1 | |
---|
2 | |
---|
3 | |
---|
4 | |
---|
5 | |
---|
6 | |
---|
7 | |
---|
8 | ############################################### |
---|
9 | #OBSOLETE STUFF |
---|
10 | #Native checkpoint format. |
---|
11 | #Information needed to recreate a state is preserved |
---|
12 | #FIXME: Rethink and maybe use netcdf format |
---|
13 | def cpt_variable_writer(filename, t, v0, v1, v2): |
---|
14 | """Store all conserved quantities to file |
---|
15 | """ |
---|
16 | |
---|
17 | M, N = v0.shape |
---|
18 | |
---|
19 | FN = create_filename(filename, 'cpt', M, t) |
---|
20 | #print 'Writing to %s' %FN |
---|
21 | |
---|
22 | fid = open(FN, 'w') |
---|
23 | for i in range(M): |
---|
24 | for j in range(N): |
---|
25 | fid.write('%.16e ' %v0[i,j]) |
---|
26 | for j in range(N): |
---|
27 | fid.write('%.16e ' %v1[i,j]) |
---|
28 | for j in range(N): |
---|
29 | fid.write('%.16e ' %v2[i,j]) |
---|
30 | |
---|
31 | fid.write('\n') |
---|
32 | fid.close() |
---|
33 | |
---|
34 | |
---|
35 | def cpt_variable_reader(filename, t, v0, v1, v2): |
---|
36 | """Store all conserved quantities to file |
---|
37 | """ |
---|
38 | |
---|
39 | M, N = v0.shape |
---|
40 | |
---|
41 | FN = create_filename(filename, 'cpt', M, t) |
---|
42 | #print 'Reading from %s' %FN |
---|
43 | |
---|
44 | fid = open(FN) |
---|
45 | |
---|
46 | |
---|
47 | for i in range(M): |
---|
48 | values = fid.readline().split() #Get one line |
---|
49 | |
---|
50 | for j in range(N): |
---|
51 | v0[i,j] = float(values[j]) |
---|
52 | v1[i,j] = float(values[3+j]) |
---|
53 | v2[i,j] = float(values[6+j]) |
---|
54 | |
---|
55 | fid.close() |
---|
56 | |
---|
57 | def cpt_constant_writer(filename, X0, X1, X2, v0, v1, v2): |
---|
58 | """Writes x,y,z,z,z coordinates of triangles constituting the bed |
---|
59 | elevation. |
---|
60 | FIXME: Not in use pt |
---|
61 | """ |
---|
62 | |
---|
63 | M, N = v0.shape |
---|
64 | |
---|
65 | |
---|
66 | print X0 |
---|
67 | import sys; sys.exit() |
---|
68 | FN = create_filename(filename, 'cpt', M) |
---|
69 | print 'Writing to %s' %FN |
---|
70 | |
---|
71 | fid = open(FN, 'w') |
---|
72 | for i in range(M): |
---|
73 | for j in range(2): |
---|
74 | fid.write('%.16e ' %X0[i,j]) #x, y |
---|
75 | for j in range(N): |
---|
76 | fid.write('%.16e ' %v0[i,j]) #z,z,z, |
---|
77 | |
---|
78 | for j in range(2): |
---|
79 | fid.write('%.16e ' %X1[i,j]) #x, y |
---|
80 | for j in range(N): |
---|
81 | fid.write('%.16e ' %v1[i,j]) |
---|
82 | |
---|
83 | for j in range(2): |
---|
84 | fid.write('%.16e ' %X2[i,j]) #x, y |
---|
85 | for j in range(N): |
---|
86 | fid.write('%.16e ' %v2[i,j]) |
---|
87 | |
---|
88 | fid.write('\n') |
---|
89 | fid.close() |
---|
90 | |
---|
91 | |
---|
92 | |
---|
93 | #Function for storing out to e.g. visualisation |
---|
94 | #FIXME: Do we want this? |
---|
95 | #FIXME: Not done yet for this version |
---|
96 | def dat_constant_writer(filename, X0, X1, X2, v0, v1, v2): |
---|
97 | """Writes x,y,z coordinates of triangles constituting the bed elevation. |
---|
98 | """ |
---|
99 | |
---|
100 | M, N = v0.shape |
---|
101 | |
---|
102 | FN = create_filename(filename, 'dat', M) |
---|
103 | #print 'Writing to %s' %FN |
---|
104 | |
---|
105 | fid = open(FN, 'w') |
---|
106 | for i in range(M): |
---|
107 | for j in range(2): |
---|
108 | fid.write('%f ' %X0[i,j]) #x, y |
---|
109 | fid.write('%f ' %v0[i,0]) #z |
---|
110 | |
---|
111 | for j in range(2): |
---|
112 | fid.write('%f ' %X1[i,j]) #x, y |
---|
113 | fid.write('%f ' %v1[i,0]) #z |
---|
114 | |
---|
115 | for j in range(2): |
---|
116 | fid.write('%f ' %X2[i,j]) #x, y |
---|
117 | fid.write('%f ' %v2[i,0]) #z |
---|
118 | |
---|
119 | fid.write('\n') |
---|
120 | fid.close() |
---|
121 | |
---|
122 | |
---|
123 | |
---|
124 | def dat_variable_writer(filename, t, v0, v1, v2): |
---|
125 | """Store water height to file |
---|
126 | """ |
---|
127 | |
---|
128 | M, N = v0.shape |
---|
129 | |
---|
130 | FN = create_filename(filename, 'dat', M, t) |
---|
131 | #print 'Writing to %s' %FN |
---|
132 | |
---|
133 | fid = open(FN, 'w') |
---|
134 | for i in range(M): |
---|
135 | fid.write('%.4f ' %v0[i,0]) |
---|
136 | fid.write('%.4f ' %v1[i,0]) |
---|
137 | fid.write('%.4f ' %v2[i,0]) |
---|
138 | |
---|
139 | fid.write('\n') |
---|
140 | fid.close() |
---|
141 | |
---|
142 | |
---|
143 | def read_sww(filename): |
---|
144 | """Read sww Net CDF file containing Shallow Water Wave simulation |
---|
145 | |
---|
146 | The integer array volumes is of shape Nx3 where N is the number of |
---|
147 | triangles in the mesh. |
---|
148 | |
---|
149 | Each entry in volumes is an index into the x,y arrays (the location). |
---|
150 | |
---|
151 | Quantities stage, elevation, xmomentum and ymomentum are all in arrays of dimensions |
---|
152 | number_of_timesteps, number_of_points. |
---|
153 | |
---|
154 | The momentum is not always stored. |
---|
155 | |
---|
156 | """ |
---|
157 | from Scientific.IO.NetCDF import NetCDFFile |
---|
158 | print 'Reading from ', filename |
---|
159 | fid = NetCDFFile(filename, 'r') #Open existing file for read |
---|
160 | #latitude, longitude |
---|
161 | # Get the variables as Numeric arrays |
---|
162 | x = fid.variables['x'] #x-coordinates of vertices |
---|
163 | y = fid.variables['y'] #y-coordinates of vertices |
---|
164 | z = fid.variables['elevation'] #Elevation |
---|
165 | time = fid.variables['time'] #Timesteps |
---|
166 | stage = fid.variables['stage'] #Water level |
---|
167 | #xmomentum = fid.variables['xmomentum'] #Momentum in the x-direction |
---|
168 | #ymomentum = fid.variables['ymomentum'] #Momentum in the y-direction |
---|
169 | |
---|
170 | volumes = fid.variables['volumes'] #Connectivity |
---|
171 | |
---|
172 | #FIXME (Ole): What is this? |
---|
173 | # Why isn't anything returned? |
---|
174 | # Where's the unit test? |
---|
175 | |
---|
176 | |
---|
177 | |
---|
178 | def sww2asc_obsolete(basename_in, basename_out = None, |
---|
179 | quantity = None, |
---|
180 | timestep = None, |
---|
181 | reduction = None, |
---|
182 | cellsize = 10, |
---|
183 | verbose = False, |
---|
184 | origin = None): |
---|
185 | """Read SWW file and convert to Digitial Elevation model format (.asc) |
---|
186 | |
---|
187 | Example: |
---|
188 | |
---|
189 | ncols 3121 |
---|
190 | nrows 1800 |
---|
191 | xllcorner 722000 |
---|
192 | yllcorner 5893000 |
---|
193 | cellsize 25 |
---|
194 | NODATA_value -9999 |
---|
195 | 138.3698 137.4194 136.5062 135.5558 .......... |
---|
196 | |
---|
197 | Also write accompanying file with same basename_in but extension .prj |
---|
198 | used to fix the UTM zone, datum, false northings and eastings. |
---|
199 | |
---|
200 | The prj format is assumed to be as |
---|
201 | |
---|
202 | Projection UTM |
---|
203 | Zone 56 |
---|
204 | Datum WGS84 |
---|
205 | Zunits NO |
---|
206 | Units METERS |
---|
207 | Spheroid WGS84 |
---|
208 | Xshift 0.0000000000 |
---|
209 | Yshift 10000000.0000000000 |
---|
210 | Parameters |
---|
211 | |
---|
212 | |
---|
213 | if quantity is given, out values from quantity otherwise default to |
---|
214 | elevation |
---|
215 | |
---|
216 | if timestep (an index) is given, output quantity at that timestep |
---|
217 | |
---|
218 | if reduction is given use that to reduce quantity over all timesteps. |
---|
219 | |
---|
220 | """ |
---|
221 | from Numeric import array, Float, concatenate, NewAxis, zeros,\ |
---|
222 | sometrue |
---|
223 | from utilities.polygon import inside_polygon |
---|
224 | |
---|
225 | #FIXME: Should be variable |
---|
226 | datum = 'WGS84' |
---|
227 | false_easting = 500000 |
---|
228 | false_northing = 10000000 |
---|
229 | |
---|
230 | if quantity is None: |
---|
231 | quantity = 'elevation' |
---|
232 | |
---|
233 | if reduction is None: |
---|
234 | reduction = max |
---|
235 | |
---|
236 | if basename_out is None: |
---|
237 | basename_out = basename_in + '_%s' %quantity |
---|
238 | |
---|
239 | swwfile = basename_in + '.sww' |
---|
240 | ascfile = basename_out + '.asc' |
---|
241 | prjfile = basename_out + '.prj' |
---|
242 | |
---|
243 | |
---|
244 | if verbose: print 'Reading from %s' %swwfile |
---|
245 | #Read sww file |
---|
246 | from Scientific.IO.NetCDF import NetCDFFile |
---|
247 | fid = NetCDFFile(swwfile) |
---|
248 | |
---|
249 | #Get extent and reference |
---|
250 | x = fid.variables['x'][:] |
---|
251 | y = fid.variables['y'][:] |
---|
252 | volumes = fid.variables['volumes'][:] |
---|
253 | |
---|
254 | ymin = min(y); ymax = max(y) |
---|
255 | xmin = min(x); xmax = max(x) |
---|
256 | |
---|
257 | number_of_timesteps = fid.dimensions['number_of_timesteps'] |
---|
258 | number_of_points = fid.dimensions['number_of_points'] |
---|
259 | if origin is None: |
---|
260 | |
---|
261 | #Get geo_reference |
---|
262 | #sww files don't have to have a geo_ref |
---|
263 | try: |
---|
264 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
265 | except AttributeError, e: |
---|
266 | geo_reference = Geo_reference() #Default georef object |
---|
267 | |
---|
268 | xllcorner = geo_reference.get_xllcorner() |
---|
269 | yllcorner = geo_reference.get_yllcorner() |
---|
270 | zone = geo_reference.get_zone() |
---|
271 | else: |
---|
272 | zone = origin[0] |
---|
273 | xllcorner = origin[1] |
---|
274 | yllcorner = origin[2] |
---|
275 | |
---|
276 | |
---|
277 | #Get quantity and reduce if applicable |
---|
278 | if verbose: print 'Reading quantity %s' %quantity |
---|
279 | |
---|
280 | if quantity.lower() == 'depth': |
---|
281 | q = fid.variables['stage'][:] - fid.variables['elevation'][:] |
---|
282 | else: |
---|
283 | q = fid.variables[quantity][:] |
---|
284 | |
---|
285 | |
---|
286 | if len(q.shape) == 2: |
---|
287 | if verbose: print 'Reducing quantity %s' %quantity |
---|
288 | q_reduced = zeros( number_of_points, Float ) |
---|
289 | |
---|
290 | for k in range(number_of_points): |
---|
291 | q_reduced[k] = reduction( q[:,k] ) |
---|
292 | |
---|
293 | q = q_reduced |
---|
294 | |
---|
295 | #Now q has dimension: number_of_points |
---|
296 | |
---|
297 | #Create grid and update xll/yll corner and x,y |
---|
298 | if verbose: print 'Creating grid' |
---|
299 | ncols = int((xmax-xmin)/cellsize)+1 |
---|
300 | nrows = int((ymax-ymin)/cellsize)+1 |
---|
301 | |
---|
302 | newxllcorner = xmin+xllcorner |
---|
303 | newyllcorner = ymin+yllcorner |
---|
304 | |
---|
305 | x = x+xllcorner-newxllcorner |
---|
306 | y = y+yllcorner-newyllcorner |
---|
307 | |
---|
308 | vertex_points = concatenate ((x[:, NewAxis] ,y[:, NewAxis]), axis = 1) |
---|
309 | assert len(vertex_points.shape) == 2 |
---|
310 | |
---|
311 | |
---|
312 | from Numeric import zeros, Float |
---|
313 | grid_points = zeros ( (ncols*nrows, 2), Float ) |
---|
314 | |
---|
315 | |
---|
316 | for i in xrange(nrows): |
---|
317 | yg = i*cellsize |
---|
318 | for j in xrange(ncols): |
---|
319 | xg = j*cellsize |
---|
320 | k = i*ncols + j |
---|
321 | |
---|
322 | grid_points[k,0] = xg |
---|
323 | grid_points[k,1] = yg |
---|
324 | |
---|
325 | #Interpolate |
---|
326 | from least_squares import Interpolation |
---|
327 | |
---|
328 | |
---|
329 | #FIXME: This should be done with precrop = True, otherwise it'll |
---|
330 | #take forever. With expand_search set to False, some grid points might |
---|
331 | #miss out.... |
---|
332 | |
---|
333 | interp = Interpolation(vertex_points, volumes, grid_points, alpha=0.0, |
---|
334 | precrop = False, expand_search = True, |
---|
335 | verbose = verbose) |
---|
336 | |
---|
337 | #Interpolate using quantity values |
---|
338 | if verbose: print 'Interpolating' |
---|
339 | grid_values = interp.interpolate(q).flat |
---|
340 | |
---|
341 | #Write |
---|
342 | #Write prj file |
---|
343 | if verbose: print 'Writing %s' %prjfile |
---|
344 | prjid = open(prjfile, 'w') |
---|
345 | prjid.write('Projection %s\n' %'UTM') |
---|
346 | prjid.write('Zone %d\n' %zone) |
---|
347 | prjid.write('Datum %s\n' %datum) |
---|
348 | prjid.write('Zunits NO\n') |
---|
349 | prjid.write('Units METERS\n') |
---|
350 | prjid.write('Spheroid %s\n' %datum) |
---|
351 | prjid.write('Xshift %d\n' %false_easting) |
---|
352 | prjid.write('Yshift %d\n' %false_northing) |
---|
353 | prjid.write('Parameters\n') |
---|
354 | prjid.close() |
---|
355 | |
---|
356 | |
---|
357 | |
---|
358 | if verbose: print 'Writing %s' %ascfile |
---|
359 | NODATA_value = -9999 |
---|
360 | |
---|
361 | ascid = open(ascfile, 'w') |
---|
362 | |
---|
363 | ascid.write('ncols %d\n' %ncols) |
---|
364 | ascid.write('nrows %d\n' %nrows) |
---|
365 | ascid.write('xllcorner %d\n' %newxllcorner) |
---|
366 | ascid.write('yllcorner %d\n' %newyllcorner) |
---|
367 | ascid.write('cellsize %f\n' %cellsize) |
---|
368 | ascid.write('NODATA_value %d\n' %NODATA_value) |
---|
369 | |
---|
370 | |
---|
371 | #Get bounding polygon from mesh |
---|
372 | P = interp.mesh.get_boundary_polygon() |
---|
373 | inside_indices = inside_polygon(grid_points, P) |
---|
374 | |
---|
375 | for i in range(nrows): |
---|
376 | if verbose and i%((nrows+10)/10)==0: |
---|
377 | print 'Doing row %d of %d' %(i, nrows) |
---|
378 | |
---|
379 | for j in range(ncols): |
---|
380 | index = (nrows-i-1)*ncols+j |
---|
381 | |
---|
382 | if sometrue(inside_indices == index): |
---|
383 | ascid.write('%f ' %grid_values[index]) |
---|
384 | else: |
---|
385 | ascid.write('%d ' %NODATA_value) |
---|
386 | |
---|
387 | ascid.write('\n') |
---|
388 | |
---|
389 | #Close |
---|
390 | ascid.close() |
---|
391 | fid.close() |
---|
392 | |
---|
393 | #******************** |
---|
394 | #*** END OF OBSOLETE FUNCTIONS |
---|
395 | #*************** |
---|