqrt(e2_) |
---|
73 | e4 = e2*e2 |
---|
74 | e6 = e2*e4 |
---|
75 | |
---|
76 | #Foot point latitude |
---|
77 | n = (a-b)/(a+b) #Same as e2 - why ? |
---|
78 | n2 = n*n |
---|
79 | n3 = n*n2 |
---|
80 | n4 = n2*n2 |
---|
81 | |
---|
82 | G = a*(1-n)*(1-n2)*(1+9*n2/4+225*n4/64)*pi/180 |
---|
83 | |
---|
84 | |
---|
85 | phi = lat*pi/180 #Convert latitude to radians |
---|
86 | |
---|
87 | sinphi = sin(phi) |
---|
88 | sin2phi = sin(2*phi) |
---|
89 | sin4phi = sin(4*phi) |
---|
90 | sin6phi = sin(6*phi) |
---|
91 | |
---|
92 | cosphi = cos(phi) |
---|
93 | cosphi2 = cosphi*cosphi |
---|
94 | cosphi3 = cosphi*cosphi2 |
---|
95 | cosphi4 = cosphi2*cosphi2 |
---|
96 | cosphi5 = cosphi*cosphi4 |
---|
97 | cosphi6 = cosphi2*cosphi4 |
---|
98 | cosphi7 = cosphi*cosphi6 |
---|
99 | cosphi8 = cosphi4*cosphi4 |
---|
100 | |
---|
101 | t = tan(phi) |
---|
102 | t2 = t*t |
---|
103 | t4 = t2*t2 |
---|
104 | t6 = t2*t4 |
---|
105 | |
---|
106 | #Radius of Curvature |
---|
107 | rho = a*(1-e2)/(1-e2*sinphi*sinphi)**1.5 |
---|
108 | nu = a/(1-e2*sinphi*sinphi)**0.5 |
---|
109 | psi = nu/rho |
---|
110 | psi2 = psi*psi |
---|
111 | psi3 = psi*psi2 |
---|
112 | psi4 = psi2*psi2 |
---|
113 | |
---|
114 | |
---|
115 | |
---|
116 | #Meridian distance |
---|
117 | |
---|
118 | A0 = 1 - e2/4 - 3*e4/64 - 5*e6/256 |
---|
119 | A2 = 3.0/8*(e2+e4/4+15*e6/128) |
---|
120 | A4 = 15.0/256*(e4+3*e6/4) |
---|
121 | A6 = 35*e6/3072 |
---|
122 | |
---|
123 | term1 = a*A0*phi |
---|
124 | term2 = -a*A2*sin2phi |
---|
125 | term3 = a*A4*sin4phi |
---|
126 | term4 = -a*A6*sin6phi |
---|
127 | |
---|
128 | m = term1 + term2 + term3 + term4 #OK |
---|
129 | |
---|
130 | #Zone |
---|
131 | zone = int((lon - longitude_of_western_edge_zone0)/zone_width) |
---|
132 | central_meridian = zone*zone_width+longitude_of_central_meridian_zone0 |
---|
133 | |
---|
134 | omega = (lon-central_meridian)*pi/180 #Relative longitude (radians) |
---|
135 | omega2 = omega*omega |
---|
136 | omega3 = omega*omega2 |
---|
137 | omega4 = omega2*omega2 |
---|
138 | omega5 = omega*omega4 |
---|
139 | omega6 = omega3*omega3 |
---|
140 | omega7 = omega*omega6 |
---|
141 | omega8 = omega4*omega4 |
---|
142 | |
---|
143 | |
---|
144 | #Northing |
---|
145 | term1 = nu*sinphi*cosphi*omega2/2 |
---|
146 | term2 = nu*sinphi*cosphi3*(4*psi2+psi-t2)*omega4/24 |
---|
147 | term3 = nu*sinphi*cosphi5*\ |
---|
148 | (8*psi4*(11-24*t2)-28*psi3*(1-6*t2)+\ |
---|
149 | psi2*(1-32*t2)-psi*2*t2+t4-t2)*omega6/720 |
---|
150 | term4 = nu*sinphi*cosphi7*(1385-3111*t2+543*t4-t6)*omega8/40320 |
---|
151 | northing = false_northing + K0*(m + term1 + term2 + term3 + term4) |
---|
152 | |
---|
153 | #Easting |
---|
154 | term1 = nu*omega*cosphi |
---|
155 | term2 = nu*cosphi3*(psi-t2)*omega3/6 |
---|
156 | term3 = nu*cosphi5*(4*psi3*(1-6*t2)+psi2*(1+8*t2)-2*psi*t2+t4)*omega5/120 |
---|
157 | term4 = nu*cosphi7*(61-479*t2+179*t4-t6)*omega7/5040 |
---|
158 | easting = false_easting + K0*(term1 + term2 + term3 + term4) |
---|
159 | |
---|
160 | return zone, easting, northing |
---|