[2648] | 1 | """Class Quantity - Implements values at each triangular element |
---|
| 2 | |
---|
| 3 | To create: |
---|
| 4 | |
---|
| 5 | Quantity(domain, vertex_values) |
---|
| 6 | |
---|
| 7 | domain: Associated domain structure. Required. |
---|
| 8 | |
---|
| 9 | vertex_values: N x 3 array of values at each vertex for each element. |
---|
| 10 | Default None |
---|
| 11 | |
---|
| 12 | If vertex_values are None Create array of zeros compatible with domain. |
---|
| 13 | Otherwise check that it is compatible with dimenions of domain. |
---|
| 14 | Otherwise raise an exception |
---|
| 15 | """ |
---|
| 16 | |
---|
| 17 | |
---|
| 18 | class Quantity: |
---|
| 19 | |
---|
| 20 | def __init__(self, domain, vertex_values=None): |
---|
| 21 | |
---|
| 22 | from mesh import Mesh |
---|
| 23 | from Numeric import array, zeros, Float |
---|
| 24 | |
---|
| 25 | msg = 'First argument in Quantity.__init__ ' |
---|
| 26 | msg += 'must be of class Mesh (or a subclass thereof)' |
---|
| 27 | assert isinstance(domain, Mesh), msg |
---|
| 28 | |
---|
| 29 | if vertex_values is None: |
---|
| 30 | N = domain.number_of_elements |
---|
| 31 | self.vertex_values = zeros((N, 3), Float) |
---|
| 32 | else: |
---|
| 33 | self.vertex_values = array(vertex_values).astype(Float) |
---|
| 34 | |
---|
| 35 | N, V = self.vertex_values.shape |
---|
| 36 | assert V == 3,\ |
---|
| 37 | 'Three vertex values per element must be specified' |
---|
| 38 | |
---|
| 39 | |
---|
| 40 | msg = 'Number of vertex values (%d) must be consistent with'\ |
---|
| 41 | %N |
---|
| 42 | msg += 'number of elements in specified domain (%d).'\ |
---|
| 43 | %domain.number_of_elements |
---|
| 44 | |
---|
| 45 | assert N == domain.number_of_elements, msg |
---|
| 46 | |
---|
| 47 | self.domain = domain |
---|
| 48 | |
---|
| 49 | #Allocate space for other quantities |
---|
| 50 | self.centroid_values = zeros(N, Float) |
---|
| 51 | self.edge_values = zeros((N, 3), Float) |
---|
| 52 | |
---|
| 53 | #Intialise centroid and edge_values |
---|
| 54 | self.interpolate() |
---|
| 55 | |
---|
| 56 | |
---|
| 57 | |
---|
| 58 | #Methods for operator overloading |
---|
| 59 | def __len__(self): |
---|
| 60 | return self.centroid_values.shape[0] |
---|
| 61 | |
---|
| 62 | |
---|
| 63 | def __neg__(self): |
---|
| 64 | """Negate all values in this quantity giving meaning to the |
---|
| 65 | expression -Q where Q is an instance of class Quantity |
---|
| 66 | """ |
---|
| 67 | |
---|
| 68 | Q = Quantity(self.domain) |
---|
| 69 | Q.set_values(-self.vertex_values) |
---|
| 70 | return Q |
---|
| 71 | |
---|
| 72 | |
---|
| 73 | def __add__(self, other): |
---|
| 74 | """Add to self anything that could populate a quantity |
---|
| 75 | |
---|
| 76 | E.g other can be a constant, an array, a function, another quantity |
---|
| 77 | (except for a filename or points, attributes (for now)) |
---|
| 78 | - see set_values for details |
---|
| 79 | """ |
---|
| 80 | |
---|
| 81 | Q = Quantity(self.domain) |
---|
| 82 | Q.set_values(other) |
---|
| 83 | |
---|
| 84 | result = Quantity(self.domain) |
---|
| 85 | result.set_values(self.vertex_values + Q.vertex_values) |
---|
| 86 | return result |
---|
| 87 | |
---|
| 88 | def __radd__(self, other): |
---|
| 89 | """Handle cases like 7+Q, where Q is an instance of class Quantity |
---|
| 90 | """ |
---|
| 91 | return self + other |
---|
| 92 | |
---|
| 93 | |
---|
| 94 | def __sub__(self, other): |
---|
| 95 | return self + -other #Invoke __neg__ |
---|
| 96 | |
---|
| 97 | def __mul__(self, other): |
---|
| 98 | """Multiply self with anything that could populate a quantity |
---|
| 99 | |
---|
| 100 | E.g other can be a constant, an array, a function, another quantity |
---|
| 101 | (except for a filename or points, attributes (for now)) |
---|
| 102 | - see set_values for details |
---|
| 103 | |
---|
| 104 | Note that if two quantitites q1 and q2 are multiplied, |
---|
| 105 | vertex values are multiplied entry by entry |
---|
| 106 | while centroid and edge values are re-interpolated. |
---|
| 107 | Hence they won't be the product of centroid or edge values |
---|
| 108 | from q1 and q2. |
---|
| 109 | """ |
---|
| 110 | |
---|
| 111 | Q = Quantity(self.domain) |
---|
| 112 | Q.set_values(other) |
---|
| 113 | |
---|
| 114 | result = Quantity(self.domain) |
---|
| 115 | result.set_values(self.vertex_values * Q.vertex_values) |
---|
| 116 | return result |
---|
| 117 | |
---|
| 118 | def __rmul__(self, other): |
---|
| 119 | """Handle cases like 3*Q, where Q is an instance of class Quantity |
---|
| 120 | """ |
---|
| 121 | return self * other |
---|
| 122 | |
---|
| 123 | def __pow__(self, other): |
---|
| 124 | """Raise quantity to (numerical) power |
---|
| 125 | |
---|
| 126 | As with __mul__ vertex values are processed entry by entry |
---|
| 127 | while centroid and edge values are re-interpolated. |
---|
| 128 | |
---|
| 129 | Example using __pow__: |
---|
| 130 | Q = (Q1**2 + Q2**2)**0.5 |
---|
| 131 | |
---|
| 132 | """ |
---|
| 133 | |
---|
| 134 | result = Quantity(self.domain) |
---|
| 135 | result.set_values(self.vertex_values**other) |
---|
| 136 | return result |
---|
| 137 | |
---|
| 138 | |
---|
| 139 | |
---|
| 140 | def interpolate(self): |
---|
| 141 | """Compute interpolated values at edges and centroid |
---|
| 142 | Pre-condition: vertex_values have been set |
---|
| 143 | """ |
---|
| 144 | |
---|
| 145 | N = self.vertex_values.shape[0] |
---|
| 146 | for i in range(N): |
---|
| 147 | v0 = self.vertex_values[i, 0] |
---|
| 148 | v1 = self.vertex_values[i, 1] |
---|
| 149 | v2 = self.vertex_values[i, 2] |
---|
| 150 | |
---|
| 151 | self.centroid_values[i] = (v0 + v1 + v2)/3 |
---|
| 152 | |
---|
| 153 | self.interpolate_from_vertices_to_edges() |
---|
| 154 | |
---|
| 155 | |
---|
| 156 | def interpolate_from_vertices_to_edges(self): |
---|
| 157 | #Call correct module function |
---|
| 158 | #(either from this module or C-extension) |
---|
| 159 | interpolate_from_vertices_to_edges(self) |
---|
| 160 | |
---|
| 161 | |
---|
| 162 | |
---|
| 163 | |
---|
| 164 | #New leaner interface to setting values |
---|
| 165 | def set_values(self, |
---|
| 166 | numeric = None, # List, numeric array or constant |
---|
| 167 | quantity = None, # Another quantity |
---|
| 168 | function = None, # Callable object: f(x,y) |
---|
| 169 | geospatial_data = None, #Arbitrary dataset |
---|
| 170 | points = None, values = None, data_georef = None, #Input for least squares (obsoleted by use of geo_spatial object) |
---|
| 171 | filename = None, attribute_name = None, #Input from file |
---|
| 172 | alpha = None, |
---|
| 173 | location = 'vertices', |
---|
| 174 | indices = None, |
---|
| 175 | verbose = False, |
---|
| 176 | use_cache = False): |
---|
| 177 | |
---|
| 178 | """Set values for quantity based on different sources. |
---|
| 179 | |
---|
| 180 | numeric: |
---|
| 181 | Compatible list, Numeric array (see below) or constant. |
---|
| 182 | If callable it will treated as a function (see below) |
---|
| 183 | If instance of another Quantity it will be treated as such. |
---|
| 184 | If geo_spatial object it will be treated as such |
---|
| 185 | |
---|
| 186 | quantity: |
---|
| 187 | Another quantity (compatible quantity, e.g. obtained as a |
---|
| 188 | linear combination of quantities) |
---|
| 189 | |
---|
| 190 | function: |
---|
| 191 | Any callable object that takes two 1d arrays x and y |
---|
| 192 | each of length N and returns an array also of length N. |
---|
| 193 | The function will be evaluated at points determined by |
---|
| 194 | location and indices in the underlying mesh. |
---|
| 195 | |
---|
| 196 | geospatial_data: |
---|
| 197 | Arbitrary geo spatial dataset in the form of the class |
---|
| 198 | Geospatial_data. Mesh points are populated using least squares |
---|
| 199 | fitting |
---|
| 200 | |
---|
| 201 | points: |
---|
| 202 | Nx2 array of data points for use with least squares fit |
---|
| 203 | If points are present, an N array of attribute |
---|
| 204 | values corresponding to |
---|
| 205 | each data point must be present. |
---|
| 206 | |
---|
| 207 | values: |
---|
| 208 | If points is specified, values is an array of length N containing |
---|
| 209 | attribute values for each point. |
---|
| 210 | |
---|
| 211 | data_georef: |
---|
| 212 | If points is specified, geo_reference applies to each point. |
---|
| 213 | |
---|
| 214 | filename: |
---|
| 215 | Name of a .pts file containing data points and attributes for |
---|
| 216 | use with least squares. |
---|
| 217 | |
---|
| 218 | attribute_name: |
---|
| 219 | If specified, any array matching that name |
---|
| 220 | will be used. from file or geospatial_data. |
---|
| 221 | Otherwise a default will be used. |
---|
| 222 | |
---|
| 223 | alpha: |
---|
| 224 | Smoothing parameter to be used with least squares fits. |
---|
| 225 | See module least_squares for further details about alpha. |
---|
| 226 | Alpha will only be used with points, values or filename. |
---|
| 227 | Otherwise it will be ignored. |
---|
| 228 | |
---|
| 229 | |
---|
| 230 | location: Where values are to be stored. |
---|
| 231 | Permissible options are: vertices, edges, centroids |
---|
| 232 | Default is 'vertices' |
---|
| 233 | |
---|
| 234 | In case of location == 'centroids' the dimension values must |
---|
| 235 | be a list of a Numerical array of length N, |
---|
| 236 | N being the number of elements. |
---|
| 237 | Otherwise it must be of dimension Nx3 |
---|
| 238 | |
---|
| 239 | |
---|
| 240 | The values will be stored in elements following their |
---|
| 241 | internal ordering. |
---|
| 242 | |
---|
| 243 | If location is not 'unique vertices' Indices is the |
---|
| 244 | set of element ids that the operation applies to. |
---|
| 245 | If location is 'unique vertices' Indices is the set |
---|
| 246 | of vertex ids that the operation applies to. |
---|
| 247 | |
---|
| 248 | If selected location is vertices, values for |
---|
| 249 | centroid and edges will be assigned interpolated |
---|
| 250 | values. In any other case, only values for the |
---|
| 251 | specified locations will be assigned and the others |
---|
| 252 | will be left undefined. |
---|
| 253 | |
---|
| 254 | verbose: True means that output to stdout is generated |
---|
| 255 | |
---|
| 256 | use_cache: True means that caching of intermediate results is |
---|
| 257 | attempted for least squares fit. |
---|
| 258 | |
---|
| 259 | |
---|
| 260 | |
---|
| 261 | |
---|
| 262 | Exactly one of the arguments |
---|
| 263 | numeric, quantity, function, points, filename |
---|
| 264 | must be present. |
---|
| 265 | """ |
---|
| 266 | |
---|
| 267 | from geospatial_data.geospatial_data import Geospatial_data |
---|
| 268 | from types import FloatType, IntType, LongType, ListType, NoneType |
---|
| 269 | from Numeric import ArrayType |
---|
| 270 | |
---|
| 271 | #General input checks |
---|
| 272 | L = [numeric, quantity, function, geospatial_data, points, filename] |
---|
| 273 | msg = 'Exactly one of the arguments '+\ |
---|
| 274 | 'numeric, quantity, function, geospatial_data, points, or filename '+\ |
---|
| 275 | 'must be present.' |
---|
| 276 | assert L.count(None) == len(L)-1, msg |
---|
| 277 | |
---|
| 278 | |
---|
| 279 | if location not in ['vertices', 'centroids', 'edges', |
---|
| 280 | 'unique vertices']: |
---|
| 281 | msg = 'Invalid location: %s' %location |
---|
| 282 | raise msg |
---|
| 283 | |
---|
| 284 | |
---|
| 285 | msg = 'Indices must be a list or None' |
---|
| 286 | assert type(indices) in [ListType, NoneType, ArrayType], msg |
---|
| 287 | |
---|
| 288 | |
---|
| 289 | if not(points is None and values is None and data_georef is None): |
---|
| 290 | from warnings import warn |
---|
| 291 | |
---|
| 292 | msg = 'Using points, values or data_georef with set_quantity ' |
---|
| 293 | msg += 'is obsolete. Please use a Geospatial_data object instead.' |
---|
| 294 | warn(msg, DeprecationWarning) |
---|
| 295 | |
---|
| 296 | |
---|
| 297 | |
---|
| 298 | #Determine which 'set_values_from_...' to use |
---|
| 299 | |
---|
| 300 | if numeric is not None: |
---|
| 301 | if type(numeric) in [FloatType, IntType, LongType]: |
---|
| 302 | self.set_values_from_constant(numeric, |
---|
| 303 | location, indices, verbose) |
---|
| 304 | elif type(numeric) in [ArrayType, ListType]: |
---|
| 305 | self.set_values_from_array(numeric, |
---|
| 306 | location, indices, verbose) |
---|
| 307 | elif callable(numeric): |
---|
| 308 | self.set_values_from_function(numeric, |
---|
| 309 | location, indices, verbose) |
---|
| 310 | elif isinstance(numeric, Quantity): |
---|
| 311 | self.set_values_from_quantity(numeric, |
---|
| 312 | location, indices, verbose) |
---|
| 313 | elif isinstance(numeric, Geospatial_data): |
---|
| 314 | self.set_values_from_geospatial_data(numeric, |
---|
| 315 | alpha, |
---|
| 316 | location, indices, |
---|
| 317 | verbose = verbose, |
---|
| 318 | use_cache = use_cache) |
---|
| 319 | else: |
---|
| 320 | msg = 'Illegal type for argument numeric: %s' %str(numeric) |
---|
| 321 | raise msg |
---|
| 322 | |
---|
| 323 | elif quantity is not None: |
---|
| 324 | self.set_values_from_quantity(quantity, |
---|
| 325 | location, indices, verbose) |
---|
| 326 | elif function is not None: |
---|
| 327 | msg = 'Argument function must be callable' |
---|
| 328 | assert callable(function), msg |
---|
| 329 | self.set_values_from_function(function, |
---|
| 330 | location, indices, verbose) |
---|
| 331 | elif geospatial_data is not None: |
---|
| 332 | self.set_values_from_geospatial_data(geospatial_data, |
---|
| 333 | alpha, |
---|
| 334 | location, indices, |
---|
| 335 | verbose = verbose, |
---|
| 336 | use_cache = use_cache) |
---|
| 337 | elif points is not None: |
---|
| 338 | print 'The usage of points in set_values will be deprecated.' +\ |
---|
| 339 | 'Please use the geospatial_data object.' |
---|
| 340 | |
---|
| 341 | msg = 'When points are specified, associated values must also be.' |
---|
| 342 | assert values is not None, msg |
---|
| 343 | self.set_values_from_points(points, values, alpha, |
---|
| 344 | location, indices, |
---|
| 345 | data_georef = data_georef, |
---|
| 346 | verbose = verbose, |
---|
| 347 | use_cache = use_cache) |
---|
| 348 | elif filename is not None: |
---|
| 349 | self.set_values_from_file(filename, attribute_name, alpha, |
---|
| 350 | location, indices, |
---|
| 351 | verbose = verbose, |
---|
| 352 | use_cache = use_cache) |
---|
| 353 | else: |
---|
| 354 | raise 'This can\'t happen :-)' |
---|
| 355 | |
---|
| 356 | |
---|
| 357 | #Update all locations in triangles |
---|
| 358 | if location == 'vertices' or location == 'unique vertices': |
---|
| 359 | #Intialise centroid and edge_values |
---|
| 360 | self.interpolate() |
---|
| 361 | |
---|
| 362 | if location == 'centroids': |
---|
| 363 | #Extrapolate 1st order - to capture notion of area being specified |
---|
| 364 | self.extrapolate_first_order() |
---|
| 365 | |
---|
| 366 | |
---|
| 367 | |
---|
| 368 | #Specific functions for setting values |
---|
| 369 | def set_values_from_constant(self, X, |
---|
| 370 | location, indices, verbose): |
---|
| 371 | """Set quantity values from specified constant X |
---|
| 372 | """ |
---|
| 373 | |
---|
| 374 | |
---|
| 375 | if location == 'centroids': |
---|
| 376 | if (indices == None): |
---|
| 377 | self.centroid_values[:] = X |
---|
| 378 | else: |
---|
| 379 | #Brute force |
---|
| 380 | for i in indices: |
---|
| 381 | self.centroid_values[i,:] = X |
---|
| 382 | |
---|
| 383 | elif location == 'edges': |
---|
| 384 | if (indices == None): |
---|
| 385 | self.edge_values[:] = X |
---|
| 386 | else: |
---|
| 387 | #Brute force |
---|
| 388 | for i in indices: |
---|
| 389 | self.edge_values[i,:] = X |
---|
| 390 | |
---|
| 391 | elif location == 'unique vertices': |
---|
| 392 | if (indices == None): |
---|
| 393 | self.edge_values[:] = X |
---|
| 394 | else: |
---|
| 395 | |
---|
| 396 | #Go through list of unique vertices |
---|
| 397 | for unique_vert_id in indices: |
---|
| 398 | triangles = self.domain.vertexlist[unique_vert_id] |
---|
| 399 | |
---|
| 400 | #In case there are unused points |
---|
| 401 | if triangles is None: continue |
---|
| 402 | |
---|
| 403 | #Go through all triangle, vertex pairs |
---|
| 404 | #and set corresponding vertex value |
---|
| 405 | for triangle_id, vertex_id in triangles: |
---|
| 406 | self.vertex_values[triangle_id, vertex_id] = X |
---|
| 407 | |
---|
| 408 | #Intialise centroid and edge_values |
---|
| 409 | self.interpolate() |
---|
| 410 | else: |
---|
| 411 | if (indices == None): |
---|
| 412 | self.vertex_values[:] = X |
---|
| 413 | else: |
---|
| 414 | #Brute force |
---|
| 415 | for i_vertex in indices: |
---|
| 416 | self.vertex_values[i_vertex,:] = X |
---|
| 417 | |
---|
| 418 | |
---|
| 419 | |
---|
| 420 | |
---|
| 421 | |
---|
| 422 | |
---|
| 423 | def set_values_from_array(self, values, |
---|
| 424 | location, indices, verbose): |
---|
| 425 | """Set values for quantity |
---|
| 426 | |
---|
| 427 | values: Numeric array |
---|
| 428 | location: Where values are to be stored. |
---|
| 429 | Permissible options are: vertices, edges, centroid, unique vertices |
---|
| 430 | Default is 'vertices' |
---|
| 431 | |
---|
| 432 | indices - if this action is carried out on a subset of |
---|
| 433 | elements or unique vertices |
---|
| 434 | The element/unique vertex indices are specified here. |
---|
| 435 | |
---|
| 436 | In case of location == 'centroid' the dimension values must |
---|
| 437 | be a list of a Numerical array of length N, N being the number |
---|
| 438 | of elements. |
---|
| 439 | |
---|
| 440 | Otherwise it must be of dimension Nx3 |
---|
| 441 | |
---|
| 442 | The values will be stored in elements following their |
---|
| 443 | internal ordering. |
---|
| 444 | |
---|
| 445 | If selected location is vertices, values for centroid and edges |
---|
| 446 | will be assigned interpolated values. |
---|
| 447 | In any other case, only values for the specified locations |
---|
| 448 | will be assigned and the others will be left undefined. |
---|
| 449 | """ |
---|
| 450 | |
---|
| 451 | from Numeric import array, Float, Int, allclose |
---|
| 452 | |
---|
| 453 | values = array(values).astype(Float) |
---|
| 454 | |
---|
| 455 | if indices is not None: |
---|
| 456 | indices = array(indices).astype(Int) |
---|
| 457 | msg = 'Number of values must match number of indices' |
---|
| 458 | assert values.shape[0] == indices.shape[0], msg |
---|
| 459 | |
---|
| 460 | N = self.centroid_values.shape[0] |
---|
| 461 | |
---|
| 462 | if location == 'centroids': |
---|
| 463 | assert len(values.shape) == 1, 'Values array must be 1d' |
---|
| 464 | |
---|
| 465 | if indices is None: |
---|
| 466 | msg = 'Number of values must match number of elements' |
---|
| 467 | assert values.shape[0] == N, msg |
---|
| 468 | |
---|
| 469 | self.centroid_values = values |
---|
| 470 | else: |
---|
| 471 | msg = 'Number of values must match number of indices' |
---|
| 472 | assert values.shape[0] == indices.shape[0], msg |
---|
| 473 | |
---|
| 474 | #Brute force |
---|
| 475 | for i in range(len(indices)): |
---|
| 476 | self.centroid_values[indices[i]] = values[i] |
---|
| 477 | |
---|
| 478 | elif location == 'edges': |
---|
| 479 | assert len(values.shape) == 2, 'Values array must be 2d' |
---|
| 480 | |
---|
| 481 | msg = 'Number of values must match number of elements' |
---|
| 482 | assert values.shape[0] == N, msg |
---|
| 483 | |
---|
| 484 | msg = 'Array must be N x 3' |
---|
| 485 | assert values.shape[1] == 3, msg |
---|
| 486 | |
---|
| 487 | self.edge_values = values |
---|
| 488 | |
---|
| 489 | elif location == 'unique vertices': |
---|
| 490 | assert len(values.shape) == 1 or allclose(values.shape[1:], 1),\ |
---|
| 491 | 'Values array must be 1d' |
---|
| 492 | |
---|
| 493 | self.set_vertex_values(values.flat, indices = indices) |
---|
| 494 | else: |
---|
| 495 | if len(values.shape) == 1: |
---|
| 496 | self.set_vertex_values(values, indices = indices) |
---|
| 497 | #if indices == None: |
---|
| 498 | #Values are being specified once for each unique vertex |
---|
| 499 | # msg = 'Number of values must match number of vertices' |
---|
| 500 | # assert values.shape[0] == self.domain.coordinates.shape[0], msg |
---|
| 501 | # self.set_vertex_values(values) |
---|
| 502 | #else: |
---|
| 503 | # for element_index, value in map(None, indices, values): |
---|
| 504 | # self.vertex_values[element_index, :] = value |
---|
| 505 | |
---|
| 506 | elif len(values.shape) == 2: |
---|
| 507 | #Vertex values are given as a triplet for each triangle |
---|
| 508 | |
---|
| 509 | msg = 'Array must be N x 3' |
---|
| 510 | assert values.shape[1] == 3, msg |
---|
| 511 | |
---|
| 512 | if indices == None: |
---|
| 513 | self.vertex_values = values |
---|
| 514 | else: |
---|
| 515 | for element_index, value in map(None, indices, values): |
---|
| 516 | self.vertex_values[element_index] = value |
---|
| 517 | else: |
---|
| 518 | msg = 'Values array must be 1d or 2d' |
---|
| 519 | raise msg |
---|
| 520 | |
---|
| 521 | def set_values_from_quantity(self, q, |
---|
| 522 | location, indices, verbose): |
---|
| 523 | """Set quantity values from specified quantity instance q |
---|
| 524 | |
---|
| 525 | Location is ignored |
---|
| 526 | """ |
---|
| 527 | |
---|
| 528 | |
---|
| 529 | A = q.vertex_values |
---|
| 530 | |
---|
| 531 | from Numeric import allclose |
---|
| 532 | msg = 'Quantities are defined on different meshes. '+\ |
---|
| 533 | 'This might be a case for implementing interpolation '+\ |
---|
| 534 | 'between different meshes.' |
---|
| 535 | assert allclose(A.shape, self.vertex_values.shape), msg |
---|
| 536 | |
---|
| 537 | self.set_values(A, location='vertices', |
---|
| 538 | indices=indices, |
---|
| 539 | verbose=verbose) |
---|
| 540 | |
---|
| 541 | |
---|
| 542 | def set_values_from_function(self, f, |
---|
| 543 | location, indices, verbose): |
---|
| 544 | """Set values for quantity using specified function |
---|
| 545 | |
---|
| 546 | f: x, y -> z Function where x, y and z are arrays |
---|
| 547 | location: Where values are to be stored. |
---|
| 548 | Permissible options are: vertices, centroid, edges, |
---|
| 549 | unique vertices |
---|
| 550 | Default is "vertices" |
---|
| 551 | """ |
---|
| 552 | |
---|
| 553 | #FIXME: Should check that function returns something sensible and |
---|
| 554 | #raise a meaningfull exception if it returns None for example |
---|
| 555 | |
---|
| 556 | #FIXME: Should supply absolute coordinates |
---|
| 557 | |
---|
| 558 | from Numeric import take |
---|
| 559 | |
---|
| 560 | if (indices is None): |
---|
| 561 | indices = range(len(self)) |
---|
| 562 | is_subset = False |
---|
| 563 | else: |
---|
| 564 | is_subset = True |
---|
| 565 | |
---|
| 566 | if location == 'centroids': |
---|
| 567 | P = take(self.domain.centroid_coordinates, indices) |
---|
| 568 | if is_subset: |
---|
| 569 | self.set_values(f(P[:,0], P[:,1]), |
---|
| 570 | location = location, |
---|
| 571 | indices = indices) |
---|
| 572 | else: |
---|
| 573 | self.set_values(f(P[:,0], P[:,1]), location = location) |
---|
| 574 | elif location == 'vertices': |
---|
| 575 | P = self.domain.vertex_coordinates |
---|
| 576 | if is_subset: |
---|
| 577 | #Brute force |
---|
| 578 | for e in indices: |
---|
| 579 | for i in range(3): |
---|
| 580 | self.vertex_values[e,i] = f(P[e,2*i], P[e,2*i+1]) |
---|
| 581 | else: |
---|
| 582 | for i in range(3): |
---|
| 583 | self.vertex_values[:,i] = f(P[:,2*i], P[:,2*i+1]) |
---|
| 584 | else: |
---|
| 585 | raise 'Not implemented: %s' %location |
---|
| 586 | |
---|
| 587 | |
---|
| 588 | |
---|
| 589 | def set_values_from_geospatial_data(self, geospatial_data, alpha, |
---|
| 590 | location, indices, |
---|
| 591 | verbose = False, |
---|
| 592 | use_cache = False): |
---|
| 593 | |
---|
| 594 | #FIXME: Use this function for the time being. Later move code in here |
---|
| 595 | |
---|
| 596 | points = geospatial_data.get_data_points(absolute = False) |
---|
| 597 | values = geospatial_data.get_attributes() |
---|
| 598 | data_georef = geospatial_data.get_geo_reference() |
---|
| 599 | |
---|
| 600 | |
---|
| 601 | |
---|
| 602 | self.set_values_from_points(points, values, alpha, |
---|
| 603 | location, indices, |
---|
| 604 | data_georef = data_georef, |
---|
| 605 | verbose = verbose, |
---|
| 606 | use_cache = use_cache) |
---|
| 607 | |
---|
| 608 | |
---|
| 609 | |
---|
| 610 | def set_values_from_points(self, points, values, alpha, |
---|
| 611 | location, indices, |
---|
| 612 | data_georef = None, |
---|
| 613 | verbose = False, |
---|
| 614 | use_cache = False): |
---|
| 615 | """Set quantity values from arbitray data points using least squares |
---|
| 616 | """ |
---|
| 617 | |
---|
| 618 | |
---|
| 619 | from Numeric import Float |
---|
| 620 | from utilities.numerical_tools import ensure_numeric |
---|
[2754] | 621 | from pyvolution.least_squares import fit_to_mesh |
---|
[2648] | 622 | from coordinate_transforms.geo_reference import Geo_reference |
---|
| 623 | |
---|
| 624 | |
---|
| 625 | points = ensure_numeric(points, Float) |
---|
| 626 | values = ensure_numeric(values, Float) |
---|
| 627 | |
---|
| 628 | if location != 'vertices': |
---|
| 629 | msg = 'set_values_from_points is only defined for '+\ |
---|
| 630 | 'location=\'vertices\'' |
---|
| 631 | raise msg |
---|
| 632 | |
---|
| 633 | coordinates = self.domain.coordinates |
---|
| 634 | triangles = self.domain.triangles |
---|
| 635 | |
---|
| 636 | |
---|
| 637 | #Take care of georeferencing |
---|
| 638 | if data_georef is None: |
---|
| 639 | data_georef = Geo_reference() |
---|
| 640 | |
---|
| 641 | |
---|
| 642 | mesh_georef = self.domain.geo_reference |
---|
| 643 | |
---|
| 644 | #print mesh_georef |
---|
| 645 | #print data_georef |
---|
| 646 | #print points |
---|
| 647 | |
---|
| 648 | |
---|
| 649 | #Call least squares method |
---|
| 650 | args = (coordinates, triangles, points, values) |
---|
| 651 | kwargs = {'data_origin': data_georef.get_origin(), |
---|
| 652 | 'mesh_origin': mesh_georef.get_origin(), |
---|
| 653 | 'alpha': alpha, |
---|
| 654 | 'precrop': True, |
---|
| 655 | 'verbose': verbose} |
---|
| 656 | |
---|
| 657 | #print kwargs |
---|
| 658 | |
---|
| 659 | if use_cache is True: |
---|
| 660 | try: |
---|
| 661 | from caching import cache |
---|
| 662 | except: |
---|
| 663 | msg = 'Caching was requested, but caching module'+\ |
---|
| 664 | 'could not be imported' |
---|
| 665 | raise msg |
---|
| 666 | |
---|
| 667 | vertex_attributes = cache(fit_to_mesh, |
---|
| 668 | args, kwargs, |
---|
[2683] | 669 | verbose=verbose, |
---|
| 670 | compression=False) |
---|
[2648] | 671 | else: |
---|
| 672 | |
---|
| 673 | vertex_attributes = apply(fit_to_mesh, |
---|
| 674 | args, kwargs) |
---|
| 675 | |
---|
| 676 | #Call underlying method using array values |
---|
| 677 | self.set_values_from_array(vertex_attributes, |
---|
| 678 | location, indices, verbose) |
---|
| 679 | |
---|
| 680 | |
---|
| 681 | |
---|
| 682 | def set_values_from_file(self, filename, attribute_name, alpha, |
---|
| 683 | location, indices, |
---|
| 684 | verbose = False, |
---|
| 685 | use_cache = False): |
---|
| 686 | """Set quantity based on arbitrary points in .pts file |
---|
| 687 | using least_squares attribute_name selects name of attribute |
---|
| 688 | present in file. |
---|
| 689 | If not specified try to use whatever is available in file. |
---|
| 690 | """ |
---|
| 691 | |
---|
| 692 | from load_mesh.loadASCII import import_points_file |
---|
| 693 | from geospatial_data.geospatial_data import points_dictionary2geospatial_data |
---|
| 694 | |
---|
| 695 | from types import StringType |
---|
| 696 | msg = 'Filename must be a text string' |
---|
| 697 | assert type(filename) == StringType, msg |
---|
| 698 | |
---|
| 699 | |
---|
| 700 | #Read from (NetCDF) file |
---|
| 701 | #FIXME (Ole): This function should really return a Geospatial_data object. |
---|
| 702 | points_dict = import_points_file(filename) |
---|
| 703 | points = points_dict['pointlist'] |
---|
| 704 | attributes = points_dict['attributelist'] |
---|
| 705 | |
---|
| 706 | if attribute_name is None: |
---|
| 707 | names = attributes.keys() |
---|
| 708 | attribute_name = names[0] |
---|
| 709 | |
---|
| 710 | msg = 'Attribute_name must be a text string' |
---|
| 711 | assert type(attribute_name) == StringType, msg |
---|
| 712 | |
---|
| 713 | |
---|
| 714 | if verbose: |
---|
| 715 | print 'Using attribute %s from file %s' %(attribute_name, filename) |
---|
| 716 | print 'Available attributes: %s' %(names) |
---|
| 717 | |
---|
| 718 | #try: |
---|
| 719 | # z = attributes[attribute_name] |
---|
| 720 | #except: |
---|
| 721 | # msg = 'Could not extract attribute %s from file %s'\ |
---|
| 722 | # %(attribute_name, filename) |
---|
| 723 | # raise msg |
---|
| 724 | |
---|
| 725 | |
---|
| 726 | #Take care of georeferencing |
---|
| 727 | if points_dict.has_key('geo_reference') and \ |
---|
| 728 | points_dict['geo_reference'] is not None: |
---|
| 729 | data_georef = points_dict['geo_reference'] |
---|
| 730 | else: |
---|
| 731 | data_georef = None |
---|
| 732 | |
---|
| 733 | |
---|
| 734 | |
---|
| 735 | #Call underlying method for geospatial data |
---|
| 736 | geospatial_data = points_dictionary2geospatial_data(points_dict) |
---|
| 737 | geospatial_data.set_default_attribute_name(attribute_name) |
---|
| 738 | |
---|
| 739 | self.set_values_from_geospatial_data(geospatial_data, |
---|
| 740 | alpha, |
---|
| 741 | location, indices, |
---|
| 742 | verbose = verbose, |
---|
| 743 | use_cache = use_cache) |
---|
| 744 | |
---|
| 745 | #Call underlying method for points |
---|
| 746 | #self.set_values_from_points(points, z, alpha, |
---|
| 747 | # location, indices, |
---|
| 748 | # data_georef = data_georef, |
---|
| 749 | # verbose = verbose, |
---|
| 750 | # use_cache = use_cache) |
---|
| 751 | |
---|
| 752 | |
---|
| 753 | |
---|
| 754 | def get_values(self, location='vertices', indices = None): |
---|
| 755 | """get values for quantity |
---|
| 756 | |
---|
| 757 | return X, Compatible list, Numeric array (see below) |
---|
| 758 | location: Where values are to be stored. |
---|
| 759 | Permissible options are: vertices, edges, centroid |
---|
| 760 | and unique vertices. Default is 'vertices' |
---|
| 761 | |
---|
| 762 | In case of location == 'centroids' the dimension values must |
---|
| 763 | be a list of a Numerical array of length N, N being the number |
---|
| 764 | of elements. Otherwise it must be of dimension Nx3 |
---|
| 765 | |
---|
| 766 | The returned values with be a list the length of indices |
---|
| 767 | (N if indices = None). Each value will be a list of the three |
---|
| 768 | vertex values for this quantity. |
---|
| 769 | |
---|
| 770 | Indices is the set of element ids that the operation applies to. |
---|
| 771 | |
---|
| 772 | The values will be stored in elements following their |
---|
| 773 | internal ordering. |
---|
| 774 | |
---|
| 775 | """ |
---|
| 776 | from Numeric import take |
---|
| 777 | |
---|
| 778 | if location not in ['vertices', 'centroids', 'edges', 'unique vertices']: |
---|
| 779 | msg = 'Invalid location: %s' %location |
---|
| 780 | raise msg |
---|
| 781 | |
---|
| 782 | import types, Numeric |
---|
| 783 | assert type(indices) in [types.ListType, types.NoneType, |
---|
| 784 | Numeric.ArrayType],\ |
---|
| 785 | 'Indices must be a list or None' |
---|
| 786 | |
---|
| 787 | if location == 'centroids': |
---|
| 788 | if (indices == None): |
---|
| 789 | indices = range(len(self)) |
---|
| 790 | return take(self.centroid_values,indices) |
---|
| 791 | elif location == 'edges': |
---|
| 792 | if (indices == None): |
---|
| 793 | indices = range(len(self)) |
---|
| 794 | return take(self.edge_values,indices) |
---|
| 795 | elif location == 'unique vertices': |
---|
| 796 | if (indices == None): |
---|
| 797 | indices=range(self.domain.coordinates.shape[0]) |
---|
| 798 | vert_values = [] |
---|
| 799 | #Go through list of unique vertices |
---|
| 800 | for unique_vert_id in indices: |
---|
| 801 | triangles = self.domain.vertexlist[unique_vert_id] |
---|
| 802 | |
---|
| 803 | #In case there are unused points |
---|
| 804 | if triangles is None: |
---|
| 805 | msg = 'Unique vertex not associated with triangles' |
---|
| 806 | raise msg |
---|
| 807 | |
---|
| 808 | # Go through all triangle, vertex pairs |
---|
| 809 | # Average the values |
---|
| 810 | sum = 0 |
---|
| 811 | for triangle_id, vertex_id in triangles: |
---|
| 812 | sum += self.vertex_values[triangle_id, vertex_id] |
---|
| 813 | vert_values.append(sum/len(triangles)) |
---|
| 814 | return Numeric.array(vert_values) |
---|
| 815 | else: |
---|
| 816 | if (indices == None): |
---|
| 817 | indices = range(len(self)) |
---|
| 818 | return take(self.vertex_values,indices) |
---|
| 819 | |
---|
| 820 | |
---|
| 821 | |
---|
| 822 | def set_vertex_values(self, A, indices = None): |
---|
| 823 | """Set vertex values for all unique vertices based on input array A |
---|
| 824 | which has one entry per unique vertex, i.e. |
---|
| 825 | one value for each row in array self.domain.coordinates or |
---|
| 826 | one value for each row in vertexlist. |
---|
| 827 | |
---|
| 828 | indices is the list of vertex_id's that will be set. |
---|
| 829 | |
---|
| 830 | This function is used by set_values_from_array |
---|
| 831 | """ |
---|
| 832 | |
---|
| 833 | from Numeric import array, Float |
---|
| 834 | |
---|
| 835 | #Assert that A can be converted to a Numeric array of appropriate dim |
---|
| 836 | A = array(A, Float) |
---|
| 837 | |
---|
| 838 | #print 'SHAPE A', A.shape |
---|
| 839 | assert len(A.shape) == 1 |
---|
| 840 | |
---|
| 841 | if indices == None: |
---|
| 842 | assert A.shape[0] == self.domain.coordinates.shape[0] |
---|
| 843 | vertex_list = range(A.shape[0]) |
---|
| 844 | else: |
---|
| 845 | assert A.shape[0] == len(indices) |
---|
| 846 | vertex_list = indices |
---|
| 847 | |
---|
| 848 | #Go through list of unique vertices |
---|
| 849 | for i_index, unique_vert_id in enumerate(vertex_list): |
---|
| 850 | triangles = self.domain.vertexlist[unique_vert_id] |
---|
| 851 | |
---|
| 852 | if triangles is None: continue #In case there are unused points |
---|
| 853 | |
---|
| 854 | #Go through all triangle, vertex pairs |
---|
| 855 | #touching vertex unique_vert_id and set corresponding vertex value |
---|
| 856 | for triangle_id, vertex_id in triangles: |
---|
| 857 | self.vertex_values[triangle_id, vertex_id] = A[i_index] |
---|
| 858 | |
---|
| 859 | #Intialise centroid and edge_values |
---|
| 860 | self.interpolate() |
---|
| 861 | |
---|
| 862 | |
---|
| 863 | def smooth_vertex_values(self, value_array='field_values', |
---|
| 864 | precision = None): |
---|
| 865 | """ Smooths field_values or conserved_quantities data. |
---|
| 866 | TODO: be able to smooth individual fields |
---|
| 867 | NOTE: This function does not have a test. |
---|
| 868 | FIXME: NOT DONE - do we need it? |
---|
| 869 | FIXME: this function isn't called by anything. |
---|
| 870 | Maybe it should be removed..-DSG |
---|
| 871 | """ |
---|
| 872 | |
---|
| 873 | from Numeric import concatenate, zeros, Float, Int, array, reshape |
---|
| 874 | |
---|
| 875 | |
---|
| 876 | A,V = self.get_vertex_values(xy=False, |
---|
| 877 | value_array=value_array, |
---|
| 878 | smooth = True, |
---|
| 879 | precision = precision) |
---|
| 880 | |
---|
| 881 | #Set some field values |
---|
| 882 | for volume in self: |
---|
| 883 | for i,v in enumerate(volume.vertices): |
---|
| 884 | if value_array == 'field_values': |
---|
| 885 | volume.set_field_values('vertex', i, A[v,:]) |
---|
| 886 | elif value_array == 'conserved_quantities': |
---|
| 887 | volume.set_conserved_quantities('vertex', i, A[v,:]) |
---|
| 888 | |
---|
| 889 | if value_array == 'field_values': |
---|
| 890 | self.precompute() |
---|
| 891 | elif value_array == 'conserved_quantities': |
---|
| 892 | Volume.interpolate_conserved_quantities() |
---|
| 893 | |
---|
| 894 | |
---|
| 895 | #Method for outputting model results |
---|
| 896 | #FIXME: Split up into geometric and numeric stuff. |
---|
| 897 | #FIXME: Geometric (X,Y,V) should live in mesh.py |
---|
| 898 | #FIXME: STill remember to move XY to mesh |
---|
| 899 | def get_vertex_values(self, |
---|
| 900 | xy=True, |
---|
| 901 | smooth = None, |
---|
| 902 | precision = None, |
---|
| 903 | reduction = None): |
---|
| 904 | """Return vertex values like an OBJ format |
---|
| 905 | |
---|
| 906 | The vertex values are returned as one sequence in the 1D float array A. |
---|
| 907 | If requested the coordinates will be returned in 1D arrays X and Y. |
---|
| 908 | |
---|
| 909 | The connectivity is represented as an integer array, V, of dimension |
---|
| 910 | M x 3, where M is the number of volumes. Each row has three indices |
---|
| 911 | into the X, Y, A arrays defining the triangle. |
---|
| 912 | |
---|
| 913 | if smooth is True, vertex values corresponding to one common |
---|
| 914 | coordinate set will be smoothed according to the given |
---|
| 915 | reduction operator. In this case vertex coordinates will be |
---|
| 916 | de-duplicated. |
---|
| 917 | |
---|
| 918 | If no smoothings is required, vertex coordinates and values will |
---|
| 919 | be aggregated as a concatenation of values at |
---|
| 920 | vertices 0, vertices 1 and vertices 2 |
---|
| 921 | |
---|
| 922 | |
---|
| 923 | Calling convention |
---|
| 924 | if xy is True: |
---|
| 925 | X,Y,A,V = get_vertex_values |
---|
| 926 | else: |
---|
| 927 | A,V = get_vertex_values |
---|
| 928 | |
---|
| 929 | """ |
---|
| 930 | |
---|
| 931 | from Numeric import concatenate, zeros, Float, Int, array, reshape |
---|
| 932 | |
---|
| 933 | |
---|
| 934 | if smooth is None: |
---|
| 935 | smooth = self.domain.smooth |
---|
| 936 | |
---|
| 937 | if precision is None: |
---|
| 938 | precision = Float |
---|
| 939 | |
---|
| 940 | if reduction is None: |
---|
| 941 | reduction = self.domain.reduction |
---|
| 942 | |
---|
| 943 | #Create connectivity |
---|
| 944 | |
---|
| 945 | if smooth == True: |
---|
| 946 | |
---|
| 947 | V = self.domain.get_vertices() |
---|
| 948 | N = len(self.domain.vertexlist) |
---|
| 949 | A = zeros(N, precision) |
---|
| 950 | |
---|
| 951 | #Smoothing loop |
---|
| 952 | for k in range(N): |
---|
| 953 | L = self.domain.vertexlist[k] |
---|
| 954 | |
---|
| 955 | #Go through all triangle, vertex pairs |
---|
| 956 | #contributing to vertex k and register vertex value |
---|
| 957 | |
---|
| 958 | if L is None: continue #In case there are unused points |
---|
| 959 | |
---|
| 960 | contributions = [] |
---|
| 961 | for volume_id, vertex_id in L: |
---|
| 962 | v = self.vertex_values[volume_id, vertex_id] |
---|
| 963 | contributions.append(v) |
---|
| 964 | |
---|
| 965 | A[k] = reduction(contributions) |
---|
| 966 | |
---|
| 967 | |
---|
| 968 | if xy is True: |
---|
| 969 | X = self.domain.coordinates[:,0].astype(precision) |
---|
| 970 | Y = self.domain.coordinates[:,1].astype(precision) |
---|
| 971 | |
---|
| 972 | return X, Y, A, V |
---|
| 973 | else: |
---|
| 974 | return A, V |
---|
| 975 | else: |
---|
| 976 | #Don't smooth |
---|
| 977 | #obj machinery moved to general_mesh |
---|
| 978 | |
---|
| 979 | # Create a V like [[0 1 2], [3 4 5]....[3*m-2 3*m-1 3*m]] |
---|
| 980 | # These vert_id's will relate to the verts created below |
---|
| 981 | #m = len(self.domain) #Number of volumes |
---|
| 982 | #M = 3*m #Total number of unique vertices |
---|
| 983 | #V = reshape(array(range(M)).astype(Int), (m,3)) |
---|
| 984 | |
---|
| 985 | V = self.domain.get_triangles(obj=True) |
---|
| 986 | #FIXME use get_vertices, when ready |
---|
| 987 | |
---|
| 988 | A = self.vertex_values.flat |
---|
| 989 | |
---|
| 990 | #Do vertex coordinates |
---|
| 991 | if xy is True: |
---|
| 992 | C = self.domain.get_vertex_coordinates() |
---|
| 993 | |
---|
| 994 | X = C[:,0:6:2].copy() |
---|
| 995 | Y = C[:,1:6:2].copy() |
---|
| 996 | |
---|
| 997 | return X.flat, Y.flat, A, V |
---|
| 998 | else: |
---|
| 999 | return A, V |
---|
| 1000 | |
---|
| 1001 | |
---|
| 1002 | def extrapolate_first_order(self): |
---|
| 1003 | """Extrapolate conserved quantities from centroid to |
---|
| 1004 | vertices for each volume using |
---|
| 1005 | first order scheme. |
---|
| 1006 | """ |
---|
| 1007 | |
---|
| 1008 | qc = self.centroid_values |
---|
| 1009 | qv = self.vertex_values |
---|
| 1010 | |
---|
| 1011 | for i in range(3): |
---|
| 1012 | qv[:,i] = qc |
---|
| 1013 | |
---|
| 1014 | |
---|
| 1015 | def get_integral(self): |
---|
| 1016 | """Compute the integral of quantity across entire domain |
---|
| 1017 | """ |
---|
| 1018 | integral = 0 |
---|
| 1019 | for k in range(self.domain.number_of_elements): |
---|
| 1020 | area = self.domain.areas[k] |
---|
| 1021 | qc = self.centroid_values[k] |
---|
| 1022 | integral += qc*area |
---|
| 1023 | |
---|
| 1024 | return integral |
---|
| 1025 | |
---|
| 1026 | |
---|
| 1027 | |
---|
| 1028 | |
---|
| 1029 | class Conserved_quantity(Quantity): |
---|
| 1030 | """Class conserved quantity adds to Quantity: |
---|
| 1031 | |
---|
| 1032 | boundary values, storage and method for updating, and |
---|
| 1033 | methods for (second order) extrapolation from centroid to vertices inluding |
---|
| 1034 | gradients and limiters |
---|
| 1035 | """ |
---|
| 1036 | |
---|
| 1037 | def __init__(self, domain, vertex_values=None): |
---|
| 1038 | Quantity.__init__(self, domain, vertex_values) |
---|
| 1039 | |
---|
| 1040 | from Numeric import zeros, Float |
---|
| 1041 | |
---|
| 1042 | #Allocate space for boundary values |
---|
| 1043 | L = len(domain.boundary) |
---|
| 1044 | self.boundary_values = zeros(L, Float) |
---|
| 1045 | |
---|
| 1046 | #Allocate space for updates of conserved quantities by |
---|
| 1047 | #flux calculations and forcing functions |
---|
| 1048 | |
---|
| 1049 | N = domain.number_of_elements |
---|
| 1050 | self.explicit_update = zeros(N, Float ) |
---|
| 1051 | self.semi_implicit_update = zeros(N, Float ) |
---|
| 1052 | |
---|
| 1053 | |
---|
| 1054 | def update(self, timestep): |
---|
| 1055 | #Call correct module function |
---|
| 1056 | #(either from this module or C-extension) |
---|
| 1057 | return update(self, timestep) |
---|
| 1058 | |
---|
| 1059 | |
---|
| 1060 | def compute_gradients(self): |
---|
| 1061 | #Call correct module function |
---|
| 1062 | #(either from this module or C-extension) |
---|
| 1063 | return compute_gradients(self) |
---|
| 1064 | |
---|
| 1065 | |
---|
| 1066 | def limit(self): |
---|
| 1067 | #Call correct module function |
---|
| 1068 | #(either from this module or C-extension) |
---|
| 1069 | limit(self) |
---|
| 1070 | |
---|
| 1071 | |
---|
| 1072 | def extrapolate_second_order(self): |
---|
| 1073 | #Call correct module function |
---|
| 1074 | #(either from this module or C-extension) |
---|
| 1075 | extrapolate_second_order(self) |
---|
| 1076 | |
---|
| 1077 | |
---|
| 1078 | def update(quantity, timestep): |
---|
| 1079 | """Update centroid values based on values stored in |
---|
| 1080 | explicit_update and semi_implicit_update as well as given timestep |
---|
| 1081 | |
---|
| 1082 | Function implementing forcing terms must take on argument |
---|
| 1083 | which is the domain and they must update either explicit |
---|
| 1084 | or implicit updates, e,g,: |
---|
| 1085 | |
---|
| 1086 | def gravity(domain): |
---|
| 1087 | .... |
---|
| 1088 | domain.quantities['xmomentum'].explicit_update = ... |
---|
| 1089 | domain.quantities['ymomentum'].explicit_update = ... |
---|
| 1090 | |
---|
| 1091 | |
---|
| 1092 | |
---|
| 1093 | Explicit terms must have the form |
---|
| 1094 | |
---|
| 1095 | G(q, t) |
---|
| 1096 | |
---|
| 1097 | and explicit scheme is |
---|
| 1098 | |
---|
| 1099 | q^{(n+1}) = q^{(n)} + delta_t G(q^{n}, n delta_t) |
---|
| 1100 | |
---|
| 1101 | |
---|
| 1102 | Semi implicit forcing terms are assumed to have the form |
---|
| 1103 | |
---|
| 1104 | G(q, t) = H(q, t) q |
---|
| 1105 | |
---|
| 1106 | and the semi implicit scheme will then be |
---|
| 1107 | |
---|
| 1108 | q^{(n+1}) = q^{(n)} + delta_t H(q^{n}, n delta_t) q^{(n+1}) |
---|
| 1109 | |
---|
| 1110 | |
---|
| 1111 | """ |
---|
| 1112 | |
---|
[2676] | 1113 | from Numeric import sum, equal, ones, exp, Float |
---|
[2648] | 1114 | |
---|
| 1115 | N = quantity.centroid_values.shape[0] |
---|
| 1116 | |
---|
| 1117 | |
---|
| 1118 | #Divide H by conserved quantity to obtain G (see docstring above) |
---|
| 1119 | |
---|
| 1120 | |
---|
| 1121 | for k in range(N): |
---|
| 1122 | x = quantity.centroid_values[k] |
---|
| 1123 | if x == 0.0: |
---|
| 1124 | #FIXME: Is this right |
---|
| 1125 | quantity.semi_implicit_update[k] = 0.0 |
---|
| 1126 | else: |
---|
| 1127 | quantity.semi_implicit_update[k] /= x |
---|
| 1128 | |
---|
| 1129 | |
---|
| 1130 | #Semi implicit updates |
---|
| 1131 | denominator = ones(N, Float)-timestep*quantity.semi_implicit_update |
---|
| 1132 | |
---|
| 1133 | if sum(less(denominator, 1.0)) > 0.0: |
---|
| 1134 | msg = 'denominator < 1.0 in semi implicit update. Call Stephen :-)' |
---|
| 1135 | raise msg |
---|
| 1136 | |
---|
| 1137 | if sum(equal(denominator, 0.0)) > 0.0: |
---|
| 1138 | msg = 'Zero division in semi implicit update. Call Stephen :-)' |
---|
| 1139 | raise msg |
---|
| 1140 | else: |
---|
| 1141 | #Update conserved_quantities from semi implicit updates |
---|
| 1142 | quantity.centroid_values /= denominator |
---|
| 1143 | |
---|
[2676] | 1144 | # quantity.centroid_values = exp(timestep*quantity.semi_implicit_update)*quantity.centroid_values |
---|
[2648] | 1145 | |
---|
[2676] | 1146 | #Explicit updates |
---|
| 1147 | quantity.centroid_values += timestep*quantity.explicit_update |
---|
| 1148 | |
---|
[2648] | 1149 | def interpolate_from_vertices_to_edges(quantity): |
---|
| 1150 | """Compute edge values from vertex values using linear interpolation |
---|
| 1151 | """ |
---|
| 1152 | |
---|
| 1153 | for k in range(quantity.vertex_values.shape[0]): |
---|
| 1154 | q0 = quantity.vertex_values[k, 0] |
---|
| 1155 | q1 = quantity.vertex_values[k, 1] |
---|
| 1156 | q2 = quantity.vertex_values[k, 2] |
---|
| 1157 | |
---|
| 1158 | quantity.edge_values[k, 0] = 0.5*(q1+q2) |
---|
| 1159 | quantity.edge_values[k, 1] = 0.5*(q0+q2) |
---|
| 1160 | quantity.edge_values[k, 2] = 0.5*(q0+q1) |
---|
| 1161 | |
---|
| 1162 | |
---|
| 1163 | |
---|
| 1164 | def extrapolate_second_order(quantity): |
---|
| 1165 | """Extrapolate conserved quantities from centroid to |
---|
| 1166 | vertices for each volume using |
---|
| 1167 | second order scheme. |
---|
| 1168 | """ |
---|
| 1169 | |
---|
| 1170 | a, b = quantity.compute_gradients() |
---|
| 1171 | |
---|
| 1172 | X = quantity.domain.get_vertex_coordinates() |
---|
| 1173 | qc = quantity.centroid_values |
---|
| 1174 | qv = quantity.vertex_values |
---|
| 1175 | |
---|
| 1176 | #Check each triangle |
---|
| 1177 | for k in range(quantity.domain.number_of_elements): |
---|
| 1178 | #Centroid coordinates |
---|
| 1179 | x, y = quantity.domain.centroid_coordinates[k] |
---|
| 1180 | |
---|
| 1181 | #vertex coordinates |
---|
| 1182 | x0, y0, x1, y1, x2, y2 = X[k,:] |
---|
| 1183 | |
---|
| 1184 | #Extrapolate |
---|
| 1185 | qv[k,0] = qc[k] + a[k]*(x0-x) + b[k]*(y0-y) |
---|
| 1186 | qv[k,1] = qc[k] + a[k]*(x1-x) + b[k]*(y1-y) |
---|
| 1187 | qv[k,2] = qc[k] + a[k]*(x2-x) + b[k]*(y2-y) |
---|
| 1188 | |
---|
| 1189 | |
---|
| 1190 | def compute_gradients(quantity): |
---|
| 1191 | """Compute gradients of triangle surfaces defined by centroids of |
---|
| 1192 | neighbouring volumes. |
---|
| 1193 | If one edge is on the boundary, use own centroid as neighbour centroid. |
---|
| 1194 | If two or more are on the boundary, fall back to first order scheme. |
---|
| 1195 | """ |
---|
| 1196 | |
---|
| 1197 | from Numeric import zeros, Float |
---|
| 1198 | from utilitites.numerical_tools import gradient |
---|
| 1199 | |
---|
| 1200 | centroid_coordinates = quantity.domain.centroid_coordinates |
---|
| 1201 | surrogate_neighbours = quantity.domain.surrogate_neighbours |
---|
| 1202 | centroid_values = quantity.centroid_values |
---|
| 1203 | number_of_boundaries = quantity.domain.number_of_boundaries |
---|
| 1204 | |
---|
| 1205 | N = centroid_values.shape[0] |
---|
| 1206 | |
---|
| 1207 | a = zeros(N, Float) |
---|
| 1208 | b = zeros(N, Float) |
---|
| 1209 | |
---|
| 1210 | for k in range(N): |
---|
| 1211 | if number_of_boundaries[k] < 2: |
---|
| 1212 | #Two or three true neighbours |
---|
| 1213 | |
---|
| 1214 | #Get indices of neighbours (or self when used as surrogate) |
---|
| 1215 | k0, k1, k2 = surrogate_neighbours[k,:] |
---|
| 1216 | |
---|
| 1217 | #Get data |
---|
| 1218 | q0 = centroid_values[k0] |
---|
| 1219 | q1 = centroid_values[k1] |
---|
| 1220 | q2 = centroid_values[k2] |
---|
| 1221 | |
---|
| 1222 | x0, y0 = centroid_coordinates[k0] #V0 centroid |
---|
| 1223 | x1, y1 = centroid_coordinates[k1] #V1 centroid |
---|
| 1224 | x2, y2 = centroid_coordinates[k2] #V2 centroid |
---|
| 1225 | |
---|
| 1226 | #Gradient |
---|
| 1227 | a[k], b[k] = gradient(x0, y0, x1, y1, x2, y2, q0, q1, q2) |
---|
| 1228 | |
---|
| 1229 | elif number_of_boundaries[k] == 2: |
---|
| 1230 | #One true neighbour |
---|
| 1231 | |
---|
| 1232 | #Get index of the one neighbour |
---|
| 1233 | for k0 in surrogate_neighbours[k,:]: |
---|
| 1234 | if k0 != k: break |
---|
| 1235 | assert k0 != k |
---|
| 1236 | |
---|
| 1237 | k1 = k #self |
---|
| 1238 | |
---|
| 1239 | #Get data |
---|
| 1240 | q0 = centroid_values[k0] |
---|
| 1241 | q1 = centroid_values[k1] |
---|
| 1242 | |
---|
| 1243 | x0, y0 = centroid_coordinates[k0] #V0 centroid |
---|
| 1244 | x1, y1 = centroid_coordinates[k1] #V1 centroid |
---|
| 1245 | |
---|
| 1246 | #Gradient |
---|
| 1247 | a[k], b[k] = gradient2(x0, y0, x1, y1, q0, q1) |
---|
| 1248 | else: |
---|
| 1249 | #No true neighbours - |
---|
| 1250 | #Fall back to first order scheme |
---|
| 1251 | pass |
---|
| 1252 | |
---|
| 1253 | |
---|
| 1254 | return a, b |
---|
| 1255 | |
---|
| 1256 | |
---|
| 1257 | |
---|
| 1258 | def limit(quantity): |
---|
| 1259 | """Limit slopes for each volume to eliminate artificial variance |
---|
| 1260 | introduced by e.g. second order extrapolator |
---|
| 1261 | |
---|
| 1262 | This is an unsophisticated limiter as it does not take into |
---|
| 1263 | account dependencies among quantities. |
---|
| 1264 | |
---|
| 1265 | precondition: |
---|
| 1266 | vertex values are estimated from gradient |
---|
| 1267 | postcondition: |
---|
| 1268 | vertex values are updated |
---|
| 1269 | """ |
---|
| 1270 | |
---|
| 1271 | from Numeric import zeros, Float |
---|
| 1272 | |
---|
| 1273 | N = quantity.domain.number_of_elements |
---|
| 1274 | |
---|
| 1275 | beta_w = quantity.domain.beta_w |
---|
| 1276 | |
---|
| 1277 | qc = quantity.centroid_values |
---|
| 1278 | qv = quantity.vertex_values |
---|
| 1279 | |
---|
| 1280 | #Find min and max of this and neighbour's centroid values |
---|
| 1281 | qmax = zeros(qc.shape, Float) |
---|
| 1282 | qmin = zeros(qc.shape, Float) |
---|
| 1283 | |
---|
| 1284 | for k in range(N): |
---|
| 1285 | qmax[k] = qmin[k] = qc[k] |
---|
| 1286 | for i in range(3): |
---|
| 1287 | n = quantity.domain.neighbours[k,i] |
---|
| 1288 | if n >= 0: |
---|
| 1289 | qn = qc[n] #Neighbour's centroid value |
---|
| 1290 | |
---|
| 1291 | qmin[k] = min(qmin[k], qn) |
---|
| 1292 | qmax[k] = max(qmax[k], qn) |
---|
| 1293 | |
---|
| 1294 | |
---|
| 1295 | #Diffences between centroids and maxima/minima |
---|
| 1296 | dqmax = qmax - qc |
---|
| 1297 | dqmin = qmin - qc |
---|
| 1298 | |
---|
| 1299 | #Deltas between vertex and centroid values |
---|
| 1300 | dq = zeros(qv.shape, Float) |
---|
| 1301 | for i in range(3): |
---|
| 1302 | dq[:,i] = qv[:,i] - qc |
---|
| 1303 | |
---|
| 1304 | #Phi limiter |
---|
| 1305 | for k in range(N): |
---|
| 1306 | |
---|
| 1307 | #Find the gradient limiter (phi) across vertices |
---|
| 1308 | phi = 1.0 |
---|
| 1309 | for i in range(3): |
---|
| 1310 | r = 1.0 |
---|
| 1311 | if (dq[k,i] > 0): r = dqmax[k]/dq[k,i] |
---|
| 1312 | if (dq[k,i] < 0): r = dqmin[k]/dq[k,i] |
---|
| 1313 | |
---|
| 1314 | phi = min( min(r*beta_w, 1), phi ) |
---|
| 1315 | |
---|
| 1316 | #Then update using phi limiter |
---|
| 1317 | for i in range(3): |
---|
| 1318 | qv[k,i] = qc[k] + phi*dq[k,i] |
---|
| 1319 | |
---|
| 1320 | |
---|
| 1321 | |
---|
| 1322 | from utilities import compile |
---|
| 1323 | if compile.can_use_C_extension('quantity_ext.c'): |
---|
| 1324 | #Replace python version with c implementations |
---|
| 1325 | |
---|
| 1326 | from quantity_ext import limit, compute_gradients,\ |
---|
| 1327 | extrapolate_second_order, interpolate_from_vertices_to_edges, update |
---|