[1093] | 1 | #!/usr/bin/env python |
---|
| 2 | |
---|
| 3 | |
---|
| 4 | import unittest |
---|
[2314] | 5 | from Numeric import zeros, array, allclose, Float |
---|
[1093] | 6 | from math import sqrt, pi |
---|
[2679] | 7 | import tempfile |
---|
[1093] | 8 | |
---|
| 9 | from util import * |
---|
| 10 | from config import epsilon |
---|
[1835] | 11 | from data_manager import timefile2netcdf |
---|
[1093] | 12 | |
---|
[2679] | 13 | from utilities.numerical_tools import INF |
---|
[1093] | 14 | |
---|
| 15 | def test_function(x, y): |
---|
| 16 | return x+y |
---|
| 17 | |
---|
| 18 | class Test_Util(unittest.TestCase): |
---|
| 19 | def setUp(self): |
---|
| 20 | pass |
---|
| 21 | |
---|
| 22 | def tearDown(self): |
---|
| 23 | pass |
---|
| 24 | |
---|
| 25 | |
---|
| 26 | |
---|
| 27 | |
---|
| 28 | #Geometric |
---|
| 29 | #def test_distance(self): |
---|
| 30 | # from util import distance# |
---|
| 31 | # |
---|
| 32 | # self.failUnless( distance([4,2],[7,6]) == 5.0, |
---|
| 33 | # 'Distance is wrong!') |
---|
| 34 | # self.failUnless( allclose(distance([7,6],[9,8]), 2.82842712475), |
---|
| 35 | # 'distance is wrong!') |
---|
| 36 | # self.failUnless( allclose(distance([9,8],[4,2]), 7.81024967591), |
---|
| 37 | # 'distance is wrong!') |
---|
| 38 | # |
---|
| 39 | # self.failUnless( distance([9,8],[4,2]) == distance([4,2],[9,8]), |
---|
| 40 | # 'distance is wrong!') |
---|
| 41 | |
---|
| 42 | |
---|
[1671] | 43 | def test_file_function_time1(self): |
---|
[1093] | 44 | """Test that File function interpolates correctly |
---|
| 45 | between given times. No x,y dependency here. |
---|
| 46 | """ |
---|
| 47 | |
---|
| 48 | #Write file |
---|
| 49 | import os, time |
---|
| 50 | from config import time_format |
---|
| 51 | from math import sin, pi |
---|
| 52 | |
---|
[1671] | 53 | #Typical ASCII file |
---|
[1093] | 54 | finaltime = 1200 |
---|
[1671] | 55 | filename = 'test_file_function' |
---|
| 56 | fid = open(filename + '.txt', 'w') |
---|
[1093] | 57 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 58 | dt = 60 #One minute intervals |
---|
| 59 | t = 0.0 |
---|
| 60 | while t <= finaltime: |
---|
| 61 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
| 62 | fid.write('%s, %f %f %f\n' %(t_string, 2*t, t**2, sin(t*pi/600))) |
---|
| 63 | t += dt |
---|
| 64 | |
---|
| 65 | fid.close() |
---|
| 66 | |
---|
[1671] | 67 | #Convert ASCII file to NetCDF (Which is what we really like!) |
---|
[1835] | 68 | timefile2netcdf(filename) |
---|
[1093] | 69 | |
---|
[1671] | 70 | |
---|
[1835] | 71 | #Create file function from time series |
---|
| 72 | F = file_function(filename + '.tms', |
---|
| 73 | quantities = ['Attribute0', |
---|
| 74 | 'Attribute1', |
---|
| 75 | 'Attribute2']) |
---|
[1671] | 76 | |
---|
[1093] | 77 | #Now try interpolation |
---|
| 78 | for i in range(20): |
---|
| 79 | t = i*10 |
---|
| 80 | q = F(t) |
---|
| 81 | |
---|
| 82 | #Exact linear intpolation |
---|
| 83 | assert allclose(q[0], 2*t) |
---|
| 84 | if i%6 == 0: |
---|
| 85 | assert allclose(q[1], t**2) |
---|
| 86 | assert allclose(q[2], sin(t*pi/600)) |
---|
| 87 | |
---|
| 88 | #Check non-exact |
---|
| 89 | |
---|
| 90 | t = 90 #Halfway between 60 and 120 |
---|
| 91 | q = F(t) |
---|
| 92 | assert allclose( (120**2 + 60**2)/2, q[1] ) |
---|
| 93 | assert allclose( (sin(120*pi/600) + sin(60*pi/600))/2, q[2] ) |
---|
| 94 | |
---|
| 95 | |
---|
| 96 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
| 97 | q = F(t) |
---|
| 98 | assert allclose( 2*120**2/3 + 60**2/3, q[1] ) |
---|
| 99 | assert allclose( 2*sin(120*pi/600)/3 + sin(60*pi/600)/3, q[2] ) |
---|
| 100 | |
---|
[1671] | 101 | os.remove(filename + '.txt') |
---|
[1835] | 102 | os.remove(filename + '.tms') |
---|
[1093] | 103 | |
---|
| 104 | |
---|
[1137] | 105 | |
---|
[2852] | 106 | def test_spatio_temporal_file_function_basic(self): |
---|
[1664] | 107 | """Test that spatio temporal file function performs the correct |
---|
| 108 | interpolations in both time and space |
---|
| 109 | NetCDF version (x,y,t dependency) |
---|
| 110 | """ |
---|
| 111 | import time |
---|
| 112 | |
---|
| 113 | #Create sww file of simple propagation from left to right |
---|
| 114 | #through rectangular domain |
---|
| 115 | from shallow_water import Domain, Dirichlet_boundary |
---|
| 116 | from mesh_factory import rectangular |
---|
| 117 | from Numeric import take, concatenate, reshape |
---|
| 118 | |
---|
| 119 | #Create basic mesh and shallow water domain |
---|
| 120 | points, vertices, boundary = rectangular(3, 3) |
---|
| 121 | domain1 = Domain(points, vertices, boundary) |
---|
| 122 | |
---|
[2526] | 123 | from utilities.numerical_tools import mean |
---|
[1664] | 124 | domain1.reduction = mean |
---|
| 125 | domain1.smooth = True #NOTE: Mimic sww output where each vertex has |
---|
| 126 | # only one value. |
---|
| 127 | |
---|
| 128 | domain1.default_order = 2 |
---|
| 129 | domain1.store = True |
---|
| 130 | domain1.set_datadir('.') |
---|
| 131 | domain1.set_name('spatio_temporal_boundary_source_%d' %(id(self))) |
---|
| 132 | domain1.quantities_to_be_stored = ['stage', 'xmomentum', 'ymomentum'] |
---|
| 133 | |
---|
| 134 | #Bed-slope, friction and IC at vertices (and interpolated elsewhere) |
---|
| 135 | domain1.set_quantity('elevation', 0) |
---|
| 136 | domain1.set_quantity('friction', 0) |
---|
| 137 | domain1.set_quantity('stage', 0) |
---|
| 138 | |
---|
| 139 | # Boundary conditions |
---|
| 140 | B0 = Dirichlet_boundary([0,0,0]) |
---|
| 141 | B6 = Dirichlet_boundary([0.6,0,0]) |
---|
| 142 | domain1.set_boundary({'left': B6, 'top': B6, 'right': B0, 'bottom': B0}) |
---|
| 143 | domain1.check_integrity() |
---|
| 144 | |
---|
| 145 | finaltime = 8 |
---|
| 146 | #Evolution |
---|
[2783] | 147 | t0 = -1 |
---|
[1664] | 148 | for t in domain1.evolve(yieldstep = 0.1, finaltime = finaltime): |
---|
[2852] | 149 | #print 'Timesteps: %.16f, %.16f' %(t0, t) |
---|
[2783] | 150 | #if t == t0: |
---|
| 151 | # msg = 'Duplicate timestep found: %f, %f' %(t0, t) |
---|
| 152 | # raise msg |
---|
| 153 | t0 = t |
---|
| 154 | |
---|
[1664] | 155 | #domain1.write_time() |
---|
| 156 | |
---|
| 157 | |
---|
| 158 | #Now read data from sww and check |
---|
| 159 | from Scientific.IO.NetCDF import NetCDFFile |
---|
| 160 | filename = domain1.get_name() + '.' + domain1.format |
---|
| 161 | fid = NetCDFFile(filename) |
---|
| 162 | |
---|
| 163 | x = fid.variables['x'][:] |
---|
| 164 | y = fid.variables['y'][:] |
---|
| 165 | stage = fid.variables['stage'][:] |
---|
| 166 | xmomentum = fid.variables['xmomentum'][:] |
---|
| 167 | ymomentum = fid.variables['ymomentum'][:] |
---|
| 168 | time = fid.variables['time'][:] |
---|
| 169 | |
---|
| 170 | #Take stage vertex values at last timestep on diagonal |
---|
| 171 | #Diagonal is identified by vertices: 0, 5, 10, 15 |
---|
| 172 | |
---|
[2852] | 173 | last_time_index = len(time)-1 #Last last_time_index |
---|
| 174 | d_stage = reshape(take(stage[last_time_index, :], [0,5,10,15]), (4,1)) |
---|
| 175 | d_uh = reshape(take(xmomentum[last_time_index, :], [0,5,10,15]), (4,1)) |
---|
| 176 | d_vh = reshape(take(ymomentum[last_time_index, :], [0,5,10,15]), (4,1)) |
---|
[1664] | 177 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 178 | |
---|
| 179 | #Reference interpolated values at midpoints on diagonal at |
---|
| 180 | #this timestep are |
---|
| 181 | r0 = (D[0] + D[1])/2 |
---|
| 182 | r1 = (D[1] + D[2])/2 |
---|
| 183 | r2 = (D[2] + D[3])/2 |
---|
| 184 | |
---|
| 185 | #And the midpoints are found now |
---|
| 186 | Dx = take(reshape(x, (16,1)), [0,5,10,15]) |
---|
| 187 | Dy = take(reshape(y, (16,1)), [0,5,10,15]) |
---|
| 188 | |
---|
| 189 | diag = concatenate( (Dx, Dy), axis=1) |
---|
| 190 | d_midpoints = (diag[1:] + diag[:-1])/2 |
---|
| 191 | |
---|
| 192 | #Let us see if the file function can find the correct |
---|
| 193 | #values at the midpoints at the last timestep: |
---|
| 194 | f = file_function(filename, domain1, |
---|
| 195 | interpolation_points = d_midpoints) |
---|
| 196 | |
---|
[2884] | 197 | T = f.get_time() |
---|
| 198 | msg = 'duplicate timesteps: %.16f and %.16f' %(T[-1], T[-2]) |
---|
| 199 | assert not T[-1] == T[-2], msg |
---|
[2852] | 200 | t = time[last_time_index] |
---|
| 201 | q = f(t, point_id=0); assert allclose(r0, q) |
---|
| 202 | q = f(t, point_id=1); assert allclose(r1, q) |
---|
| 203 | q = f(t, point_id=2); assert allclose(r2, q) |
---|
[1664] | 204 | |
---|
| 205 | |
---|
| 206 | ################## |
---|
| 207 | #Now do the same for the first timestep |
---|
| 208 | |
---|
| 209 | timestep = 0 #First timestep |
---|
| 210 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 211 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 212 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 213 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 214 | |
---|
| 215 | #Reference interpolated values at midpoints on diagonal at |
---|
| 216 | #this timestep are |
---|
| 217 | r0 = (D[0] + D[1])/2 |
---|
| 218 | r1 = (D[1] + D[2])/2 |
---|
| 219 | r2 = (D[2] + D[3])/2 |
---|
| 220 | |
---|
| 221 | #Let us see if the file function can find the correct |
---|
| 222 | #values |
---|
| 223 | q = f(0, point_id=0); assert allclose(r0, q) |
---|
| 224 | q = f(0, point_id=1); assert allclose(r1, q) |
---|
| 225 | q = f(0, point_id=2); assert allclose(r2, q) |
---|
| 226 | |
---|
| 227 | |
---|
| 228 | ################## |
---|
| 229 | #Now do it again for a timestep in the middle |
---|
| 230 | |
---|
| 231 | timestep = 33 |
---|
| 232 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 233 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 234 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 235 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 236 | |
---|
| 237 | #Reference interpolated values at midpoints on diagonal at |
---|
| 238 | #this timestep are |
---|
| 239 | r0 = (D[0] + D[1])/2 |
---|
| 240 | r1 = (D[1] + D[2])/2 |
---|
| 241 | r2 = (D[2] + D[3])/2 |
---|
| 242 | |
---|
| 243 | q = f(timestep/10., point_id=0); assert allclose(r0, q) |
---|
| 244 | q = f(timestep/10., point_id=1); assert allclose(r1, q) |
---|
| 245 | q = f(timestep/10., point_id=2); assert allclose(r2, q) |
---|
| 246 | |
---|
| 247 | |
---|
| 248 | ################## |
---|
| 249 | #Now check temporal interpolation |
---|
| 250 | #Halfway between timestep 15 and 16 |
---|
| 251 | |
---|
| 252 | timestep = 15 |
---|
| 253 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 254 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 255 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 256 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 257 | |
---|
| 258 | #Reference interpolated values at midpoints on diagonal at |
---|
| 259 | #this timestep are |
---|
| 260 | r0_0 = (D[0] + D[1])/2 |
---|
| 261 | r1_0 = (D[1] + D[2])/2 |
---|
| 262 | r2_0 = (D[2] + D[3])/2 |
---|
| 263 | |
---|
| 264 | # |
---|
| 265 | timestep = 16 |
---|
| 266 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 267 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 268 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 269 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 270 | |
---|
| 271 | #Reference interpolated values at midpoints on diagonal at |
---|
| 272 | #this timestep are |
---|
| 273 | r0_1 = (D[0] + D[1])/2 |
---|
| 274 | r1_1 = (D[1] + D[2])/2 |
---|
| 275 | r2_1 = (D[2] + D[3])/2 |
---|
| 276 | |
---|
| 277 | # The reference values are |
---|
| 278 | r0 = (r0_0 + r0_1)/2 |
---|
| 279 | r1 = (r1_0 + r1_1)/2 |
---|
| 280 | r2 = (r2_0 + r2_1)/2 |
---|
| 281 | |
---|
| 282 | q = f((timestep - 0.5)/10., point_id=0); assert allclose(r0, q) |
---|
| 283 | q = f((timestep - 0.5)/10., point_id=1); assert allclose(r1, q) |
---|
| 284 | q = f((timestep - 0.5)/10., point_id=2); assert allclose(r2, q) |
---|
| 285 | |
---|
| 286 | ################## |
---|
| 287 | #Finally check interpolation 2 thirds of the way |
---|
| 288 | #between timestep 15 and 16 |
---|
| 289 | |
---|
| 290 | # The reference values are |
---|
| 291 | r0 = (r0_0 + 2*r0_1)/3 |
---|
| 292 | r1 = (r1_0 + 2*r1_1)/3 |
---|
| 293 | r2 = (r2_0 + 2*r2_1)/3 |
---|
| 294 | |
---|
| 295 | #And the file function gives |
---|
| 296 | q = f((timestep - 1.0/3)/10., point_id=0); assert allclose(r0, q) |
---|
| 297 | q = f((timestep - 1.0/3)/10., point_id=1); assert allclose(r1, q) |
---|
| 298 | q = f((timestep - 1.0/3)/10., point_id=2); assert allclose(r2, q) |
---|
| 299 | |
---|
| 300 | fid.close() |
---|
| 301 | import os |
---|
| 302 | os.remove(filename) |
---|
| 303 | |
---|
[1884] | 304 | |
---|
| 305 | |
---|
| 306 | def test_spatio_temporal_file_function_different_origin(self): |
---|
| 307 | """Test that spatio temporal file function performs the correct |
---|
| 308 | interpolations in both time and space where space is offset by |
---|
| 309 | xllcorner and yllcorner |
---|
| 310 | NetCDF version (x,y,t dependency) |
---|
| 311 | """ |
---|
| 312 | import time |
---|
| 313 | |
---|
| 314 | #Create sww file of simple propagation from left to right |
---|
| 315 | #through rectangular domain |
---|
| 316 | from shallow_water import Domain, Dirichlet_boundary |
---|
| 317 | from mesh_factory import rectangular |
---|
| 318 | from Numeric import take, concatenate, reshape |
---|
| 319 | |
---|
| 320 | |
---|
| 321 | from coordinate_transforms.geo_reference import Geo_reference |
---|
| 322 | xllcorner = 2048 |
---|
| 323 | yllcorner = 11000 |
---|
| 324 | zone = 2 |
---|
| 325 | |
---|
| 326 | #Create basic mesh and shallow water domain |
---|
| 327 | points, vertices, boundary = rectangular(3, 3) |
---|
| 328 | domain1 = Domain(points, vertices, boundary, |
---|
| 329 | geo_reference = Geo_reference(xllcorner = xllcorner, |
---|
| 330 | yllcorner = yllcorner)) |
---|
[1137] | 331 | |
---|
| 332 | |
---|
[2526] | 333 | from utilities.numerical_tools import mean |
---|
[1884] | 334 | domain1.reduction = mean |
---|
| 335 | domain1.smooth = True #NOTE: Mimic sww output where each vertex has |
---|
| 336 | # only one value. |
---|
| 337 | |
---|
| 338 | domain1.default_order = 2 |
---|
| 339 | domain1.store = True |
---|
| 340 | domain1.set_datadir('.') |
---|
| 341 | domain1.set_name('spatio_temporal_boundary_source_%d' %(id(self))) |
---|
| 342 | domain1.quantities_to_be_stored = ['stage', 'xmomentum', 'ymomentum'] |
---|
| 343 | |
---|
| 344 | #Bed-slope, friction and IC at vertices (and interpolated elsewhere) |
---|
| 345 | domain1.set_quantity('elevation', 0) |
---|
| 346 | domain1.set_quantity('friction', 0) |
---|
| 347 | domain1.set_quantity('stage', 0) |
---|
| 348 | |
---|
| 349 | # Boundary conditions |
---|
| 350 | B0 = Dirichlet_boundary([0,0,0]) |
---|
| 351 | B6 = Dirichlet_boundary([0.6,0,0]) |
---|
| 352 | domain1.set_boundary({'left': B6, 'top': B6, 'right': B0, 'bottom': B0}) |
---|
| 353 | domain1.check_integrity() |
---|
| 354 | |
---|
| 355 | finaltime = 8 |
---|
| 356 | #Evolution |
---|
| 357 | for t in domain1.evolve(yieldstep = 0.1, finaltime = finaltime): |
---|
| 358 | pass |
---|
| 359 | #domain1.write_time() |
---|
| 360 | |
---|
| 361 | |
---|
| 362 | #Now read data from sww and check |
---|
| 363 | from Scientific.IO.NetCDF import NetCDFFile |
---|
| 364 | filename = domain1.get_name() + '.' + domain1.format |
---|
| 365 | fid = NetCDFFile(filename) |
---|
| 366 | |
---|
| 367 | x = fid.variables['x'][:] |
---|
| 368 | y = fid.variables['y'][:] |
---|
| 369 | stage = fid.variables['stage'][:] |
---|
| 370 | xmomentum = fid.variables['xmomentum'][:] |
---|
| 371 | ymomentum = fid.variables['ymomentum'][:] |
---|
| 372 | time = fid.variables['time'][:] |
---|
| 373 | |
---|
| 374 | #Take stage vertex values at last timestep on diagonal |
---|
| 375 | #Diagonal is identified by vertices: 0, 5, 10, 15 |
---|
| 376 | |
---|
[2852] | 377 | last_time_index = len(time)-1 #Last last_time_index |
---|
| 378 | d_stage = reshape(take(stage[last_time_index, :], [0,5,10,15]), (4,1)) |
---|
| 379 | d_uh = reshape(take(xmomentum[last_time_index, :], [0,5,10,15]), (4,1)) |
---|
| 380 | d_vh = reshape(take(ymomentum[last_time_index, :], [0,5,10,15]), (4,1)) |
---|
[1884] | 381 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 382 | |
---|
| 383 | #Reference interpolated values at midpoints on diagonal at |
---|
| 384 | #this timestep are |
---|
| 385 | r0 = (D[0] + D[1])/2 |
---|
| 386 | r1 = (D[1] + D[2])/2 |
---|
| 387 | r2 = (D[2] + D[3])/2 |
---|
| 388 | |
---|
| 389 | #And the midpoints are found now |
---|
| 390 | Dx = take(reshape(x, (16,1)), [0,5,10,15]) |
---|
| 391 | Dy = take(reshape(y, (16,1)), [0,5,10,15]) |
---|
| 392 | |
---|
| 393 | diag = concatenate( (Dx, Dy), axis=1) |
---|
| 394 | d_midpoints = (diag[1:] + diag[:-1])/2 |
---|
| 395 | |
---|
| 396 | |
---|
| 397 | #Adjust for georef - make interpolation points absolute |
---|
| 398 | d_midpoints[:,0] += xllcorner |
---|
| 399 | d_midpoints[:,1] += yllcorner |
---|
| 400 | |
---|
| 401 | #Let us see if the file function can find the correct |
---|
| 402 | #values at the midpoints at the last timestep: |
---|
| 403 | f = file_function(filename, domain1, |
---|
| 404 | interpolation_points = d_midpoints) |
---|
| 405 | |
---|
[2852] | 406 | t = time[last_time_index] |
---|
| 407 | q = f(t, point_id=0); assert allclose(r0, q) |
---|
| 408 | q = f(t, point_id=1); assert allclose(r1, q) |
---|
| 409 | q = f(t, point_id=2); assert allclose(r2, q) |
---|
[1884] | 410 | |
---|
| 411 | |
---|
| 412 | ################## |
---|
| 413 | #Now do the same for the first timestep |
---|
| 414 | |
---|
| 415 | timestep = 0 #First timestep |
---|
| 416 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 417 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 418 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 419 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 420 | |
---|
| 421 | #Reference interpolated values at midpoints on diagonal at |
---|
| 422 | #this timestep are |
---|
| 423 | r0 = (D[0] + D[1])/2 |
---|
| 424 | r1 = (D[1] + D[2])/2 |
---|
| 425 | r2 = (D[2] + D[3])/2 |
---|
| 426 | |
---|
| 427 | #Let us see if the file function can find the correct |
---|
| 428 | #values |
---|
| 429 | q = f(0, point_id=0); assert allclose(r0, q) |
---|
| 430 | q = f(0, point_id=1); assert allclose(r1, q) |
---|
| 431 | q = f(0, point_id=2); assert allclose(r2, q) |
---|
| 432 | |
---|
| 433 | |
---|
| 434 | ################## |
---|
| 435 | #Now do it again for a timestep in the middle |
---|
| 436 | |
---|
| 437 | timestep = 33 |
---|
| 438 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 439 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 440 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 441 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 442 | |
---|
| 443 | #Reference interpolated values at midpoints on diagonal at |
---|
| 444 | #this timestep are |
---|
| 445 | r0 = (D[0] + D[1])/2 |
---|
| 446 | r1 = (D[1] + D[2])/2 |
---|
| 447 | r2 = (D[2] + D[3])/2 |
---|
| 448 | |
---|
| 449 | q = f(timestep/10., point_id=0); assert allclose(r0, q) |
---|
| 450 | q = f(timestep/10., point_id=1); assert allclose(r1, q) |
---|
| 451 | q = f(timestep/10., point_id=2); assert allclose(r2, q) |
---|
| 452 | |
---|
| 453 | |
---|
| 454 | ################## |
---|
| 455 | #Now check temporal interpolation |
---|
| 456 | #Halfway between timestep 15 and 16 |
---|
| 457 | |
---|
| 458 | timestep = 15 |
---|
| 459 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 460 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 461 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 462 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 463 | |
---|
| 464 | #Reference interpolated values at midpoints on diagonal at |
---|
| 465 | #this timestep are |
---|
| 466 | r0_0 = (D[0] + D[1])/2 |
---|
| 467 | r1_0 = (D[1] + D[2])/2 |
---|
| 468 | r2_0 = (D[2] + D[3])/2 |
---|
| 469 | |
---|
| 470 | # |
---|
| 471 | timestep = 16 |
---|
| 472 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 473 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 474 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 475 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 476 | |
---|
| 477 | #Reference interpolated values at midpoints on diagonal at |
---|
| 478 | #this timestep are |
---|
| 479 | r0_1 = (D[0] + D[1])/2 |
---|
| 480 | r1_1 = (D[1] + D[2])/2 |
---|
| 481 | r2_1 = (D[2] + D[3])/2 |
---|
| 482 | |
---|
| 483 | # The reference values are |
---|
| 484 | r0 = (r0_0 + r0_1)/2 |
---|
| 485 | r1 = (r1_0 + r1_1)/2 |
---|
| 486 | r2 = (r2_0 + r2_1)/2 |
---|
| 487 | |
---|
| 488 | q = f((timestep - 0.5)/10., point_id=0); assert allclose(r0, q) |
---|
| 489 | q = f((timestep - 0.5)/10., point_id=1); assert allclose(r1, q) |
---|
| 490 | q = f((timestep - 0.5)/10., point_id=2); assert allclose(r2, q) |
---|
| 491 | |
---|
| 492 | ################## |
---|
| 493 | #Finally check interpolation 2 thirds of the way |
---|
| 494 | #between timestep 15 and 16 |
---|
| 495 | |
---|
| 496 | # The reference values are |
---|
| 497 | r0 = (r0_0 + 2*r0_1)/3 |
---|
| 498 | r1 = (r1_0 + 2*r1_1)/3 |
---|
| 499 | r2 = (r2_0 + 2*r2_1)/3 |
---|
| 500 | |
---|
| 501 | #And the file function gives |
---|
| 502 | q = f((timestep - 1.0/3)/10., point_id=0); assert allclose(r0, q) |
---|
| 503 | q = f((timestep - 1.0/3)/10., point_id=1); assert allclose(r1, q) |
---|
| 504 | q = f((timestep - 1.0/3)/10., point_id=2); assert allclose(r2, q) |
---|
| 505 | |
---|
| 506 | fid.close() |
---|
| 507 | import os |
---|
| 508 | os.remove(filename) |
---|
| 509 | |
---|
| 510 | |
---|
| 511 | |
---|
| 512 | |
---|
[2679] | 513 | def qtest_spatio_temporal_file_function_time(self): |
---|
[1093] | 514 | """Test that File function interpolates correctly |
---|
| 515 | between given times. |
---|
| 516 | NetCDF version (x,y,t dependency) |
---|
| 517 | """ |
---|
| 518 | |
---|
| 519 | #Create NetCDF (sww) file to be read |
---|
| 520 | # x: 0, 5, 10, 15 |
---|
| 521 | # y: -20, -10, 0, 10 |
---|
| 522 | # t: 0, 60, 120, ...., 1200 |
---|
| 523 | # |
---|
| 524 | # test quantities (arbitrary but non-trivial expressions): |
---|
| 525 | # |
---|
| 526 | # stage = 3*x - y**2 + 2*t |
---|
| 527 | # xmomentum = exp( -((x-7)**2 + (y+5)**2)/20 ) * t**2 |
---|
| 528 | # ymomentum = x**2 + y**2 * sin(t*pi/600) |
---|
| 529 | |
---|
[1664] | 530 | #NOTE: Nice test that may render some of the others redundant. |
---|
[1093] | 531 | |
---|
| 532 | import os, time |
---|
| 533 | from config import time_format |
---|
| 534 | from Numeric import sin, pi, exp |
---|
| 535 | from mesh_factory import rectangular |
---|
| 536 | from shallow_water import Domain |
---|
| 537 | import data_manager |
---|
| 538 | |
---|
| 539 | finaltime = 1200 |
---|
| 540 | filename = 'test_file_function' |
---|
| 541 | |
---|
| 542 | #Create a domain to hold test grid |
---|
[1670] | 543 | #(0:15, -20:10) |
---|
[1093] | 544 | points, vertices, boundary =\ |
---|
| 545 | rectangular(4, 4, 15, 30, origin = (0, -20)) |
---|
[2679] | 546 | print "points", points |
---|
[1093] | 547 | |
---|
| 548 | #print 'Number of elements', len(vertices) |
---|
| 549 | domain = Domain(points, vertices, boundary) |
---|
| 550 | domain.smooth = False |
---|
| 551 | domain.default_order = 2 |
---|
| 552 | domain.set_datadir('.') |
---|
| 553 | domain.set_name(filename) |
---|
| 554 | domain.store = True |
---|
| 555 | domain.format = 'sww' #Native netcdf visualisation format |
---|
| 556 | |
---|
| 557 | #print points |
---|
| 558 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 559 | domain.starttime = start |
---|
| 560 | |
---|
| 561 | |
---|
| 562 | #Store structure |
---|
| 563 | domain.initialise_storage() |
---|
| 564 | |
---|
| 565 | #Compute artificial time steps and store |
---|
| 566 | dt = 60 #One minute intervals |
---|
| 567 | t = 0.0 |
---|
| 568 | while t <= finaltime: |
---|
| 569 | #Compute quantities |
---|
| 570 | f1 = lambda x,y: 3*x - y**2 + 2*t + 4 |
---|
| 571 | domain.set_quantity('stage', f1) |
---|
| 572 | |
---|
| 573 | f2 = lambda x,y: x+y+t**2 |
---|
| 574 | domain.set_quantity('xmomentum', f2) |
---|
| 575 | |
---|
| 576 | f3 = lambda x,y: x**2 + y**2 * sin(t*pi/600) |
---|
| 577 | domain.set_quantity('ymomentum', f3) |
---|
| 578 | |
---|
| 579 | #Store and advance time |
---|
| 580 | domain.time = t |
---|
| 581 | domain.store_timestep(domain.conserved_quantities) |
---|
| 582 | t += dt |
---|
| 583 | |
---|
| 584 | |
---|
| 585 | interpolation_points = [[0,-20], [1,0], [0,1], [1.1, 3.14], [10,-12.5]] |
---|
[2679] | 586 | |
---|
| 587 | #Deliberately set domain.starttime to too early |
---|
| 588 | domain.starttime = start - 1 |
---|
[1093] | 589 | |
---|
[2679] | 590 | #Create file function |
---|
| 591 | F = file_function(filename + '.sww', domain, |
---|
| 592 | quantities = domain.conserved_quantities, |
---|
| 593 | interpolation_points = interpolation_points) |
---|
[1093] | 594 | |
---|
[2679] | 595 | #Check that FF updates fixes domain starttime |
---|
| 596 | assert allclose(domain.starttime, start) |
---|
[1093] | 597 | |
---|
[2679] | 598 | #Check that domain.starttime isn't updated if later |
---|
| 599 | domain.starttime = start + 1 |
---|
| 600 | F = file_function(filename + '.sww', domain, |
---|
| 601 | quantities = domain.conserved_quantities, |
---|
| 602 | interpolation_points = interpolation_points) |
---|
| 603 | assert allclose(domain.starttime, start+1) |
---|
| 604 | domain.starttime = start |
---|
| 605 | |
---|
| 606 | |
---|
| 607 | #Check linear interpolation in time |
---|
| 608 | F = file_function(filename + '.sww', domain, |
---|
| 609 | quantities = domain.conserved_quantities, |
---|
| 610 | interpolation_points = interpolation_points) |
---|
| 611 | for id in range(len(interpolation_points)): |
---|
| 612 | x = interpolation_points[id][0] |
---|
| 613 | y = interpolation_points[id][1] |
---|
| 614 | |
---|
| 615 | for i in range(20): |
---|
| 616 | t = i*10 |
---|
| 617 | k = i%6 |
---|
| 618 | |
---|
| 619 | if k == 0: |
---|
| 620 | q0 = F(t, point_id=id) |
---|
| 621 | q1 = F(t+60, point_id=id) |
---|
| 622 | |
---|
| 623 | if q0 == INF: |
---|
| 624 | actual = q0 |
---|
| 625 | else: |
---|
| 626 | actual = (k*q1 + (6-k)*q0)/6 |
---|
| 627 | q = F(t, point_id=id) |
---|
| 628 | #print i, k, t, q |
---|
| 629 | #print ' ', q0 |
---|
| 630 | #print ' ', q1 |
---|
| 631 | print "q",q |
---|
| 632 | print "actual", actual |
---|
| 633 | #print |
---|
| 634 | if q0 == INF: |
---|
| 635 | self.failUnless( q == actual, 'Fail!') |
---|
| 636 | else: |
---|
| 637 | assert allclose(q, actual) |
---|
| 638 | |
---|
| 639 | |
---|
| 640 | #Another check of linear interpolation in time |
---|
| 641 | for id in range(len(interpolation_points)): |
---|
| 642 | q60 = F(60, point_id=id) |
---|
| 643 | q120 = F(120, point_id=id) |
---|
| 644 | |
---|
| 645 | t = 90 #Halfway between 60 and 120 |
---|
| 646 | q = F(t, point_id=id) |
---|
| 647 | assert allclose( (q120+q60)/2, q ) |
---|
| 648 | |
---|
| 649 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
| 650 | q = F(t, point_id=id) |
---|
| 651 | assert allclose(q60/3 + 2*q120/3, q) |
---|
| 652 | |
---|
| 653 | |
---|
| 654 | |
---|
| 655 | #Check that domain.starttime isn't updated if later than file starttime but earlier |
---|
| 656 | #than file end time |
---|
| 657 | delta = 23 |
---|
| 658 | domain.starttime = start + delta |
---|
| 659 | F = file_function(filename + '.sww', domain, |
---|
| 660 | quantities = domain.conserved_quantities, |
---|
| 661 | interpolation_points = interpolation_points) |
---|
| 662 | assert allclose(domain.starttime, start+delta) |
---|
| 663 | |
---|
| 664 | |
---|
| 665 | |
---|
| 666 | |
---|
| 667 | #Now try interpolation with delta offset |
---|
| 668 | for id in range(len(interpolation_points)): |
---|
| 669 | x = interpolation_points[id][0] |
---|
| 670 | y = interpolation_points[id][1] |
---|
| 671 | |
---|
| 672 | for i in range(20): |
---|
| 673 | t = i*10 |
---|
| 674 | k = i%6 |
---|
| 675 | |
---|
| 676 | if k == 0: |
---|
| 677 | q0 = F(t-delta, point_id=id) |
---|
| 678 | q1 = F(t+60-delta, point_id=id) |
---|
| 679 | |
---|
| 680 | q = F(t-delta, point_id=id) |
---|
| 681 | assert allclose(q, (k*q1 + (6-k)*q0)/6) |
---|
| 682 | |
---|
| 683 | |
---|
| 684 | os.remove(filename + '.sww') |
---|
| 685 | |
---|
| 686 | |
---|
| 687 | |
---|
| 688 | def xtest_spatio_temporal_file_function_time(self): |
---|
| 689 | # Test that File function interpolates correctly |
---|
| 690 | # When some points are outside the mesh |
---|
| 691 | |
---|
| 692 | import os, time |
---|
| 693 | from config import time_format |
---|
| 694 | from Numeric import sin, pi, exp |
---|
| 695 | from mesh_factory import rectangular |
---|
| 696 | from shallow_water import Domain |
---|
| 697 | import data_manager |
---|
| 698 | from pmesh.mesh_interface import create_mesh_from_regions |
---|
| 699 | finaltime = 1200 |
---|
| 700 | |
---|
| 701 | filename = tempfile.mktemp() |
---|
| 702 | #print "filename",filename |
---|
| 703 | filename = 'test_file_function' |
---|
| 704 | |
---|
| 705 | meshfilename = tempfile.mktemp(".tsh") |
---|
| 706 | |
---|
| 707 | boundary_tags = {'walls':[0,1],'bom':[2]} |
---|
| 708 | |
---|
| 709 | polygon_absolute = [[0,-20],[10,-20],[10,15],[-20,15]] |
---|
| 710 | |
---|
| 711 | create_mesh_from_regions(polygon_absolute, |
---|
| 712 | boundary_tags, |
---|
| 713 | 10000000, |
---|
| 714 | filename=meshfilename) |
---|
| 715 | domain = Domain(mesh_filename=meshfilename) |
---|
| 716 | domain.smooth = False |
---|
| 717 | domain.default_order = 2 |
---|
| 718 | domain.set_datadir('.') |
---|
| 719 | domain.set_name(filename) |
---|
| 720 | domain.store = True |
---|
| 721 | domain.format = 'sww' #Native netcdf visualisation format |
---|
| 722 | |
---|
| 723 | #print points |
---|
| 724 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 725 | domain.starttime = start |
---|
| 726 | |
---|
| 727 | |
---|
| 728 | #Store structure |
---|
| 729 | domain.initialise_storage() |
---|
| 730 | |
---|
| 731 | #Compute artificial time steps and store |
---|
| 732 | dt = 60 #One minute intervals |
---|
| 733 | t = 0.0 |
---|
| 734 | while t <= finaltime: |
---|
| 735 | #Compute quantities |
---|
| 736 | f1 = lambda x,y: 3*x - y**2 + 2*t + 4 |
---|
| 737 | domain.set_quantity('stage', f1) |
---|
| 738 | |
---|
| 739 | f2 = lambda x,y: x+y+t**2 |
---|
| 740 | domain.set_quantity('xmomentum', f2) |
---|
| 741 | |
---|
| 742 | f3 = lambda x,y: x**2 + y**2 * sin(t*pi/600) |
---|
| 743 | domain.set_quantity('ymomentum', f3) |
---|
| 744 | |
---|
| 745 | #Store and advance time |
---|
| 746 | domain.time = t |
---|
| 747 | domain.store_timestep(domain.conserved_quantities) |
---|
| 748 | t += dt |
---|
| 749 | |
---|
| 750 | interpolation_points = [[1,0]] |
---|
| 751 | interpolation_points = [[100,1000]] |
---|
| 752 | |
---|
| 753 | interpolation_points = [[0,-20], [1,0], [0,1], [1.1, 3.14], [10,-12.5], |
---|
| 754 | [78787,78787],[7878,3432]] |
---|
| 755 | |
---|
[1664] | 756 | #Deliberately set domain.starttime to too early |
---|
[1093] | 757 | domain.starttime = start - 1 |
---|
| 758 | |
---|
| 759 | #Create file function |
---|
| 760 | F = file_function(filename + '.sww', domain, |
---|
| 761 | quantities = domain.conserved_quantities, |
---|
| 762 | interpolation_points = interpolation_points) |
---|
| 763 | |
---|
| 764 | #Check that FF updates fixes domain starttime |
---|
| 765 | assert allclose(domain.starttime, start) |
---|
| 766 | |
---|
| 767 | #Check that domain.starttime isn't updated if later |
---|
| 768 | domain.starttime = start + 1 |
---|
| 769 | F = file_function(filename + '.sww', domain, |
---|
| 770 | quantities = domain.conserved_quantities, |
---|
| 771 | interpolation_points = interpolation_points) |
---|
| 772 | assert allclose(domain.starttime, start+1) |
---|
| 773 | domain.starttime = start |
---|
| 774 | |
---|
| 775 | |
---|
| 776 | #Check linear interpolation in time |
---|
[2679] | 777 | # checking points inside and outside the mesh |
---|
[1668] | 778 | F = file_function(filename + '.sww', domain, |
---|
| 779 | quantities = domain.conserved_quantities, |
---|
[2679] | 780 | interpolation_points = interpolation_points) |
---|
| 781 | |
---|
[1670] | 782 | for id in range(len(interpolation_points)): |
---|
[1093] | 783 | x = interpolation_points[id][0] |
---|
| 784 | y = interpolation_points[id][1] |
---|
| 785 | |
---|
| 786 | for i in range(20): |
---|
| 787 | t = i*10 |
---|
| 788 | k = i%6 |
---|
| 789 | |
---|
| 790 | if k == 0: |
---|
| 791 | q0 = F(t, point_id=id) |
---|
| 792 | q1 = F(t+60, point_id=id) |
---|
| 793 | |
---|
[2679] | 794 | if q0 == INF: |
---|
| 795 | actual = q0 |
---|
| 796 | else: |
---|
| 797 | actual = (k*q1 + (6-k)*q0)/6 |
---|
[1093] | 798 | q = F(t, point_id=id) |
---|
[1668] | 799 | #print i, k, t, q |
---|
| 800 | #print ' ', q0 |
---|
| 801 | #print ' ', q1 |
---|
[2679] | 802 | #print "q",q |
---|
| 803 | #print "actual", actual |
---|
[1668] | 804 | #print |
---|
[2679] | 805 | if q0 == INF: |
---|
| 806 | self.failUnless( q == actual, 'Fail!') |
---|
| 807 | else: |
---|
| 808 | assert allclose(q, actual) |
---|
[1093] | 809 | |
---|
[2679] | 810 | # now lets check points inside the mesh |
---|
| 811 | interpolation_points = [[0,-20], [1,0], [0,1], [1.1, 3.14]] #, [10,-12.5]] - this point doesn't work WHY? |
---|
| 812 | interpolation_points = [[10,-12.5]] |
---|
| 813 | |
---|
| 814 | print "len(interpolation_points)",len(interpolation_points) |
---|
| 815 | F = file_function(filename + '.sww', domain, |
---|
| 816 | quantities = domain.conserved_quantities, |
---|
| 817 | interpolation_points = interpolation_points) |
---|
[1093] | 818 | |
---|
[2679] | 819 | domain.starttime = start |
---|
| 820 | |
---|
| 821 | |
---|
| 822 | #Check linear interpolation in time |
---|
| 823 | F = file_function(filename + '.sww', domain, |
---|
| 824 | quantities = domain.conserved_quantities, |
---|
| 825 | interpolation_points = interpolation_points) |
---|
| 826 | for id in range(len(interpolation_points)): |
---|
| 827 | x = interpolation_points[id][0] |
---|
| 828 | y = interpolation_points[id][1] |
---|
| 829 | |
---|
| 830 | for i in range(20): |
---|
| 831 | t = i*10 |
---|
| 832 | k = i%6 |
---|
| 833 | |
---|
| 834 | if k == 0: |
---|
| 835 | q0 = F(t, point_id=id) |
---|
| 836 | q1 = F(t+60, point_id=id) |
---|
| 837 | |
---|
| 838 | if q0 == INF: |
---|
| 839 | actual = q0 |
---|
| 840 | else: |
---|
| 841 | actual = (k*q1 + (6-k)*q0)/6 |
---|
| 842 | q = F(t, point_id=id) |
---|
| 843 | print "############" |
---|
| 844 | print "id, x, y ", id, x, y #k, t, q |
---|
| 845 | print "t", t |
---|
| 846 | #print ' ', q0 |
---|
| 847 | #print ' ', q1 |
---|
| 848 | print "q",q |
---|
| 849 | print "actual", actual |
---|
| 850 | #print |
---|
| 851 | if q0 == INF: |
---|
| 852 | self.failUnless( q == actual, 'Fail!') |
---|
| 853 | else: |
---|
| 854 | assert allclose(q, actual) |
---|
| 855 | |
---|
| 856 | |
---|
[1093] | 857 | #Another check of linear interpolation in time |
---|
| 858 | for id in range(len(interpolation_points)): |
---|
| 859 | q60 = F(60, point_id=id) |
---|
| 860 | q120 = F(120, point_id=id) |
---|
| 861 | |
---|
| 862 | t = 90 #Halfway between 60 and 120 |
---|
[1668] | 863 | q = F(t, point_id=id) |
---|
[1093] | 864 | assert allclose( (q120+q60)/2, q ) |
---|
| 865 | |
---|
| 866 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
| 867 | q = F(t, point_id=id) |
---|
| 868 | assert allclose(q60/3 + 2*q120/3, q) |
---|
| 869 | |
---|
| 870 | |
---|
| 871 | |
---|
| 872 | #Check that domain.starttime isn't updated if later than file starttime but earlier |
---|
| 873 | #than file end time |
---|
| 874 | delta = 23 |
---|
| 875 | domain.starttime = start + delta |
---|
| 876 | F = file_function(filename + '.sww', domain, |
---|
| 877 | quantities = domain.conserved_quantities, |
---|
| 878 | interpolation_points = interpolation_points) |
---|
| 879 | assert allclose(domain.starttime, start+delta) |
---|
| 880 | |
---|
| 881 | |
---|
| 882 | |
---|
| 883 | |
---|
| 884 | #Now try interpolation with delta offset |
---|
[1670] | 885 | for id in range(len(interpolation_points)): |
---|
[1093] | 886 | x = interpolation_points[id][0] |
---|
| 887 | y = interpolation_points[id][1] |
---|
| 888 | |
---|
| 889 | for i in range(20): |
---|
| 890 | t = i*10 |
---|
| 891 | k = i%6 |
---|
| 892 | |
---|
| 893 | if k == 0: |
---|
| 894 | q0 = F(t-delta, point_id=id) |
---|
| 895 | q1 = F(t+60-delta, point_id=id) |
---|
| 896 | |
---|
| 897 | q = F(t-delta, point_id=id) |
---|
| 898 | assert allclose(q, (k*q1 + (6-k)*q0)/6) |
---|
| 899 | |
---|
| 900 | |
---|
| 901 | os.remove(filename + '.sww') |
---|
| 902 | |
---|
| 903 | def test_file_function_time_with_domain(self): |
---|
| 904 | """Test that File function interpolates correctly |
---|
| 905 | between given times. No x,y dependency here. |
---|
| 906 | Use domain with starttime |
---|
| 907 | """ |
---|
| 908 | |
---|
| 909 | #Write file |
---|
| 910 | import os, time, calendar |
---|
| 911 | from config import time_format |
---|
| 912 | from math import sin, pi |
---|
| 913 | from domain import Domain |
---|
| 914 | |
---|
| 915 | finaltime = 1200 |
---|
[1671] | 916 | filename = 'test_file_function' |
---|
| 917 | fid = open(filename + '.txt', 'w') |
---|
[1093] | 918 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 919 | dt = 60 #One minute intervals |
---|
| 920 | t = 0.0 |
---|
| 921 | while t <= finaltime: |
---|
| 922 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
| 923 | fid.write('%s, %f %f %f\n' %(t_string, 2*t, t**2, sin(t*pi/600))) |
---|
| 924 | t += dt |
---|
| 925 | |
---|
| 926 | fid.close() |
---|
| 927 | |
---|
[1671] | 928 | |
---|
| 929 | #Convert ASCII file to NetCDF (Which is what we really like!) |
---|
[1835] | 930 | timefile2netcdf(filename) |
---|
[1671] | 931 | |
---|
| 932 | |
---|
| 933 | |
---|
[1093] | 934 | a = [0.0, 0.0] |
---|
| 935 | b = [4.0, 0.0] |
---|
| 936 | c = [0.0, 3.0] |
---|
| 937 | |
---|
| 938 | points = [a, b, c] |
---|
| 939 | vertices = [[0,1,2]] |
---|
| 940 | domain = Domain(points, vertices) |
---|
| 941 | |
---|
| 942 | #Check that domain.starttime is updated if non-existing |
---|
[1835] | 943 | F = file_function(filename + '.tms', domain) |
---|
[1671] | 944 | |
---|
[1093] | 945 | assert allclose(domain.starttime, start) |
---|
| 946 | |
---|
| 947 | #Check that domain.starttime is updated if too early |
---|
| 948 | domain.starttime = start - 1 |
---|
[1835] | 949 | F = file_function(filename + '.tms', domain) |
---|
[1093] | 950 | assert allclose(domain.starttime, start) |
---|
| 951 | |
---|
| 952 | #Check that domain.starttime isn't updated if later |
---|
| 953 | domain.starttime = start + 1 |
---|
[1835] | 954 | F = file_function(filename + '.tms', domain) |
---|
[1093] | 955 | assert allclose(domain.starttime, start+1) |
---|
| 956 | |
---|
| 957 | domain.starttime = start |
---|
[1835] | 958 | F = file_function(filename + '.tms', domain, |
---|
[1671] | 959 | quantities = ['Attribute0', 'Attribute1', 'Attribute2']) |
---|
| 960 | |
---|
[1093] | 961 | |
---|
[1671] | 962 | #print F.T |
---|
| 963 | #print F.precomputed_values |
---|
| 964 | #print 'F(60)', F(60) |
---|
| 965 | |
---|
[1093] | 966 | #Now try interpolation |
---|
| 967 | for i in range(20): |
---|
| 968 | t = i*10 |
---|
| 969 | q = F(t) |
---|
| 970 | |
---|
| 971 | #Exact linear intpolation |
---|
| 972 | assert allclose(q[0], 2*t) |
---|
| 973 | if i%6 == 0: |
---|
| 974 | assert allclose(q[1], t**2) |
---|
| 975 | assert allclose(q[2], sin(t*pi/600)) |
---|
| 976 | |
---|
| 977 | #Check non-exact |
---|
| 978 | |
---|
| 979 | t = 90 #Halfway between 60 and 120 |
---|
| 980 | q = F(t) |
---|
| 981 | assert allclose( (120**2 + 60**2)/2, q[1] ) |
---|
| 982 | assert allclose( (sin(120*pi/600) + sin(60*pi/600))/2, q[2] ) |
---|
| 983 | |
---|
| 984 | |
---|
| 985 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
| 986 | q = F(t) |
---|
| 987 | assert allclose( 2*120**2/3 + 60**2/3, q[1] ) |
---|
| 988 | assert allclose( 2*sin(120*pi/600)/3 + sin(60*pi/600)/3, q[2] ) |
---|
| 989 | |
---|
[1835] | 990 | os.remove(filename + '.tms') |
---|
[1671] | 991 | os.remove(filename + '.txt') |
---|
[1093] | 992 | |
---|
| 993 | def test_file_function_time_with_domain_different_start(self): |
---|
| 994 | """Test that File function interpolates correctly |
---|
| 995 | between given times. No x,y dependency here. |
---|
| 996 | Use domain with a starttime later than that of file |
---|
| 997 | |
---|
| 998 | ASCII version |
---|
| 999 | """ |
---|
| 1000 | |
---|
| 1001 | #Write file |
---|
| 1002 | import os, time, calendar |
---|
| 1003 | from config import time_format |
---|
| 1004 | from math import sin, pi |
---|
| 1005 | from domain import Domain |
---|
| 1006 | |
---|
| 1007 | finaltime = 1200 |
---|
[1671] | 1008 | filename = 'test_file_function' |
---|
| 1009 | fid = open(filename + '.txt', 'w') |
---|
[1093] | 1010 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 1011 | dt = 60 #One minute intervals |
---|
| 1012 | t = 0.0 |
---|
| 1013 | while t <= finaltime: |
---|
| 1014 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
| 1015 | fid.write('%s, %f %f %f\n' %(t_string, 2*t, t**2, sin(t*pi/600))) |
---|
| 1016 | t += dt |
---|
| 1017 | |
---|
| 1018 | fid.close() |
---|
| 1019 | |
---|
[1671] | 1020 | #Convert ASCII file to NetCDF (Which is what we really like!) |
---|
[1835] | 1021 | timefile2netcdf(filename) |
---|
[1671] | 1022 | |
---|
[1093] | 1023 | a = [0.0, 0.0] |
---|
| 1024 | b = [4.0, 0.0] |
---|
| 1025 | c = [0.0, 3.0] |
---|
| 1026 | |
---|
| 1027 | points = [a, b, c] |
---|
| 1028 | vertices = [[0,1,2]] |
---|
| 1029 | domain = Domain(points, vertices) |
---|
| 1030 | |
---|
| 1031 | #Check that domain.starttime isn't updated if later than file starttime but earlier |
---|
| 1032 | #than file end time |
---|
| 1033 | delta = 23 |
---|
| 1034 | domain.starttime = start + delta |
---|
[1835] | 1035 | F = file_function(filename + '.tms', domain, |
---|
[1671] | 1036 | quantities = ['Attribute0', 'Attribute1', 'Attribute2']) |
---|
[1093] | 1037 | assert allclose(domain.starttime, start+delta) |
---|
| 1038 | |
---|
| 1039 | |
---|
| 1040 | |
---|
| 1041 | |
---|
| 1042 | #Now try interpolation with delta offset |
---|
| 1043 | for i in range(20): |
---|
| 1044 | t = i*10 |
---|
| 1045 | q = F(t-delta) |
---|
| 1046 | |
---|
| 1047 | #Exact linear intpolation |
---|
| 1048 | assert allclose(q[0], 2*t) |
---|
| 1049 | if i%6 == 0: |
---|
| 1050 | assert allclose(q[1], t**2) |
---|
| 1051 | assert allclose(q[2], sin(t*pi/600)) |
---|
| 1052 | |
---|
| 1053 | #Check non-exact |
---|
| 1054 | |
---|
| 1055 | t = 90 #Halfway between 60 and 120 |
---|
| 1056 | q = F(t-delta) |
---|
| 1057 | assert allclose( (120**2 + 60**2)/2, q[1] ) |
---|
| 1058 | assert allclose( (sin(120*pi/600) + sin(60*pi/600))/2, q[2] ) |
---|
| 1059 | |
---|
| 1060 | |
---|
| 1061 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
| 1062 | q = F(t-delta) |
---|
| 1063 | assert allclose( 2*120**2/3 + 60**2/3, q[1] ) |
---|
| 1064 | assert allclose( 2*sin(120*pi/600)/3 + sin(60*pi/600)/3, q[2] ) |
---|
| 1065 | |
---|
| 1066 | |
---|
[1835] | 1067 | os.remove(filename + '.tms') |
---|
[1671] | 1068 | os.remove(filename + '.txt') |
---|
[1093] | 1069 | |
---|
| 1070 | |
---|
[1671] | 1071 | |
---|
[1919] | 1072 | def test_apply_expression_to_dictionary(self): |
---|
[1093] | 1073 | |
---|
[2314] | 1074 | #FIXME: Division is not expected to work for integers. |
---|
| 1075 | #This must be caught. |
---|
[1919] | 1076 | foo = array([[1,2,3], |
---|
[2314] | 1077 | [4,5,6]], Float) |
---|
[1093] | 1078 | |
---|
[1919] | 1079 | bar = array([[-1,0,5], |
---|
[2314] | 1080 | [6,1,1]], Float) |
---|
[1093] | 1081 | |
---|
[1919] | 1082 | D = {'X': foo, 'Y': bar} |
---|
[1093] | 1083 | |
---|
[1919] | 1084 | Z = apply_expression_to_dictionary('X+Y', D) |
---|
| 1085 | assert allclose(Z, foo+bar) |
---|
| 1086 | |
---|
| 1087 | Z = apply_expression_to_dictionary('X*Y', D) |
---|
| 1088 | assert allclose(Z, foo*bar) |
---|
| 1089 | |
---|
| 1090 | Z = apply_expression_to_dictionary('4*X+Y', D) |
---|
| 1091 | assert allclose(Z, 4*foo+bar) |
---|
| 1092 | |
---|
[2314] | 1093 | # test zero division is OK |
---|
| 1094 | Z = apply_expression_to_dictionary('X/Y', D) |
---|
| 1095 | assert allclose(1/Z, 1/(foo/bar)) # can't compare inf to inf |
---|
| 1096 | |
---|
| 1097 | # make an error for zero on zero |
---|
| 1098 | # this is really an error in Numeric, SciPy core can handle it |
---|
| 1099 | # Z = apply_expression_to_dictionary('0/Y', D) |
---|
| 1100 | |
---|
[1919] | 1101 | #Check exceptions |
---|
| 1102 | try: |
---|
| 1103 | #Wrong name |
---|
| 1104 | Z = apply_expression_to_dictionary('4*X+A', D) |
---|
| 1105 | except NameError: |
---|
| 1106 | pass |
---|
| 1107 | else: |
---|
| 1108 | msg = 'Should have raised a NameError Exception' |
---|
| 1109 | raise msg |
---|
| 1110 | |
---|
| 1111 | |
---|
| 1112 | try: |
---|
| 1113 | #Wrong order |
---|
| 1114 | Z = apply_expression_to_dictionary(D, '4*X+A') |
---|
| 1115 | except AssertionError: |
---|
| 1116 | pass |
---|
| 1117 | else: |
---|
| 1118 | msg = 'Should have raised a AssertionError Exception' |
---|
| 1119 | raise msg |
---|
| 1120 | |
---|
| 1121 | |
---|
[1927] | 1122 | def test_multiple_replace(self): |
---|
| 1123 | """Hard test that checks a true word-by-word simultaneous replace |
---|
| 1124 | """ |
---|
| 1125 | |
---|
| 1126 | D = {'x': 'xi', 'y': 'eta', 'xi':'lam'} |
---|
| 1127 | exp = '3*x+y + xi' |
---|
| 1128 | |
---|
| 1129 | new = multiple_replace(exp, D) |
---|
| 1130 | |
---|
| 1131 | assert new == '3*xi+eta + lam' |
---|
| 1132 | |
---|
[1919] | 1133 | |
---|
| 1134 | |
---|
[1932] | 1135 | def test_point_on_line_obsolete(self): |
---|
| 1136 | """Test that obsolete call issues appropriate warning""" |
---|
| 1137 | |
---|
| 1138 | #Turn warning into an exception |
---|
| 1139 | import warnings |
---|
| 1140 | warnings.filterwarnings('error') |
---|
| 1141 | |
---|
| 1142 | try: |
---|
| 1143 | assert point_on_line( 0, 0.5, 0,1, 0,0 ) |
---|
| 1144 | except DeprecationWarning: |
---|
| 1145 | pass |
---|
| 1146 | else: |
---|
| 1147 | msg = 'point_on_line should have issued a DeprecationWarning' |
---|
| 1148 | raise Exception(msg) |
---|
| 1149 | |
---|
[2929] | 1150 | warnings.resetwarnings() |
---|
| 1151 | |
---|
| 1152 | def test_get_version_info(self): |
---|
[2934] | 1153 | info = get_version_info() |
---|
| 1154 | assert info.startswith('Revision') |
---|
[2929] | 1155 | |
---|
[1932] | 1156 | |
---|
| 1157 | |
---|
[1093] | 1158 | #------------------------------------------------------------- |
---|
| 1159 | if __name__ == "__main__": |
---|
| 1160 | suite = unittest.makeSuite(Test_Util,'test') |
---|
[2314] | 1161 | #suite = unittest.makeSuite(Test_Util,'test_apply') |
---|
[1093] | 1162 | runner = unittest.TextTestRunner() |
---|
| 1163 | runner.run(suite) |
---|
| 1164 | |
---|
| 1165 | |
---|
| 1166 | |
---|
| 1167 | |
---|