[2648] | 1 | // Python - C extension module for shallow_water.py |
---|
| 2 | // |
---|
| 3 | // To compile (Python2.3): |
---|
| 4 | // gcc -c domain_ext.c -I/usr/include/python2.3 -o domain_ext.o -Wall -O |
---|
| 5 | // gcc -shared domain_ext.o -o domain_ext.so |
---|
| 6 | // |
---|
| 7 | // or use python compile.py |
---|
| 8 | // |
---|
| 9 | // See the module shallow_water.py |
---|
| 10 | // |
---|
| 11 | // |
---|
| 12 | // Ole Nielsen, GA 2004 |
---|
| 13 | |
---|
| 14 | |
---|
| 15 | #include "Python.h" |
---|
| 16 | #include "Numeric/arrayobject.h" |
---|
| 17 | #include "math.h" |
---|
| 18 | #include <stdio.h> |
---|
| 19 | |
---|
| 20 | //Shared code snippets |
---|
| 21 | #include "util_ext.h" |
---|
| 22 | |
---|
| 23 | const double pi = 3.14159265358979; |
---|
| 24 | |
---|
| 25 | // Computational function for rotation |
---|
| 26 | int _rotate(double *q, double n1, double n2) { |
---|
| 27 | /*Rotate the momentum component q (q[1], q[2]) |
---|
| 28 | from x,y coordinates to coordinates based on normal vector (n1, n2). |
---|
| 29 | |
---|
| 30 | Result is returned in array 3x1 r |
---|
| 31 | To rotate in opposite direction, call rotate with (q, n1, -n2) |
---|
| 32 | |
---|
| 33 | Contents of q are changed by this function */ |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | double q1, q2; |
---|
| 37 | |
---|
| 38 | //Shorthands |
---|
| 39 | q1 = q[1]; //uh momentum |
---|
| 40 | q2 = q[2]; //vh momentum |
---|
| 41 | |
---|
| 42 | //Rotate |
---|
| 43 | q[1] = n1*q1 + n2*q2; |
---|
| 44 | q[2] = -n2*q1 + n1*q2; |
---|
| 45 | |
---|
| 46 | return 0; |
---|
| 47 | } |
---|
| 48 | |
---|
| 49 | int find_qmin_and_qmax(double dq0, double dq1, double dq2, double *qmin, double *qmax){ |
---|
| 50 | //Considering the centroid of an FV triangle and the vertices of its auxiliary triangle, find |
---|
| 51 | //qmin=min(q)-qc and qmax=max(q)-qc, where min(q) and max(q) are respectively min and max over the |
---|
| 52 | //four values (at the centroid of the FV triangle and the auxiliary triangle vertices), |
---|
| 53 | //and qc is the centroid |
---|
| 54 | //dq0=q(vertex0)-q(centroid of FV triangle) |
---|
| 55 | //dq1=q(vertex1)-q(vertex0) |
---|
| 56 | //dq2=q(vertex2)-q(vertex0) |
---|
| 57 | if (dq0>=0.0){ |
---|
| 58 | if (dq1>=dq2){ |
---|
| 59 | if (dq1>=0.0) |
---|
| 60 | *qmax=dq0+dq1; |
---|
| 61 | else |
---|
| 62 | *qmax=dq0; |
---|
| 63 | if ((*qmin=dq0+dq2)<0) |
---|
| 64 | ;//qmin is already set to correct value |
---|
| 65 | else |
---|
| 66 | *qmin=0.0; |
---|
| 67 | } |
---|
| 68 | else{//dq1<dq2 |
---|
| 69 | if (dq2>0) |
---|
| 70 | *qmax=dq0+dq2; |
---|
| 71 | else |
---|
| 72 | *qmax=dq0; |
---|
| 73 | if ((*qmin=dq0+dq1)<0) |
---|
| 74 | ;//qmin is the correct value |
---|
| 75 | else |
---|
| 76 | *qmin=0.0; |
---|
| 77 | } |
---|
| 78 | } |
---|
| 79 | else{//dq0<0 |
---|
| 80 | if (dq1<=dq2){ |
---|
| 81 | if (dq1<0.0) |
---|
| 82 | *qmin=dq0+dq1; |
---|
| 83 | else |
---|
| 84 | *qmin=dq0; |
---|
| 85 | if ((*qmax=dq0+dq2)>0.0) |
---|
| 86 | ;//qmax is already set to the correct value |
---|
| 87 | else |
---|
| 88 | *qmax=0.0; |
---|
| 89 | } |
---|
| 90 | else{//dq1>dq2 |
---|
| 91 | if (dq2<0.0) |
---|
| 92 | *qmin=dq0+dq2; |
---|
| 93 | else |
---|
| 94 | *qmin=dq0; |
---|
| 95 | if ((*qmax=dq0+dq1)>0.0) |
---|
| 96 | ;//qmax is already set to the correct value |
---|
| 97 | else |
---|
| 98 | *qmax=0.0; |
---|
| 99 | } |
---|
| 100 | } |
---|
| 101 | return 0; |
---|
| 102 | } |
---|
| 103 | |
---|
| 104 | int limit_gradient(double *dqv, double qmin, double qmax, double beta_w){ |
---|
| 105 | //given provisional jumps dqv from the FV triangle centroid to its vertices and |
---|
| 106 | //jumps qmin (qmax) between the centroid of the FV triangle and the |
---|
| 107 | //minimum (maximum) of the values at the centroid of the FV triangle and the auxiliary triangle vertices, |
---|
| 108 | //calculate a multiplicative factor phi by which the provisional vertex jumps are to be limited |
---|
| 109 | int i; |
---|
| 110 | double r=1000.0, r0=1.0, phi=1.0; |
---|
| 111 | static double TINY = 1.0e-100;//to avoid machine accuracy problems. |
---|
| 112 | //Any provisional jump with magnitude < TINY does not contribute to the limiting process. |
---|
| 113 | for (i=0;i<3;i++){ |
---|
| 114 | if (dqv[i]<-TINY) |
---|
| 115 | r0=qmin/dqv[i]; |
---|
| 116 | if (dqv[i]>TINY) |
---|
| 117 | r0=qmax/dqv[i]; |
---|
| 118 | r=min(r0,r); |
---|
| 119 | // |
---|
| 120 | } |
---|
| 121 | phi=min(r*beta_w,1.0); |
---|
| 122 | for (i=0;i<3;i++) |
---|
| 123 | dqv[i]=dqv[i]*phi; |
---|
| 124 | return 0; |
---|
| 125 | } |
---|
| 126 | |
---|
| 127 | // Computational function for flux computation (using stage w=z+h) |
---|
| 128 | int flux_function(double *q_left, double *q_right, |
---|
| 129 | double z_left, double z_right, |
---|
| 130 | double n1, double n2, |
---|
| 131 | double epsilon, double g, |
---|
| 132 | double *edgeflux, double *max_speed) { |
---|
| 133 | |
---|
| 134 | /*Compute fluxes between volumes for the shallow water wave equation |
---|
| 135 | cast in terms of the 'stage', w = h+z using |
---|
| 136 | the 'central scheme' as described in |
---|
| 137 | |
---|
| 138 | Kurganov, Noelle, Petrova. 'Semidiscrete Central-Upwind Schemes For |
---|
| 139 | Hyperbolic Conservation Laws and Hamilton-Jacobi Equations'. |
---|
| 140 | Siam J. Sci. Comput. Vol. 23, No. 3, pp. 707-740. |
---|
| 141 | |
---|
| 142 | The implemented formula is given in equation (3.15) on page 714 |
---|
| 143 | */ |
---|
| 144 | |
---|
| 145 | int i; |
---|
| 146 | |
---|
| 147 | double w_left, h_left, uh_left, vh_left, u_left; |
---|
| 148 | double w_right, h_right, uh_right, vh_right, u_right; |
---|
| 149 | double s_min, s_max, soundspeed_left, soundspeed_right; |
---|
| 150 | double denom, z; |
---|
| 151 | double q_left_copy[3], q_right_copy[3]; |
---|
| 152 | double flux_right[3], flux_left[3]; |
---|
| 153 | |
---|
| 154 | //Copy conserved quantities to protect from modification |
---|
| 155 | for (i=0; i<3; i++) { |
---|
| 156 | q_left_copy[i] = q_left[i]; |
---|
| 157 | q_right_copy[i] = q_right[i]; |
---|
| 158 | } |
---|
| 159 | |
---|
| 160 | //Align x- and y-momentum with x-axis |
---|
| 161 | _rotate(q_left_copy, n1, n2); |
---|
| 162 | _rotate(q_right_copy, n1, n2); |
---|
| 163 | |
---|
| 164 | z = (z_left+z_right)/2; //Take average of field values |
---|
| 165 | |
---|
| 166 | //Compute speeds in x-direction |
---|
| 167 | w_left = q_left_copy[0]; // h+z |
---|
| 168 | h_left = w_left-z; |
---|
| 169 | uh_left = q_left_copy[1]; |
---|
| 170 | |
---|
| 171 | if (h_left < epsilon) { |
---|
| 172 | h_left = 0.0; //Could have been negative |
---|
| 173 | u_left = 0.0; |
---|
| 174 | } else { |
---|
| 175 | u_left = uh_left/h_left; |
---|
| 176 | } |
---|
| 177 | |
---|
| 178 | w_right = q_right_copy[0]; |
---|
| 179 | h_right = w_right-z; |
---|
| 180 | uh_right = q_right_copy[1]; |
---|
| 181 | |
---|
| 182 | if (h_right < epsilon) { |
---|
| 183 | h_right = 0.0; //Could have been negative |
---|
| 184 | u_right = 0.0; |
---|
| 185 | } else { |
---|
| 186 | u_right = uh_right/h_right; |
---|
| 187 | } |
---|
| 188 | |
---|
| 189 | //Momentum in y-direction |
---|
| 190 | vh_left = q_left_copy[2]; |
---|
| 191 | vh_right = q_right_copy[2]; |
---|
| 192 | |
---|
| 193 | |
---|
| 194 | //Maximal and minimal wave speeds |
---|
| 195 | soundspeed_left = sqrt(g*h_left); |
---|
| 196 | soundspeed_right = sqrt(g*h_right); |
---|
| 197 | |
---|
| 198 | s_max = max(u_left+soundspeed_left, u_right+soundspeed_right); |
---|
| 199 | if (s_max < 0.0) s_max = 0.0; |
---|
| 200 | |
---|
| 201 | s_min = min(u_left-soundspeed_left, u_right-soundspeed_right); |
---|
| 202 | if (s_min > 0.0) s_min = 0.0; |
---|
| 203 | |
---|
| 204 | //Flux formulas |
---|
| 205 | flux_left[0] = u_left*h_left; |
---|
| 206 | flux_left[1] = u_left*uh_left + 0.5*g*h_left*h_left; |
---|
| 207 | flux_left[2] = u_left*vh_left; |
---|
| 208 | |
---|
| 209 | flux_right[0] = u_right*h_right; |
---|
| 210 | flux_right[1] = u_right*uh_right + 0.5*g*h_right*h_right; |
---|
| 211 | flux_right[2] = u_right*vh_right; |
---|
| 212 | |
---|
| 213 | |
---|
| 214 | //Flux computation |
---|
| 215 | denom = s_max-s_min; |
---|
| 216 | if (denom == 0.0) { |
---|
| 217 | for (i=0; i<3; i++) edgeflux[i] = 0.0; |
---|
| 218 | *max_speed = 0.0; |
---|
| 219 | } else { |
---|
| 220 | for (i=0; i<3; i++) { |
---|
| 221 | edgeflux[i] = s_max*flux_left[i] - s_min*flux_right[i]; |
---|
| 222 | edgeflux[i] += s_max*s_min*(q_right_copy[i]-q_left_copy[i]); |
---|
| 223 | edgeflux[i] /= denom; |
---|
| 224 | } |
---|
| 225 | |
---|
| 226 | //Maximal wavespeed |
---|
| 227 | *max_speed = max(fabs(s_max), fabs(s_min)); |
---|
| 228 | |
---|
| 229 | //Rotate back |
---|
| 230 | _rotate(edgeflux, n1, -n2); |
---|
| 231 | } |
---|
| 232 | return 0; |
---|
| 233 | } |
---|
| 234 | |
---|
| 235 | void _manning_friction(double g, double eps, int N, |
---|
| 236 | double* w, double* z, |
---|
| 237 | double* uh, double* vh, |
---|
| 238 | double* eta, double* xmom, double* ymom) { |
---|
| 239 | |
---|
| 240 | int k; |
---|
| 241 | double S, h; |
---|
| 242 | |
---|
| 243 | for (k=0; k<N; k++) { |
---|
| 244 | if (eta[k] > eps) { |
---|
| 245 | h = w[k]-z[k]; |
---|
| 246 | if (h >= eps) { |
---|
[2649] | 247 | S = -g * eta[k]*eta[k] * sqrt((uh[k]*uh[k] + vh[k]*vh[k])); |
---|
| 248 | S /= pow(h, 7.0/3); //Expensive (on Ole's home computer) |
---|
| 249 | //S /= exp(7.0/3.0*log(h)); //seems to save about 15% over manning_friction |
---|
| 250 | //S /= h*h*(1 + h/3.0 - h*h/9.0); //FIXME: Could use a Taylor expansion |
---|
[2648] | 251 | |
---|
| 252 | |
---|
[2649] | 253 | //Update momentum |
---|
| 254 | xmom[k] += S*uh[k]; |
---|
| 255 | ymom[k] += S*vh[k]; |
---|
[2648] | 256 | } |
---|
| 257 | } |
---|
| 258 | } |
---|
| 259 | } |
---|
| 260 | |
---|
| 261 | |
---|
[2715] | 262 | /* |
---|
[2648] | 263 | void _manning_friction_explicit(double g, double eps, int N, |
---|
| 264 | double* w, double* z, |
---|
| 265 | double* uh, double* vh, |
---|
| 266 | double* eta, double* xmom, double* ymom) { |
---|
| 267 | |
---|
| 268 | int k; |
---|
| 269 | double S, h; |
---|
| 270 | |
---|
| 271 | for (k=0; k<N; k++) { |
---|
| 272 | if (eta[k] > eps) { |
---|
| 273 | h = w[k]-z[k]; |
---|
| 274 | if (h >= eps) { |
---|
| 275 | S = -g * eta[k]*eta[k] * sqrt((uh[k]*uh[k] + vh[k]*vh[k])); |
---|
| 276 | S /= pow(h, 7.0/3); //Expensive (on Ole's home computer) |
---|
| 277 | //S /= exp(7.0/3.0*log(h)); //seems to save about 15% over manning_friction |
---|
| 278 | //S /= h*h*(1 + h/3.0 - h*h/9.0); //FIXME: Could use a Taylor expansion |
---|
| 279 | |
---|
| 280 | |
---|
| 281 | //Update momentum |
---|
| 282 | xmom[k] += S*uh[k]; |
---|
| 283 | ymom[k] += S*vh[k]; |
---|
| 284 | } |
---|
| 285 | } |
---|
| 286 | } |
---|
| 287 | } |
---|
[2715] | 288 | */ |
---|
[2648] | 289 | |
---|
| 290 | int _balance_deep_and_shallow(int N, |
---|
| 291 | double* wc, |
---|
| 292 | double* zc, |
---|
| 293 | double* hc, |
---|
| 294 | double* wv, |
---|
| 295 | double* zv, |
---|
| 296 | double* hv, |
---|
| 297 | double* hvbar, |
---|
| 298 | double* xmomc, |
---|
| 299 | double* ymomc, |
---|
| 300 | double* xmomv, |
---|
| 301 | double* ymomv) { |
---|
| 302 | |
---|
| 303 | int k, k3, i; |
---|
| 304 | double dz, hmin, alpha; |
---|
| 305 | |
---|
| 306 | //Compute linear combination between w-limited stages and |
---|
| 307 | //h-limited stages close to the bed elevation. |
---|
| 308 | |
---|
| 309 | for (k=0; k<N; k++) { |
---|
| 310 | // Compute maximal variation in bed elevation |
---|
| 311 | // This quantitiy is |
---|
| 312 | // dz = max_i abs(z_i - z_c) |
---|
| 313 | // and it is independent of dimension |
---|
| 314 | // In the 1d case zc = (z0+z1)/2 |
---|
| 315 | // In the 2d case zc = (z0+z1+z2)/3 |
---|
| 316 | |
---|
| 317 | k3 = 3*k; |
---|
| 318 | |
---|
| 319 | //FIXME: Try with this one precomputed |
---|
| 320 | dz = 0.0; |
---|
| 321 | hmin = hv[k3]; |
---|
| 322 | for (i=0; i<3; i++) { |
---|
| 323 | dz = max(dz, fabs(zv[k3+i]-zc[k])); |
---|
| 324 | hmin = min(hmin, hv[k3+i]); |
---|
| 325 | } |
---|
| 326 | |
---|
| 327 | |
---|
| 328 | //Create alpha in [0,1], where alpha==0 means using the h-limited |
---|
| 329 | //stage and alpha==1 means using the w-limited stage as |
---|
| 330 | //computed by the gradient limiter (both 1st or 2nd order) |
---|
| 331 | // |
---|
| 332 | //If hmin > dz/2 then alpha = 1 and the bed will have no effect |
---|
| 333 | //If hmin < 0 then alpha = 0 reverting to constant height above bed. |
---|
| 334 | |
---|
| 335 | |
---|
| 336 | if (dz > 0.0) |
---|
| 337 | //if (hmin<0.0) |
---|
| 338 | // alpha = 0.0; |
---|
| 339 | //else |
---|
| 340 | // alpha = max( min( hc[k]/dz, 1.0), 0.0 ); |
---|
| 341 | alpha = max( min( 2.0*hmin/dz, 1.0), 0.0 ); |
---|
| 342 | else |
---|
| 343 | alpha = 1.0; //Flat bed |
---|
| 344 | |
---|
| 345 | |
---|
| 346 | //printf("dz = %.3f, alpha = %.8f\n", dz, alpha); |
---|
| 347 | |
---|
| 348 | // Let |
---|
| 349 | // |
---|
| 350 | // wvi be the w-limited stage (wvi = zvi + hvi) |
---|
| 351 | // wvi- be the h-limited state (wvi- = zvi + hvi-) |
---|
| 352 | // |
---|
| 353 | // |
---|
| 354 | // where i=0,1,2 denotes the vertex ids |
---|
| 355 | // |
---|
| 356 | // Weighted balance between w-limited and h-limited stage is |
---|
| 357 | // |
---|
| 358 | // wvi := (1-alpha)*(zvi+hvi-) + alpha*(zvi+hvi) |
---|
| 359 | // |
---|
| 360 | // It follows that the updated wvi is |
---|
| 361 | // wvi := zvi + (1-alpha)*hvi- + alpha*hvi |
---|
| 362 | // |
---|
| 363 | // Momentum is balanced between constant and limited |
---|
| 364 | |
---|
| 365 | if (alpha < 1) { |
---|
| 366 | for (i=0; i<3; i++) { |
---|
| 367 | wv[k3+i] = zv[k3+i] + (1-alpha)*hvbar[k3+i] + alpha*hv[k3+i]; |
---|
| 368 | |
---|
| 369 | //Update momentum as a linear combination of |
---|
| 370 | //xmomc and ymomc (shallow) and momentum |
---|
| 371 | //from extrapolator xmomv and ymomv (deep). |
---|
| 372 | xmomv[k3+i] = (1-alpha)*xmomc[k] + alpha*xmomv[k3+i]; |
---|
| 373 | ymomv[k3+i] = (1-alpha)*ymomc[k] + alpha*ymomv[k3+i]; |
---|
| 374 | } |
---|
| 375 | } |
---|
| 376 | } |
---|
| 377 | return 0; |
---|
| 378 | } |
---|
| 379 | |
---|
| 380 | |
---|
| 381 | |
---|
| 382 | int _protect(int N, |
---|
| 383 | double minimum_allowed_height, |
---|
| 384 | double maximum_allowed_speed, |
---|
| 385 | double epsilon, |
---|
| 386 | double* wc, |
---|
| 387 | double* zc, |
---|
| 388 | double* xmomc, |
---|
| 389 | double* ymomc) { |
---|
| 390 | |
---|
| 391 | int k; |
---|
| 392 | double hc; |
---|
| 393 | double u, v, reduced_speed; |
---|
| 394 | |
---|
| 395 | //Protect against initesimal and negative heights |
---|
| 396 | for (k=0; k<N; k++) { |
---|
| 397 | hc = wc[k] - zc[k]; |
---|
| 398 | |
---|
| 399 | if (hc < minimum_allowed_height) { |
---|
| 400 | |
---|
| 401 | //Old code: Set momentum to zero and ensure h is non negative |
---|
| 402 | //xmomc[k] = 0.0; |
---|
| 403 | //ymomc[k] = 0.0; |
---|
| 404 | //if (hc <= 0.0) wc[k] = zc[k]; |
---|
| 405 | |
---|
| 406 | |
---|
| 407 | //New code: Adjust momentum to guarantee speeds are physical |
---|
| 408 | // ensure h is non negative |
---|
| 409 | //FIXME (Ole): This is only implemented in this C extension and |
---|
| 410 | // has no Python equivalent |
---|
| 411 | if (hc <= 0.0) { |
---|
| 412 | wc[k] = zc[k]; |
---|
| 413 | xmomc[k] = 0.0; |
---|
| 414 | ymomc[k] = 0.0; |
---|
| 415 | } else { |
---|
| 416 | //Reduce excessive speeds derived from division by small hc |
---|
| 417 | u = xmomc[k]/hc; |
---|
| 418 | if (fabs(u) > maximum_allowed_speed) { |
---|
| 419 | reduced_speed = maximum_allowed_speed * u/fabs(u); |
---|
| 420 | //printf("Speed (u) has been reduced from %.3f to %.3f\n", |
---|
| 421 | // u, reduced_speed); |
---|
| 422 | xmomc[k] = reduced_speed * hc; |
---|
| 423 | } |
---|
| 424 | |
---|
| 425 | v = ymomc[k]/hc; |
---|
| 426 | if (fabs(v) > maximum_allowed_speed) { |
---|
| 427 | reduced_speed = maximum_allowed_speed * v/fabs(v); |
---|
| 428 | //printf("Speed (v) has been reduced from %.3f to %.3f\n", |
---|
| 429 | // v, reduced_speed); |
---|
| 430 | ymomc[k] = reduced_speed * hc; |
---|
| 431 | } |
---|
| 432 | } |
---|
| 433 | } |
---|
| 434 | } |
---|
| 435 | return 0; |
---|
| 436 | } |
---|
| 437 | |
---|
| 438 | |
---|
| 439 | |
---|
| 440 | |
---|
| 441 | int _assign_wind_field_values(int N, |
---|
| 442 | double* xmom_update, |
---|
| 443 | double* ymom_update, |
---|
| 444 | double* s_vec, |
---|
| 445 | double* phi_vec, |
---|
| 446 | double cw) { |
---|
| 447 | |
---|
| 448 | //Assign windfield values to momentum updates |
---|
| 449 | |
---|
| 450 | int k; |
---|
| 451 | double S, s, phi, u, v; |
---|
| 452 | |
---|
| 453 | for (k=0; k<N; k++) { |
---|
| 454 | |
---|
| 455 | s = s_vec[k]; |
---|
| 456 | phi = phi_vec[k]; |
---|
| 457 | |
---|
| 458 | //Convert to radians |
---|
| 459 | phi = phi*pi/180; |
---|
| 460 | |
---|
| 461 | //Compute velocity vector (u, v) |
---|
| 462 | u = s*cos(phi); |
---|
| 463 | v = s*sin(phi); |
---|
| 464 | |
---|
| 465 | //Compute wind stress |
---|
| 466 | S = cw * sqrt(u*u + v*v); |
---|
| 467 | xmom_update[k] += S*u; |
---|
| 468 | ymom_update[k] += S*v; |
---|
| 469 | } |
---|
| 470 | return 0; |
---|
| 471 | } |
---|
| 472 | |
---|
| 473 | |
---|
| 474 | |
---|
| 475 | /////////////////////////////////////////////////////////////////// |
---|
| 476 | // Gateways to Python |
---|
| 477 | |
---|
| 478 | PyObject *gravity(PyObject *self, PyObject *args) { |
---|
| 479 | // |
---|
| 480 | // gravity(g, h, v, x, xmom, ymom) |
---|
| 481 | // |
---|
| 482 | |
---|
| 483 | |
---|
| 484 | PyArrayObject *h, *v, *x, *xmom, *ymom; |
---|
| 485 | int k, i, N, k3, k6; |
---|
| 486 | double g, avg_h, zx, zy; |
---|
| 487 | double x0, y0, x1, y1, x2, y2, z0, z1, z2; |
---|
| 488 | |
---|
| 489 | if (!PyArg_ParseTuple(args, "dOOOOO", |
---|
| 490 | &g, &h, &v, &x, |
---|
| 491 | &xmom, &ymom)) |
---|
| 492 | return NULL; |
---|
| 493 | |
---|
| 494 | N = h -> dimensions[0]; |
---|
| 495 | for (k=0; k<N; k++) { |
---|
| 496 | k3 = 3*k; // base index |
---|
| 497 | k6 = 6*k; // base index |
---|
| 498 | |
---|
| 499 | avg_h = 0.0; |
---|
| 500 | for (i=0; i<3; i++) { |
---|
| 501 | avg_h += ((double *) h -> data)[k3+i]; |
---|
| 502 | } |
---|
| 503 | avg_h /= 3; |
---|
| 504 | |
---|
| 505 | |
---|
| 506 | //Compute bed slope |
---|
| 507 | x0 = ((double*) x -> data)[k6 + 0]; |
---|
| 508 | y0 = ((double*) x -> data)[k6 + 1]; |
---|
| 509 | x1 = ((double*) x -> data)[k6 + 2]; |
---|
| 510 | y1 = ((double*) x -> data)[k6 + 3]; |
---|
| 511 | x2 = ((double*) x -> data)[k6 + 4]; |
---|
| 512 | y2 = ((double*) x -> data)[k6 + 5]; |
---|
| 513 | |
---|
| 514 | |
---|
| 515 | z0 = ((double*) v -> data)[k3 + 0]; |
---|
| 516 | z1 = ((double*) v -> data)[k3 + 1]; |
---|
| 517 | z2 = ((double*) v -> data)[k3 + 2]; |
---|
| 518 | |
---|
| 519 | _gradient(x0, y0, x1, y1, x2, y2, z0, z1, z2, &zx, &zy); |
---|
| 520 | |
---|
| 521 | //Update momentum |
---|
| 522 | ((double*) xmom -> data)[k] += -g*zx*avg_h; |
---|
| 523 | ((double*) ymom -> data)[k] += -g*zy*avg_h; |
---|
| 524 | } |
---|
| 525 | |
---|
| 526 | return Py_BuildValue(""); |
---|
| 527 | } |
---|
| 528 | |
---|
| 529 | |
---|
| 530 | PyObject *manning_friction(PyObject *self, PyObject *args) { |
---|
| 531 | // |
---|
| 532 | // manning_friction(g, eps, h, uh, vh, eta, xmom_update, ymom_update) |
---|
| 533 | // |
---|
| 534 | |
---|
| 535 | |
---|
| 536 | PyArrayObject *w, *z, *uh, *vh, *eta, *xmom, *ymom; |
---|
| 537 | int N; |
---|
| 538 | double g, eps; |
---|
| 539 | |
---|
| 540 | if (!PyArg_ParseTuple(args, "ddOOOOOOO", |
---|
| 541 | &g, &eps, &w, &z, &uh, &vh, &eta, |
---|
| 542 | &xmom, &ymom)) |
---|
| 543 | return NULL; |
---|
| 544 | |
---|
| 545 | N = w -> dimensions[0]; |
---|
| 546 | _manning_friction(g, eps, N, |
---|
| 547 | (double*) w -> data, |
---|
| 548 | (double*) z -> data, |
---|
| 549 | (double*) uh -> data, |
---|
| 550 | (double*) vh -> data, |
---|
| 551 | (double*) eta -> data, |
---|
| 552 | (double*) xmom -> data, |
---|
| 553 | (double*) ymom -> data); |
---|
| 554 | |
---|
| 555 | return Py_BuildValue(""); |
---|
| 556 | } |
---|
| 557 | |
---|
| 558 | |
---|
[2715] | 559 | /* |
---|
[2648] | 560 | PyObject *manning_friction_explicit(PyObject *self, PyObject *args) { |
---|
| 561 | // |
---|
| 562 | // manning_friction_explicit(g, eps, h, uh, vh, eta, xmom_update, ymom_update) |
---|
| 563 | // |
---|
| 564 | |
---|
| 565 | |
---|
| 566 | PyArrayObject *w, *z, *uh, *vh, *eta, *xmom, *ymom; |
---|
| 567 | int N; |
---|
| 568 | double g, eps; |
---|
| 569 | |
---|
| 570 | if (!PyArg_ParseTuple(args, "ddOOOOOOO", |
---|
| 571 | &g, &eps, &w, &z, &uh, &vh, &eta, |
---|
| 572 | &xmom, &ymom)) |
---|
| 573 | return NULL; |
---|
| 574 | |
---|
| 575 | N = w -> dimensions[0]; |
---|
| 576 | _manning_friction_explicit(g, eps, N, |
---|
| 577 | (double*) w -> data, |
---|
| 578 | (double*) z -> data, |
---|
| 579 | (double*) uh -> data, |
---|
| 580 | (double*) vh -> data, |
---|
| 581 | (double*) eta -> data, |
---|
| 582 | (double*) xmom -> data, |
---|
| 583 | (double*) ymom -> data); |
---|
| 584 | |
---|
| 585 | return Py_BuildValue(""); |
---|
| 586 | } |
---|
[2715] | 587 | */ |
---|
| 588 | |
---|
[2648] | 589 | PyObject *extrapolate_second_order_sw(PyObject *self, PyObject *args) { |
---|
| 590 | /*Compute the vertex values based on a linear reconstruction on each triangle |
---|
| 591 | These values are calculated as follows: |
---|
| 592 | 1) For each triangle not adjacent to a boundary, we consider the auxiliary triangle |
---|
| 593 | formed by the centroids of its three neighbours. |
---|
| 594 | 2) For each conserved quantity, we integrate around the auxiliary triangle's boundary the product |
---|
| 595 | of the quantity and the outward normal vector. Dividing by the triangle area gives (a,b), the average |
---|
| 596 | of the vector (q_x,q_y) on the auxiliary triangle. We suppose that the linear reconstruction on the |
---|
| 597 | original triangle has gradient (a,b). |
---|
| 598 | 3) Provisional vertex junmps dqv[0,1,2] are computed and these are then limited by calling the functions |
---|
| 599 | find_qmin_and_qmax and limit_gradient |
---|
| 600 | |
---|
| 601 | Python call: |
---|
| 602 | extrapolate_second_order_sw(domain.surrogate_neighbours, |
---|
| 603 | domain.number_of_boundaries |
---|
| 604 | domain.centroid_coordinates, |
---|
| 605 | Stage.centroid_values |
---|
| 606 | Xmom.centroid_values |
---|
| 607 | Ymom.centroid_values |
---|
| 608 | domain.vertex_coordinates, |
---|
| 609 | Stage.vertex_values, |
---|
| 610 | Xmom.vertex_values, |
---|
| 611 | Ymom.vertex_values) |
---|
| 612 | |
---|
| 613 | Post conditions: |
---|
| 614 | The vertices of each triangle have values from a limited linear reconstruction |
---|
| 615 | based on centroid values |
---|
| 616 | |
---|
| 617 | */ |
---|
| 618 | PyArrayObject *surrogate_neighbours, |
---|
| 619 | *number_of_boundaries, |
---|
| 620 | *centroid_coordinates, |
---|
| 621 | *stage_centroid_values, |
---|
| 622 | *xmom_centroid_values, |
---|
| 623 | *ymom_centroid_values, |
---|
| 624 | *vertex_coordinates, |
---|
| 625 | *stage_vertex_values, |
---|
| 626 | *xmom_vertex_values, |
---|
| 627 | *ymom_vertex_values; |
---|
| 628 | PyObject *domain, *Tmp; |
---|
| 629 | //Local variables |
---|
| 630 | double a, b;//gradient vector, not stored but used to calculate vertex values from centroids |
---|
| 631 | int number_of_elements,k,k0,k1,k2,k3,k6,coord_index,i; |
---|
| 632 | double x,y,x0,y0,x1,y1,x2,y2,xv0,yv0,xv1,yv1,xv2,yv2;//vertices of the auxiliary triangle |
---|
| 633 | double dx1,dx2,dy1,dy2,dxv0,dxv1,dxv2,dyv0,dyv1,dyv2,dq0,dq1,dq2,area2; |
---|
| 634 | double dqv[3], qmin, qmax, beta_w;//provisional jumps from centroids to v'tices and safety factor re limiting |
---|
| 635 | //by which these jumps are limited |
---|
| 636 | // Convert Python arguments to C |
---|
| 637 | if (!PyArg_ParseTuple(args, "OOOOOOOOOOO", |
---|
| 638 | &domain, |
---|
| 639 | &surrogate_neighbours, |
---|
| 640 | &number_of_boundaries, |
---|
| 641 | ¢roid_coordinates, |
---|
| 642 | &stage_centroid_values, |
---|
| 643 | &xmom_centroid_values, |
---|
| 644 | &ymom_centroid_values, |
---|
| 645 | &vertex_coordinates, |
---|
| 646 | &stage_vertex_values, |
---|
| 647 | &xmom_vertex_values, |
---|
| 648 | &ymom_vertex_values)) { |
---|
| 649 | PyErr_SetString(PyExc_RuntimeError, "Input arguments failed"); |
---|
| 650 | return NULL; |
---|
| 651 | } |
---|
| 652 | |
---|
| 653 | //get the safety factor beta_w, set in the config.py file. This is used in the limiting process |
---|
| 654 | Tmp = PyObject_GetAttrString(domain, "beta_w"); |
---|
| 655 | if (!Tmp) |
---|
| 656 | return NULL; |
---|
| 657 | beta_w = PyFloat_AsDouble(Tmp); |
---|
| 658 | Py_DECREF(Tmp); |
---|
| 659 | number_of_elements = stage_centroid_values -> dimensions[0]; |
---|
| 660 | for (k=0; k<number_of_elements; k++) { |
---|
| 661 | k3=k*3; |
---|
| 662 | k6=k*6; |
---|
| 663 | |
---|
| 664 | if (((long *) number_of_boundaries->data)[k]==3){/*no neighbours, set gradient on the triangle to zero*/ |
---|
| 665 | ((double *) stage_vertex_values->data)[k3]=((double *)stage_centroid_values->data)[k]; |
---|
| 666 | ((double *) stage_vertex_values->data)[k3+1]=((double *)stage_centroid_values->data)[k]; |
---|
| 667 | ((double *) stage_vertex_values->data)[k3+2]=((double *)stage_centroid_values->data)[k]; |
---|
| 668 | ((double *) xmom_vertex_values->data)[k3]=((double *)xmom_centroid_values->data)[k]; |
---|
| 669 | ((double *) xmom_vertex_values->data)[k3+1]=((double *)xmom_centroid_values->data)[k]; |
---|
| 670 | ((double *) xmom_vertex_values->data)[k3+2]=((double *)xmom_centroid_values->data)[k]; |
---|
| 671 | ((double *) ymom_vertex_values->data)[k3]=((double *)ymom_centroid_values->data)[k]; |
---|
| 672 | ((double *) ymom_vertex_values->data)[k3+1]=((double *)ymom_centroid_values->data)[k]; |
---|
| 673 | ((double *) ymom_vertex_values->data)[k3+2]=((double *)ymom_centroid_values->data)[k]; |
---|
| 674 | continue; |
---|
| 675 | } |
---|
| 676 | else {//we will need centroid coordinates and vertex coordinates of the triangle |
---|
| 677 | //get the vertex coordinates of the FV triangle |
---|
| 678 | xv0=((double *)vertex_coordinates->data)[k6]; yv0=((double *)vertex_coordinates->data)[k6+1]; |
---|
| 679 | xv1=((double *)vertex_coordinates->data)[k6+2]; yv1=((double *)vertex_coordinates->data)[k6+3]; |
---|
| 680 | xv2=((double *)vertex_coordinates->data)[k6+4]; yv2=((double *)vertex_coordinates->data)[k6+5]; |
---|
| 681 | //get the centroid coordinates of the FV triangle |
---|
| 682 | coord_index=2*k; |
---|
| 683 | x=((double *)centroid_coordinates->data)[coord_index]; |
---|
| 684 | y=((double *)centroid_coordinates->data)[coord_index+1]; |
---|
| 685 | //store x- and y- differentials for the vertices of the FV triangle relative to the centroid |
---|
| 686 | dxv0=xv0-x; dxv1=xv1-x; dxv2=xv2-x; |
---|
| 687 | dyv0=yv0-y; dyv1=yv1-y; dyv2=yv2-y; |
---|
| 688 | } |
---|
| 689 | if (((long *)number_of_boundaries->data)[k]<=1){ |
---|
| 690 | //if no boundaries, auxiliary triangle is formed from the centroids of the three neighbours |
---|
| 691 | //if one boundary, auxiliary triangle is formed from this centroid and its two neighbours |
---|
| 692 | k0=((long *)surrogate_neighbours->data)[k3]; |
---|
| 693 | k1=((long *)surrogate_neighbours->data)[k3+1]; |
---|
| 694 | k2=((long *)surrogate_neighbours->data)[k3+2]; |
---|
| 695 | //get the auxiliary triangle's vertex coordinates (really the centroids of neighbouring triangles) |
---|
| 696 | coord_index=2*k0; |
---|
| 697 | x0=((double *)centroid_coordinates->data)[coord_index]; |
---|
| 698 | y0=((double *)centroid_coordinates->data)[coord_index+1]; |
---|
| 699 | coord_index=2*k1; |
---|
| 700 | x1=((double *)centroid_coordinates->data)[coord_index]; |
---|
| 701 | y1=((double *)centroid_coordinates->data)[coord_index+1]; |
---|
| 702 | coord_index=2*k2; |
---|
| 703 | x2=((double *)centroid_coordinates->data)[coord_index]; |
---|
| 704 | y2=((double *)centroid_coordinates->data)[coord_index+1]; |
---|
| 705 | //store x- and y- differentials for the vertices of the auxiliary triangle |
---|
| 706 | dx1=x1-x0; dx2=x2-x0; |
---|
| 707 | dy1=y1-y0; dy2=y2-y0; |
---|
| 708 | //calculate 2*area of the auxiliary triangle |
---|
| 709 | area2 = dy2*dx1 - dy1*dx2;//the triangle is guaranteed to be counter-clockwise |
---|
| 710 | //If the mesh is 'weird' near the boundary, the trianlge might be flat or clockwise: |
---|
| 711 | if (area2<=0) |
---|
| 712 | return NULL; |
---|
| 713 | |
---|
| 714 | //### stage ### |
---|
| 715 | //calculate the difference between vertex 0 of the auxiliary triangle and the FV triangle centroid |
---|
| 716 | dq0=((double *)stage_centroid_values->data)[k0]-((double *)stage_centroid_values->data)[k]; |
---|
| 717 | //calculate differentials between the vertices of the auxiliary triangle |
---|
| 718 | dq1=((double *)stage_centroid_values->data)[k1]-((double *)stage_centroid_values->data)[k0]; |
---|
| 719 | dq2=((double *)stage_centroid_values->data)[k2]-((double *)stage_centroid_values->data)[k0]; |
---|
| 720 | //calculate the gradient of stage on the auxiliary triangle |
---|
| 721 | a = dy2*dq1 - dy1*dq2; |
---|
| 722 | a /= area2; |
---|
| 723 | b = dx1*dq2 - dx2*dq1; |
---|
| 724 | b /= area2; |
---|
| 725 | //calculate provisional jumps in stage from the centroid of the FV tri to its vertices, to be limited |
---|
| 726 | dqv[0]=a*dxv0+b*dyv0; |
---|
| 727 | dqv[1]=a*dxv1+b*dyv1; |
---|
| 728 | dqv[2]=a*dxv2+b*dyv2; |
---|
| 729 | //now we want to find min and max of the centroid and the vertices of the auxiliary triangle |
---|
| 730 | //and compute jumps from the centroid to the min and max |
---|
| 731 | find_qmin_and_qmax(dq0,dq1,dq2,&qmin,&qmax); |
---|
| 732 | limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited |
---|
| 733 | for (i=0;i<3;i++) |
---|
| 734 | ((double *)stage_vertex_values->data)[k3+i]=((double *)stage_centroid_values->data)[k]+dqv[i]; |
---|
| 735 | |
---|
| 736 | //### xmom ### |
---|
| 737 | //calculate the difference between vertex 0 of the auxiliary triangle and the FV triangle centroid |
---|
| 738 | dq0=((double *)xmom_centroid_values->data)[k0]-((double *)xmom_centroid_values->data)[k]; |
---|
| 739 | //calculate differentials between the vertices of the auxiliary triangle |
---|
| 740 | dq1=((double *)xmom_centroid_values->data)[k1]-((double *)xmom_centroid_values->data)[k0]; |
---|
| 741 | dq2=((double *)xmom_centroid_values->data)[k2]-((double *)xmom_centroid_values->data)[k0]; |
---|
| 742 | //calculate the gradient of xmom on the auxiliary triangle |
---|
| 743 | a = dy2*dq1 - dy1*dq2; |
---|
| 744 | a /= area2; |
---|
| 745 | b = dx1*dq2 - dx2*dq1; |
---|
| 746 | b /= area2; |
---|
| 747 | //calculate provisional jumps in stage from the centroid of the FV tri to its vertices, to be limited |
---|
| 748 | dqv[0]=a*dxv0+b*dyv0; |
---|
| 749 | dqv[1]=a*dxv1+b*dyv1; |
---|
| 750 | dqv[2]=a*dxv2+b*dyv2; |
---|
| 751 | //now we want to find min and max of the centroid and the vertices of the auxiliary triangle |
---|
| 752 | //and compute jumps from the centroid to the min and max |
---|
| 753 | find_qmin_and_qmax(dq0,dq1,dq2,&qmin,&qmax); |
---|
| 754 | limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited |
---|
| 755 | for (i=0;i<3;i++) |
---|
| 756 | ((double *)xmom_vertex_values->data)[k3+i]=((double *)xmom_centroid_values->data)[k]+dqv[i]; |
---|
| 757 | |
---|
| 758 | //### ymom ### |
---|
| 759 | //calculate the difference between vertex 0 of the auxiliary triangle and the FV triangle centroid |
---|
| 760 | dq0=((double *)ymom_centroid_values->data)[k0]-((double *)ymom_centroid_values->data)[k]; |
---|
| 761 | //calculate differentials between the vertices of the auxiliary triangle |
---|
| 762 | dq1=((double *)ymom_centroid_values->data)[k1]-((double *)ymom_centroid_values->data)[k0]; |
---|
| 763 | dq2=((double *)ymom_centroid_values->data)[k2]-((double *)ymom_centroid_values->data)[k0]; |
---|
| 764 | //calculate the gradient of xmom on the auxiliary triangle |
---|
| 765 | a = dy2*dq1 - dy1*dq2; |
---|
| 766 | a /= area2; |
---|
| 767 | b = dx1*dq2 - dx2*dq1; |
---|
| 768 | b /= area2; |
---|
| 769 | //calculate provisional jumps in stage from the centroid of the FV tri to its vertices, to be limited |
---|
| 770 | dqv[0]=a*dxv0+b*dyv0; |
---|
| 771 | dqv[1]=a*dxv1+b*dyv1; |
---|
| 772 | dqv[2]=a*dxv2+b*dyv2; |
---|
| 773 | //now we want to find min and max of the centroid and the vertices of the auxiliary triangle |
---|
| 774 | //and compute jumps from the centroid to the min and max |
---|
| 775 | find_qmin_and_qmax(dq0,dq1,dq2,&qmin,&qmax); |
---|
| 776 | limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited |
---|
| 777 | for (i=0;i<3;i++) |
---|
| 778 | ((double *)ymom_vertex_values->data)[k3+i]=((double *)ymom_centroid_values->data)[k]+dqv[i]; |
---|
| 779 | }//if (number_of_boundaries[k]<=1) |
---|
| 780 | else{//number_of_boundaries==2 |
---|
| 781 | //one internal neighbour and gradient is in direction of the neighbour's centroid |
---|
| 782 | //find the only internal neighbour |
---|
| 783 | for (k2=k3;k2<k3+3;k2++){//k2 just indexes the edges of triangle k |
---|
| 784 | if (((long *)surrogate_neighbours->data)[k2]!=k)//find internal neighbour of triabngle k |
---|
| 785 | break; |
---|
| 786 | } |
---|
| 787 | if ((k2==k3+3))//if we didn't find an internal neighbour |
---|
| 788 | return NULL;//error |
---|
| 789 | k1=((long *)surrogate_neighbours->data)[k2]; |
---|
| 790 | //the coordinates of the triangle are already (x,y). Get centroid of the neighbour (x1,y1) |
---|
| 791 | coord_index=2*k1; |
---|
| 792 | x1=((double *)centroid_coordinates->data)[coord_index]; |
---|
| 793 | y1=((double *)centroid_coordinates->data)[coord_index+1]; |
---|
| 794 | //compute x- and y- distances between the centroid of the FV triangle and that of its neighbour |
---|
| 795 | dx1=x1-x; dy1=y1-y; |
---|
| 796 | //set area2 as the square of the distance |
---|
| 797 | area2=dx1*dx1+dy1*dy1; |
---|
| 798 | //set dx2=(x1-x0)/((x1-x0)^2+(y1-y0)^2) and dy2=(y1-y0)/((x1-x0)^2+(y1-y0)^2) which |
---|
| 799 | //respectively correspond to the x- and y- gradients of the conserved quantities |
---|
| 800 | dx2=1.0/area2; |
---|
| 801 | dy2=dx2*dy1; |
---|
| 802 | dx2*=dx1; |
---|
| 803 | |
---|
| 804 | //## stage ### |
---|
| 805 | //compute differentials |
---|
| 806 | dq1=((double *)stage_centroid_values->data)[k1]-((double *)stage_centroid_values->data)[k]; |
---|
| 807 | //calculate the gradient between the centroid of the FV triangle and that of its neighbour |
---|
| 808 | a=dq1*dx2; |
---|
| 809 | b=dq1*dy2; |
---|
| 810 | //calculate provisional vertex jumps, to be limited |
---|
| 811 | dqv[0]=a*dxv0+b*dyv0; |
---|
| 812 | dqv[1]=a*dxv1+b*dyv1; |
---|
| 813 | dqv[2]=a*dxv2+b*dyv2; |
---|
| 814 | //now limit the jumps |
---|
| 815 | if (dq1>=0.0){ |
---|
| 816 | qmin=0.0; |
---|
| 817 | qmax=dq1; |
---|
| 818 | } |
---|
| 819 | else{ |
---|
| 820 | qmin=dq1; |
---|
| 821 | qmax=0.0; |
---|
| 822 | } |
---|
| 823 | limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited |
---|
| 824 | for (i=0;i<3;i++) |
---|
| 825 | ((double *)stage_vertex_values->data)[k3+i]=((double *)stage_centroid_values->data)[k]+dqv[i]; |
---|
| 826 | |
---|
| 827 | //## xmom ### |
---|
| 828 | //compute differentials |
---|
| 829 | dq1=((double *)xmom_centroid_values->data)[k1]-((double *)xmom_centroid_values->data)[k]; |
---|
| 830 | //calculate the gradient between the centroid of the FV triangle and that of its neighbour |
---|
| 831 | a=dq1*dx2; |
---|
| 832 | b=dq1*dy2; |
---|
| 833 | //calculate provisional vertex jumps, to be limited |
---|
| 834 | dqv[0]=a*dxv0+b*dyv0; |
---|
| 835 | dqv[1]=a*dxv1+b*dyv1; |
---|
| 836 | dqv[2]=a*dxv2+b*dyv2; |
---|
| 837 | //now limit the jumps |
---|
| 838 | if (dq1>=0.0){ |
---|
| 839 | qmin=0.0; |
---|
| 840 | qmax=dq1; |
---|
| 841 | } |
---|
| 842 | else{ |
---|
| 843 | qmin=dq1; |
---|
| 844 | qmax=0.0; |
---|
| 845 | } |
---|
| 846 | limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited |
---|
| 847 | for (i=0;i<3;i++) |
---|
| 848 | ((double *)xmom_vertex_values->data)[k3+i]=((double *)xmom_centroid_values->data)[k]+dqv[i]; |
---|
| 849 | |
---|
| 850 | //## ymom ### |
---|
| 851 | //compute differentials |
---|
| 852 | dq1=((double *)ymom_centroid_values->data)[k1]-((double *)ymom_centroid_values->data)[k]; |
---|
| 853 | //calculate the gradient between the centroid of the FV triangle and that of its neighbour |
---|
| 854 | a=dq1*dx2; |
---|
| 855 | b=dq1*dy2; |
---|
| 856 | //calculate provisional vertex jumps, to be limited |
---|
| 857 | dqv[0]=a*dxv0+b*dyv0; |
---|
| 858 | dqv[1]=a*dxv1+b*dyv1; |
---|
| 859 | dqv[2]=a*dxv2+b*dyv2; |
---|
| 860 | //now limit the jumps |
---|
| 861 | if (dq1>=0.0){ |
---|
| 862 | qmin=0.0; |
---|
| 863 | qmax=dq1; |
---|
| 864 | } |
---|
| 865 | else{ |
---|
| 866 | qmin=dq1; |
---|
| 867 | qmax=0.0; |
---|
| 868 | } |
---|
| 869 | limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited |
---|
| 870 | for (i=0;i<3;i++) |
---|
| 871 | ((double *)ymom_vertex_values->data)[k3+i]=((double *)ymom_centroid_values->data)[k]+dqv[i]; |
---|
| 872 | }//else [number_of_boudaries==2] |
---|
| 873 | }//for k=0 to number_of_elements-1 |
---|
| 874 | return Py_BuildValue(""); |
---|
| 875 | }//extrapolate_second-order_sw |
---|
| 876 | |
---|
| 877 | PyObject *rotate(PyObject *self, PyObject *args, PyObject *kwargs) { |
---|
| 878 | // |
---|
| 879 | // r = rotate(q, normal, direction=1) |
---|
| 880 | // |
---|
| 881 | // Where q is assumed to be a Float numeric array of length 3 and |
---|
| 882 | // normal a Float numeric array of length 2. |
---|
| 883 | |
---|
| 884 | |
---|
| 885 | PyObject *Q, *Normal; |
---|
| 886 | PyArrayObject *q, *r, *normal; |
---|
| 887 | |
---|
| 888 | static char *argnames[] = {"q", "normal", "direction", NULL}; |
---|
| 889 | int dimensions[1], i, direction=1; |
---|
| 890 | double n1, n2; |
---|
| 891 | |
---|
| 892 | // Convert Python arguments to C |
---|
| 893 | if (!PyArg_ParseTupleAndKeywords(args, kwargs, "OO|i", argnames, |
---|
| 894 | &Q, &Normal, &direction)) |
---|
| 895 | return NULL; |
---|
| 896 | |
---|
| 897 | //Input checks (convert sequences into numeric arrays) |
---|
| 898 | q = (PyArrayObject *) |
---|
| 899 | PyArray_ContiguousFromObject(Q, PyArray_DOUBLE, 0, 0); |
---|
| 900 | normal = (PyArrayObject *) |
---|
| 901 | PyArray_ContiguousFromObject(Normal, PyArray_DOUBLE, 0, 0); |
---|
| 902 | |
---|
| 903 | |
---|
| 904 | if (normal -> dimensions[0] != 2) { |
---|
| 905 | PyErr_SetString(PyExc_RuntimeError, "Normal vector must have 2 components"); |
---|
| 906 | return NULL; |
---|
| 907 | } |
---|
| 908 | |
---|
| 909 | //Allocate space for return vector r (don't DECREF) |
---|
| 910 | dimensions[0] = 3; |
---|
| 911 | r = (PyArrayObject *) PyArray_FromDims(1, dimensions, PyArray_DOUBLE); |
---|
| 912 | |
---|
| 913 | //Copy |
---|
| 914 | for (i=0; i<3; i++) { |
---|
| 915 | ((double *) (r -> data))[i] = ((double *) (q -> data))[i]; |
---|
| 916 | } |
---|
| 917 | |
---|
| 918 | //Get normal and direction |
---|
| 919 | n1 = ((double *) normal -> data)[0]; |
---|
| 920 | n2 = ((double *) normal -> data)[1]; |
---|
| 921 | if (direction == -1) n2 = -n2; |
---|
| 922 | |
---|
| 923 | //Rotate |
---|
| 924 | _rotate((double *) r -> data, n1, n2); |
---|
| 925 | |
---|
| 926 | //Release numeric arrays |
---|
| 927 | Py_DECREF(q); |
---|
| 928 | Py_DECREF(normal); |
---|
| 929 | |
---|
| 930 | //return result using PyArray to avoid memory leak |
---|
| 931 | return PyArray_Return(r); |
---|
| 932 | } |
---|
| 933 | |
---|
| 934 | PyObject *compute_fluxes(PyObject *self, PyObject *args) { |
---|
| 935 | /*Compute all fluxes and the timestep suitable for all volumes |
---|
| 936 | in domain. |
---|
| 937 | |
---|
| 938 | Compute total flux for each conserved quantity using "flux_function" |
---|
| 939 | |
---|
| 940 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
| 941 | Resulting flux is then scaled by area and stored in |
---|
| 942 | explicit_update for each of the three conserved quantities |
---|
| 943 | stage, xmomentum and ymomentum |
---|
| 944 | |
---|
| 945 | The maximal allowable speed computed by the flux_function for each volume |
---|
| 946 | is converted to a timestep that must not be exceeded. The minimum of |
---|
| 947 | those is computed as the next overall timestep. |
---|
| 948 | |
---|
| 949 | Python call: |
---|
| 950 | domain.timestep = compute_fluxes(timestep, |
---|
| 951 | domain.epsilon, |
---|
| 952 | domain.g, |
---|
| 953 | domain.neighbours, |
---|
| 954 | domain.neighbour_edges, |
---|
| 955 | domain.normals, |
---|
| 956 | domain.edgelengths, |
---|
| 957 | domain.radii, |
---|
| 958 | domain.areas, |
---|
| 959 | Stage.edge_values, |
---|
| 960 | Xmom.edge_values, |
---|
| 961 | Ymom.edge_values, |
---|
| 962 | Bed.edge_values, |
---|
| 963 | Stage.boundary_values, |
---|
| 964 | Xmom.boundary_values, |
---|
| 965 | Ymom.boundary_values, |
---|
| 966 | Stage.explicit_update, |
---|
| 967 | Xmom.explicit_update, |
---|
| 968 | Ymom.explicit_update, |
---|
| 969 | already_computed_flux) |
---|
| 970 | |
---|
| 971 | |
---|
| 972 | Post conditions: |
---|
| 973 | domain.explicit_update is reset to computed flux values |
---|
| 974 | domain.timestep is set to the largest step satisfying all volumes. |
---|
| 975 | |
---|
| 976 | |
---|
| 977 | */ |
---|
| 978 | |
---|
| 979 | |
---|
| 980 | PyArrayObject *neighbours, *neighbour_edges, |
---|
| 981 | *normals, *edgelengths, *radii, *areas, |
---|
| 982 | *stage_edge_values, |
---|
| 983 | *xmom_edge_values, |
---|
| 984 | *ymom_edge_values, |
---|
| 985 | *bed_edge_values, |
---|
| 986 | *stage_boundary_values, |
---|
| 987 | *xmom_boundary_values, |
---|
| 988 | *ymom_boundary_values, |
---|
| 989 | *stage_explicit_update, |
---|
| 990 | *xmom_explicit_update, |
---|
| 991 | *ymom_explicit_update, |
---|
| 992 | *already_computed_flux;//tracks whether the flux across an edge has already been computed |
---|
| 993 | |
---|
| 994 | |
---|
| 995 | //Local variables |
---|
| 996 | double timestep, max_speed, epsilon, g; |
---|
| 997 | double normal[2], ql[3], qr[3], zl, zr; |
---|
| 998 | double edgeflux[3]; //Work arrays for summing up fluxes |
---|
| 999 | |
---|
| 1000 | int number_of_elements, k, i, m, n; |
---|
| 1001 | int ki, nm=0, ki2; //Index shorthands |
---|
| 1002 | static long call=1; |
---|
| 1003 | |
---|
| 1004 | |
---|
| 1005 | // Convert Python arguments to C |
---|
| 1006 | if (!PyArg_ParseTuple(args, "dddOOOOOOOOOOOOOOOOO", |
---|
| 1007 | ×tep, |
---|
| 1008 | &epsilon, |
---|
| 1009 | &g, |
---|
| 1010 | &neighbours, |
---|
| 1011 | &neighbour_edges, |
---|
| 1012 | &normals, |
---|
| 1013 | &edgelengths, &radii, &areas, |
---|
| 1014 | &stage_edge_values, |
---|
| 1015 | &xmom_edge_values, |
---|
| 1016 | &ymom_edge_values, |
---|
| 1017 | &bed_edge_values, |
---|
| 1018 | &stage_boundary_values, |
---|
| 1019 | &xmom_boundary_values, |
---|
| 1020 | &ymom_boundary_values, |
---|
| 1021 | &stage_explicit_update, |
---|
| 1022 | &xmom_explicit_update, |
---|
| 1023 | &ymom_explicit_update, |
---|
| 1024 | &already_computed_flux)) { |
---|
| 1025 | PyErr_SetString(PyExc_RuntimeError, "Input arguments failed"); |
---|
| 1026 | return NULL; |
---|
| 1027 | } |
---|
| 1028 | number_of_elements = stage_edge_values -> dimensions[0]; |
---|
| 1029 | call++;//a static local variable to which already_computed_flux is compared |
---|
| 1030 | //set explicit_update to zero for all conserved_quantities. |
---|
| 1031 | //This assumes compute_fluxes called before forcing terms |
---|
| 1032 | for (k=0; k<number_of_elements; k++) { |
---|
| 1033 | ((double *) stage_explicit_update -> data)[k]=0.0; |
---|
| 1034 | ((double *) xmom_explicit_update -> data)[k]=0.0; |
---|
| 1035 | ((double *) ymom_explicit_update -> data)[k]=0.0; |
---|
| 1036 | } |
---|
| 1037 | //Loop through neighbours and compute edge flux for each |
---|
| 1038 | for (k=0; k<number_of_elements; k++) { |
---|
| 1039 | for (i=0; i<3; i++) { |
---|
| 1040 | ki = k*3+i; |
---|
| 1041 | if (((long *) already_computed_flux->data)[ki]==call)//we've already computed the flux across this edge |
---|
| 1042 | continue; |
---|
| 1043 | ql[0] = ((double *) stage_edge_values -> data)[ki]; |
---|
| 1044 | ql[1] = ((double *) xmom_edge_values -> data)[ki]; |
---|
| 1045 | ql[2] = ((double *) ymom_edge_values -> data)[ki]; |
---|
| 1046 | zl = ((double *) bed_edge_values -> data)[ki]; |
---|
| 1047 | |
---|
| 1048 | //Quantities at neighbour on nearest face |
---|
| 1049 | n = ((long *) neighbours -> data)[ki]; |
---|
| 1050 | if (n < 0) { |
---|
| 1051 | m = -n-1; //Convert negative flag to index |
---|
| 1052 | qr[0] = ((double *) stage_boundary_values -> data)[m]; |
---|
| 1053 | qr[1] = ((double *) xmom_boundary_values -> data)[m]; |
---|
| 1054 | qr[2] = ((double *) ymom_boundary_values -> data)[m]; |
---|
| 1055 | zr = zl; //Extend bed elevation to boundary |
---|
| 1056 | } else { |
---|
| 1057 | m = ((long *) neighbour_edges -> data)[ki]; |
---|
| 1058 | nm = n*3+m; |
---|
| 1059 | qr[0] = ((double *) stage_edge_values -> data)[nm]; |
---|
| 1060 | qr[1] = ((double *) xmom_edge_values -> data)[nm]; |
---|
| 1061 | qr[2] = ((double *) ymom_edge_values -> data)[nm]; |
---|
| 1062 | zr = ((double *) bed_edge_values -> data)[nm]; |
---|
| 1063 | } |
---|
| 1064 | // Outward pointing normal vector |
---|
| 1065 | // normal = domain.normals[k, 2*i:2*i+2] |
---|
| 1066 | ki2 = 2*ki; //k*6 + i*2 |
---|
| 1067 | normal[0] = ((double *) normals -> data)[ki2]; |
---|
| 1068 | normal[1] = ((double *) normals -> data)[ki2+1]; |
---|
| 1069 | //Edge flux computation |
---|
| 1070 | flux_function(ql, qr, zl, zr, |
---|
| 1071 | normal[0], normal[1], |
---|
| 1072 | epsilon, g, |
---|
| 1073 | edgeflux, &max_speed); |
---|
| 1074 | //update triangle k |
---|
| 1075 | ((long *) already_computed_flux->data)[ki]=call; |
---|
| 1076 | ((double *) stage_explicit_update -> data)[k] -= edgeflux[0]*((double *) edgelengths -> data)[ki]; |
---|
| 1077 | ((double *) xmom_explicit_update -> data)[k] -= edgeflux[1]*((double *) edgelengths -> data)[ki]; |
---|
| 1078 | ((double *) ymom_explicit_update -> data)[k] -= edgeflux[2]*((double *) edgelengths -> data)[ki]; |
---|
| 1079 | //update the neighbour n |
---|
| 1080 | if (n>=0){ |
---|
| 1081 | ((long *) already_computed_flux->data)[nm]=call; |
---|
| 1082 | ((double *) stage_explicit_update -> data)[n] += edgeflux[0]*((double *) edgelengths -> data)[nm]; |
---|
| 1083 | ((double *) xmom_explicit_update -> data)[n] += edgeflux[1]*((double *) edgelengths -> data)[nm]; |
---|
| 1084 | ((double *) ymom_explicit_update -> data)[n] += edgeflux[2]*((double *) edgelengths -> data)[nm]; |
---|
| 1085 | } |
---|
| 1086 | ///for (j=0; j<3; j++) { |
---|
| 1087 | ///flux[j] -= edgeflux[j]*((double *) edgelengths -> data)[ki]; |
---|
| 1088 | ///} |
---|
| 1089 | //Update timestep |
---|
| 1090 | //timestep = min(timestep, domain.radii[k]/max_speed) |
---|
| 1091 | //FIXME: SR Add parameter for CFL condition |
---|
| 1092 | if (max_speed > epsilon) { |
---|
| 1093 | timestep = min(timestep, ((double *) radii -> data)[k]/max_speed); |
---|
| 1094 | //maxspeed in flux_function is calculated as max(|u+a|,|u-a|) |
---|
| 1095 | if (n>=0) |
---|
| 1096 | timestep = min(timestep, ((double *) radii -> data)[n]/max_speed); |
---|
| 1097 | } |
---|
| 1098 | } // end for i |
---|
| 1099 | //Normalise by area and store for when all conserved |
---|
| 1100 | //quantities get updated |
---|
| 1101 | ((double *) stage_explicit_update -> data)[k] /= ((double *) areas -> data)[k]; |
---|
| 1102 | ((double *) xmom_explicit_update -> data)[k] /= ((double *) areas -> data)[k]; |
---|
| 1103 | ((double *) ymom_explicit_update -> data)[k] /= ((double *) areas -> data)[k]; |
---|
| 1104 | } //end for k |
---|
| 1105 | return Py_BuildValue("d", timestep); |
---|
| 1106 | } |
---|
| 1107 | |
---|
| 1108 | PyObject *protect(PyObject *self, PyObject *args) { |
---|
| 1109 | // |
---|
| 1110 | // protect(minimum_allowed_height, maximum_allowed_speed, wc, zc, xmomc, ymomc) |
---|
| 1111 | |
---|
| 1112 | |
---|
| 1113 | PyArrayObject |
---|
| 1114 | *wc, //Stage at centroids |
---|
| 1115 | *zc, //Elevation at centroids |
---|
| 1116 | *xmomc, //Momentums at centroids |
---|
| 1117 | *ymomc; |
---|
| 1118 | |
---|
| 1119 | |
---|
| 1120 | int N; |
---|
| 1121 | double minimum_allowed_height, maximum_allowed_speed, epsilon; |
---|
| 1122 | |
---|
| 1123 | // Convert Python arguments to C |
---|
| 1124 | if (!PyArg_ParseTuple(args, "dddOOOO", |
---|
| 1125 | &minimum_allowed_height, |
---|
| 1126 | &maximum_allowed_speed, |
---|
| 1127 | &epsilon, |
---|
| 1128 | &wc, &zc, &xmomc, &ymomc)) |
---|
| 1129 | return NULL; |
---|
| 1130 | |
---|
| 1131 | N = wc -> dimensions[0]; |
---|
| 1132 | |
---|
| 1133 | _protect(N, |
---|
| 1134 | minimum_allowed_height, |
---|
| 1135 | maximum_allowed_speed, |
---|
| 1136 | epsilon, |
---|
| 1137 | (double*) wc -> data, |
---|
| 1138 | (double*) zc -> data, |
---|
| 1139 | (double*) xmomc -> data, |
---|
| 1140 | (double*) ymomc -> data); |
---|
| 1141 | |
---|
| 1142 | return Py_BuildValue(""); |
---|
| 1143 | } |
---|
| 1144 | |
---|
| 1145 | |
---|
| 1146 | |
---|
| 1147 | PyObject *balance_deep_and_shallow(PyObject *self, PyObject *args) { |
---|
| 1148 | // |
---|
| 1149 | // balance_deep_and_shallow(wc, zc, hc, wv, zv, hv, |
---|
| 1150 | // xmomc, ymomc, xmomv, ymomv) |
---|
| 1151 | |
---|
| 1152 | |
---|
| 1153 | PyArrayObject |
---|
| 1154 | *wc, //Stage at centroids |
---|
| 1155 | *zc, //Elevation at centroids |
---|
| 1156 | *hc, //Height at centroids |
---|
| 1157 | *wv, //Stage at vertices |
---|
| 1158 | *zv, //Elevation at vertices |
---|
| 1159 | *hv, //Depths at vertices |
---|
| 1160 | *hvbar, //h-Limited depths at vertices |
---|
| 1161 | *xmomc, //Momentums at centroids and vertices |
---|
| 1162 | *ymomc, |
---|
| 1163 | *xmomv, |
---|
| 1164 | *ymomv; |
---|
| 1165 | |
---|
| 1166 | int N; //, err; |
---|
| 1167 | |
---|
| 1168 | // Convert Python arguments to C |
---|
| 1169 | if (!PyArg_ParseTuple(args, "OOOOOOOOOOO", |
---|
| 1170 | &wc, &zc, &hc, |
---|
| 1171 | &wv, &zv, &hv, &hvbar, |
---|
| 1172 | &xmomc, &ymomc, &xmomv, &ymomv)) |
---|
| 1173 | return NULL; |
---|
| 1174 | |
---|
| 1175 | N = wc -> dimensions[0]; |
---|
| 1176 | |
---|
| 1177 | _balance_deep_and_shallow(N, |
---|
| 1178 | (double*) wc -> data, |
---|
| 1179 | (double*) zc -> data, |
---|
| 1180 | (double*) hc -> data, |
---|
| 1181 | (double*) wv -> data, |
---|
| 1182 | (double*) zv -> data, |
---|
| 1183 | (double*) hv -> data, |
---|
| 1184 | (double*) hvbar -> data, |
---|
| 1185 | (double*) xmomc -> data, |
---|
| 1186 | (double*) ymomc -> data, |
---|
| 1187 | (double*) xmomv -> data, |
---|
| 1188 | (double*) ymomv -> data); |
---|
| 1189 | |
---|
| 1190 | |
---|
| 1191 | return Py_BuildValue(""); |
---|
| 1192 | } |
---|
| 1193 | |
---|
| 1194 | |
---|
| 1195 | |
---|
| 1196 | PyObject *h_limiter(PyObject *self, PyObject *args) { |
---|
| 1197 | |
---|
| 1198 | PyObject *domain, *Tmp; |
---|
| 1199 | PyArrayObject |
---|
| 1200 | *hv, *hc, //Depth at vertices and centroids |
---|
| 1201 | *hvbar, //Limited depth at vertices (return values) |
---|
| 1202 | *neighbours; |
---|
| 1203 | |
---|
| 1204 | int k, i, n, N, k3; |
---|
| 1205 | int dimensions[2]; |
---|
| 1206 | double beta_h; //Safety factor (see config.py) |
---|
| 1207 | double *hmin, *hmax, hn; |
---|
| 1208 | |
---|
| 1209 | // Convert Python arguments to C |
---|
| 1210 | if (!PyArg_ParseTuple(args, "OOO", &domain, &hc, &hv)) |
---|
| 1211 | return NULL; |
---|
| 1212 | |
---|
| 1213 | neighbours = get_consecutive_array(domain, "neighbours"); |
---|
| 1214 | |
---|
| 1215 | //Get safety factor beta_h |
---|
| 1216 | Tmp = PyObject_GetAttrString(domain, "beta_h"); |
---|
| 1217 | if (!Tmp) |
---|
| 1218 | return NULL; |
---|
| 1219 | |
---|
| 1220 | beta_h = PyFloat_AsDouble(Tmp); |
---|
| 1221 | |
---|
| 1222 | Py_DECREF(Tmp); |
---|
| 1223 | |
---|
| 1224 | N = hc -> dimensions[0]; |
---|
| 1225 | |
---|
| 1226 | //Create hvbar |
---|
| 1227 | dimensions[0] = N; |
---|
| 1228 | dimensions[1] = 3; |
---|
| 1229 | hvbar = (PyArrayObject *) PyArray_FromDims(2, dimensions, PyArray_DOUBLE); |
---|
| 1230 | |
---|
| 1231 | |
---|
| 1232 | //Find min and max of this and neighbour's centroid values |
---|
| 1233 | hmin = malloc(N * sizeof(double)); |
---|
| 1234 | hmax = malloc(N * sizeof(double)); |
---|
| 1235 | for (k=0; k<N; k++) { |
---|
| 1236 | k3=k*3; |
---|
| 1237 | |
---|
| 1238 | hmin[k] = ((double*) hc -> data)[k]; |
---|
| 1239 | hmax[k] = hmin[k]; |
---|
| 1240 | |
---|
| 1241 | for (i=0; i<3; i++) { |
---|
| 1242 | n = ((long*) neighbours -> data)[k3+i]; |
---|
| 1243 | |
---|
| 1244 | //Initialise hvbar with values from hv |
---|
| 1245 | ((double*) hvbar -> data)[k3+i] = ((double*) hv -> data)[k3+i]; |
---|
| 1246 | |
---|
| 1247 | if (n >= 0) { |
---|
| 1248 | hn = ((double*) hc -> data)[n]; //Neighbour's centroid value |
---|
| 1249 | |
---|
| 1250 | hmin[k] = min(hmin[k], hn); |
---|
| 1251 | hmax[k] = max(hmax[k], hn); |
---|
| 1252 | } |
---|
| 1253 | } |
---|
| 1254 | } |
---|
| 1255 | |
---|
| 1256 | // Call underlying standard routine |
---|
| 1257 | _limit(N, beta_h, (double*) hc -> data, (double*) hvbar -> data, hmin, hmax); |
---|
| 1258 | |
---|
| 1259 | // // //Py_DECREF(domain); //FIXME: NEcessary? |
---|
| 1260 | free(hmin); |
---|
| 1261 | free(hmax); |
---|
| 1262 | |
---|
| 1263 | //return result using PyArray to avoid memory leak |
---|
| 1264 | return PyArray_Return(hvbar); |
---|
| 1265 | //return Py_BuildValue(""); |
---|
| 1266 | } |
---|
| 1267 | |
---|
| 1268 | PyObject *h_limiter_sw(PyObject *self, PyObject *args) { |
---|
| 1269 | //a faster version of h_limiter above |
---|
| 1270 | PyObject *domain, *Tmp; |
---|
| 1271 | PyArrayObject |
---|
| 1272 | *hv, *hc, //Depth at vertices and centroids |
---|
| 1273 | *hvbar, //Limited depth at vertices (return values) |
---|
| 1274 | *neighbours; |
---|
| 1275 | |
---|
| 1276 | int k, i, N, k3,k0,k1,k2; |
---|
| 1277 | int dimensions[2]; |
---|
| 1278 | double beta_h; //Safety factor (see config.py) |
---|
| 1279 | double hmin, hmax, dh[3]; |
---|
| 1280 | // Convert Python arguments to C |
---|
| 1281 | if (!PyArg_ParseTuple(args, "OOO", &domain, &hc, &hv)) |
---|
| 1282 | return NULL; |
---|
| 1283 | neighbours = get_consecutive_array(domain, "neighbours"); |
---|
| 1284 | |
---|
| 1285 | //Get safety factor beta_h |
---|
| 1286 | Tmp = PyObject_GetAttrString(domain, "beta_h"); |
---|
| 1287 | if (!Tmp) |
---|
| 1288 | return NULL; |
---|
| 1289 | beta_h = PyFloat_AsDouble(Tmp); |
---|
| 1290 | |
---|
| 1291 | Py_DECREF(Tmp); |
---|
| 1292 | |
---|
| 1293 | N = hc -> dimensions[0]; |
---|
| 1294 | |
---|
| 1295 | //Create hvbar |
---|
| 1296 | dimensions[0] = N; |
---|
| 1297 | dimensions[1] = 3; |
---|
| 1298 | hvbar = (PyArrayObject *) PyArray_FromDims(2, dimensions, PyArray_DOUBLE); |
---|
| 1299 | for (k=0;k<N;k++){ |
---|
| 1300 | k3=k*3; |
---|
| 1301 | //get the ids of the neighbours |
---|
| 1302 | k0 = ((long*) neighbours -> data)[k3]; |
---|
| 1303 | k1 = ((long*) neighbours -> data)[k3+1]; |
---|
| 1304 | k2 = ((long*) neighbours -> data)[k3+2]; |
---|
| 1305 | //set hvbar provisionally |
---|
| 1306 | for (i=0;i<3;i++){ |
---|
| 1307 | ((double*) hvbar -> data)[k3+i] = ((double*) hv -> data)[k3+i]; |
---|
| 1308 | dh[i]=((double*) hvbar -> data)[k3+i]-((double*) hc -> data)[k]; |
---|
| 1309 | } |
---|
| 1310 | hmin=((double*) hc -> data)[k]; |
---|
| 1311 | hmax=hmin; |
---|
| 1312 | if (k0>=0){ |
---|
| 1313 | hmin=min(hmin,((double*) hc -> data)[k0]); |
---|
| 1314 | hmax=max(hmax,((double*) hc -> data)[k0]); |
---|
| 1315 | } |
---|
| 1316 | if (k1>=0){ |
---|
| 1317 | hmin=min(hmin,((double*) hc -> data)[k1]); |
---|
| 1318 | hmax=max(hmax,((double*) hc -> data)[k1]); |
---|
| 1319 | } |
---|
| 1320 | if (k2>=0){ |
---|
| 1321 | hmin=min(hmin,((double*) hc -> data)[k2]); |
---|
| 1322 | hmax=max(hmax,((double*) hc -> data)[k2]); |
---|
| 1323 | } |
---|
| 1324 | hmin-=((double*) hc -> data)[k]; |
---|
| 1325 | hmax-=((double*) hc -> data)[k]; |
---|
| 1326 | limit_gradient(dh,hmin,hmax,beta_h); |
---|
| 1327 | for (i=0;i<3;i++) |
---|
| 1328 | ((double*) hvbar -> data)[k3+i] = ((double*) hc -> data)[k]+dh[i]; |
---|
| 1329 | } |
---|
| 1330 | return PyArray_Return(hvbar); |
---|
| 1331 | } |
---|
| 1332 | |
---|
| 1333 | PyObject *assign_windfield_values(PyObject *self, PyObject *args) { |
---|
| 1334 | // |
---|
| 1335 | // assign_windfield_values(xmom_update, ymom_update, |
---|
| 1336 | // s_vec, phi_vec, self.const) |
---|
| 1337 | |
---|
| 1338 | |
---|
| 1339 | |
---|
| 1340 | PyArrayObject //(one element per triangle) |
---|
| 1341 | *s_vec, //Speeds |
---|
| 1342 | *phi_vec, //Bearings |
---|
| 1343 | *xmom_update, //Momentum updates |
---|
| 1344 | *ymom_update; |
---|
| 1345 | |
---|
| 1346 | |
---|
| 1347 | int N; |
---|
| 1348 | double cw; |
---|
| 1349 | |
---|
| 1350 | // Convert Python arguments to C |
---|
| 1351 | if (!PyArg_ParseTuple(args, "OOOOd", |
---|
| 1352 | &xmom_update, |
---|
| 1353 | &ymom_update, |
---|
| 1354 | &s_vec, &phi_vec, |
---|
| 1355 | &cw)) |
---|
| 1356 | return NULL; |
---|
| 1357 | |
---|
| 1358 | N = xmom_update -> dimensions[0]; |
---|
| 1359 | |
---|
| 1360 | _assign_wind_field_values(N, |
---|
| 1361 | (double*) xmom_update -> data, |
---|
| 1362 | (double*) ymom_update -> data, |
---|
| 1363 | (double*) s_vec -> data, |
---|
| 1364 | (double*) phi_vec -> data, |
---|
| 1365 | cw); |
---|
| 1366 | |
---|
| 1367 | return Py_BuildValue(""); |
---|
| 1368 | } |
---|
| 1369 | |
---|
| 1370 | |
---|
| 1371 | |
---|
| 1372 | |
---|
| 1373 | ////////////////////////////////////////// |
---|
| 1374 | // Method table for python module |
---|
| 1375 | static struct PyMethodDef MethodTable[] = { |
---|
| 1376 | /* The cast of the function is necessary since PyCFunction values |
---|
| 1377 | * only take two PyObject* parameters, and rotate() takes |
---|
| 1378 | * three. |
---|
| 1379 | */ |
---|
| 1380 | |
---|
| 1381 | {"rotate", (PyCFunction)rotate, METH_VARARGS | METH_KEYWORDS, "Print out"}, |
---|
| 1382 | {"extrapolate_second_order_sw", extrapolate_second_order_sw, METH_VARARGS, "Print out"}, |
---|
| 1383 | {"compute_fluxes", compute_fluxes, METH_VARARGS, "Print out"}, |
---|
| 1384 | {"gravity", gravity, METH_VARARGS, "Print out"}, |
---|
| 1385 | {"manning_friction", manning_friction, METH_VARARGS, "Print out"}, |
---|
| 1386 | {"balance_deep_and_shallow", balance_deep_and_shallow, |
---|
| 1387 | METH_VARARGS, "Print out"}, |
---|
| 1388 | {"h_limiter", h_limiter, |
---|
| 1389 | METH_VARARGS, "Print out"}, |
---|
| 1390 | {"h_limiter_sw", h_limiter_sw, |
---|
| 1391 | METH_VARARGS, "Print out"}, |
---|
| 1392 | {"protect", protect, METH_VARARGS | METH_KEYWORDS, "Print out"}, |
---|
| 1393 | {"assign_windfield_values", assign_windfield_values, |
---|
| 1394 | METH_VARARGS | METH_KEYWORDS, "Print out"}, |
---|
| 1395 | //{"distribute_to_vertices_and_edges", |
---|
| 1396 | // distribute_to_vertices_and_edges, METH_VARARGS}, |
---|
| 1397 | //{"update_conserved_quantities", |
---|
| 1398 | // update_conserved_quantities, METH_VARARGS}, |
---|
| 1399 | //{"set_initialcondition", |
---|
| 1400 | // set_initialcondition, METH_VARARGS}, |
---|
| 1401 | {NULL, NULL} |
---|
| 1402 | }; |
---|
| 1403 | |
---|
| 1404 | // Module initialisation |
---|
| 1405 | void initshallow_water_ext(void){ |
---|
| 1406 | Py_InitModule("shallow_water_ext", MethodTable); |
---|
| 1407 | |
---|
| 1408 | import_array(); //Necessary for handling of NumPY structures |
---|
| 1409 | } |
---|