1 | // Python - C extension for finite_volumes util module. |
---|
2 | // |
---|
3 | // To compile (Python2.3): |
---|
4 | // gcc -c util_ext.c -I/usr/include/python2.3 -o util_ext.o -Wall -O |
---|
5 | // gcc -shared util_ext.o -o util_ext.so |
---|
6 | // |
---|
7 | // See the module util.py |
---|
8 | // |
---|
9 | // |
---|
10 | // Ole Nielsen, GA 2004 |
---|
11 | // |
---|
12 | //NOTE: On 64 bit systems use long* instead of int* for Numeric arrays |
---|
13 | //this will also work on 32 bit systems |
---|
14 | |
---|
15 | |
---|
16 | #include "Python.h" |
---|
17 | #include "Numeric/arrayobject.h" |
---|
18 | #include "math.h" |
---|
19 | |
---|
20 | //Shared snippets |
---|
21 | #include "util_ext.h" |
---|
22 | |
---|
23 | |
---|
24 | |
---|
25 | int _point_on_line(double x, double y, |
---|
26 | double x0, double y0, |
---|
27 | double x1, double y1) { |
---|
28 | /*Determine whether a point is on a line segment |
---|
29 | |
---|
30 | Input: x, y, x0, x0, x1, y1: where |
---|
31 | point is given by x, y |
---|
32 | line is given by (x0, y0) and (x1, y1) |
---|
33 | |
---|
34 | */ |
---|
35 | |
---|
36 | double a0, a1, a_normal0, a_normal1, b0, b1, len_a, len_b; |
---|
37 | |
---|
38 | a0 = x - x0; |
---|
39 | a1 = y - y0; |
---|
40 | |
---|
41 | a_normal0 = a1; |
---|
42 | a_normal1 = -a0; |
---|
43 | |
---|
44 | b0 = x1 - x0; |
---|
45 | b1 = y1 - y0; |
---|
46 | |
---|
47 | if ( a_normal0*b0 + a_normal1*b1 == 0 ) { |
---|
48 | //Point is somewhere on the infinite extension of the line |
---|
49 | |
---|
50 | len_a = sqrt(a0*a0 + a1*a1); |
---|
51 | len_b = sqrt(b0*b0 + b1*b1); |
---|
52 | |
---|
53 | if (a0*b0 + a1*b1 >= 0 && len_a <= len_b) { |
---|
54 | return 1; |
---|
55 | } else { |
---|
56 | return 0; |
---|
57 | } |
---|
58 | } else { |
---|
59 | return 0; |
---|
60 | } |
---|
61 | } |
---|
62 | |
---|
63 | |
---|
64 | |
---|
65 | int _separate_points_by_polygon(int M, // Number of points |
---|
66 | int N, // Number of polygon vertices |
---|
67 | double* points, |
---|
68 | double* polygon, |
---|
69 | long* indices, // M-Array for storage indices |
---|
70 | int closed, |
---|
71 | int verbose) { |
---|
72 | |
---|
73 | double minpx, maxpx, minpy, maxpy, x, y, px_i, py_i, px_j, py_j; |
---|
74 | int i, j, k, outside_index, inside_index, inside; |
---|
75 | |
---|
76 | //Find min and max of poly used for optimisation when points |
---|
77 | //are far away from polygon |
---|
78 | |
---|
79 | minpx = polygon[0]; maxpx = minpx; |
---|
80 | minpy = polygon[1]; maxpy = minpy; |
---|
81 | |
---|
82 | for (i=0; i<N; i++) { |
---|
83 | px_i = polygon[2*i]; |
---|
84 | py_i = polygon[2*i + 1]; |
---|
85 | |
---|
86 | if (px_i < minpx) minpx = px_i; |
---|
87 | if (px_i > maxpx) maxpx = px_i; |
---|
88 | if (py_i < minpy) minpy = py_i; |
---|
89 | if (py_i > maxpy) maxpy = py_i; |
---|
90 | } |
---|
91 | |
---|
92 | //Begin main loop (for each point) |
---|
93 | inside_index = 0; //Keep track of points inside |
---|
94 | outside_index = M-1; //Keep track of points outside (starting from end) |
---|
95 | for (k=0; k<M; k++) { |
---|
96 | if (verbose){ |
---|
97 | if (k %((M+10)/10)==0) printf("Doing %d of %d\n", k, M); |
---|
98 | } |
---|
99 | |
---|
100 | x = points[2*k]; |
---|
101 | y = points[2*k + 1]; |
---|
102 | |
---|
103 | inside = 0; |
---|
104 | |
---|
105 | //Optimisation |
---|
106 | if ((x > maxpx) || (x < minpx) || (y > maxpy) || (y < minpy)) { |
---|
107 | //Nothing |
---|
108 | } else { |
---|
109 | //Check polygon |
---|
110 | for (i=0; i<N; i++) { |
---|
111 | //printf("k,i=%d,%d\n", k, i); |
---|
112 | j = (i+1)%N; |
---|
113 | |
---|
114 | px_i = polygon[2*i]; |
---|
115 | py_i = polygon[2*i+1]; |
---|
116 | px_j = polygon[2*j]; |
---|
117 | py_j = polygon[2*j+1]; |
---|
118 | |
---|
119 | //Check for case where point is contained in line segment |
---|
120 | if (_point_on_line(x, y, px_i, py_i, px_j, py_j)) { |
---|
121 | if (closed == 1) { |
---|
122 | inside = 1; |
---|
123 | } else { |
---|
124 | inside = 0; |
---|
125 | } |
---|
126 | break; |
---|
127 | } else { |
---|
128 | //Check if truly inside polygon |
---|
129 | if ( ((py_i < y) && (py_j >= y)) || |
---|
130 | ((py_j < y) && (py_i >= y)) ) { |
---|
131 | if (px_i + (y-py_i)/(py_j-py_i)*(px_j-px_i) < x) |
---|
132 | inside = 1-inside; |
---|
133 | } |
---|
134 | } |
---|
135 | } |
---|
136 | } |
---|
137 | if (inside == 1) { |
---|
138 | indices[inside_index] = k; |
---|
139 | inside_index += 1; |
---|
140 | } else { |
---|
141 | indices[outside_index] = k; |
---|
142 | outside_index -= 1; |
---|
143 | } |
---|
144 | } // End k |
---|
145 | |
---|
146 | return inside_index; |
---|
147 | } |
---|
148 | |
---|
149 | |
---|
150 | |
---|
151 | // Gateways to Python |
---|
152 | PyObject *point_on_line(PyObject *self, PyObject *args) { |
---|
153 | // |
---|
154 | // point_on_line(x, y, x0, y0, x1, y1) |
---|
155 | // |
---|
156 | |
---|
157 | double x, y, x0, y0, x1, y1; |
---|
158 | int res; |
---|
159 | PyObject *result; |
---|
160 | |
---|
161 | // Convert Python arguments to C |
---|
162 | if (!PyArg_ParseTuple(args, "dddddd", &x, &y, &x0, &y0, &x1, &y1)) |
---|
163 | return NULL; |
---|
164 | |
---|
165 | |
---|
166 | // Call underlying routine |
---|
167 | res = _point_on_line(x, y, x0, y0, x1, y1); |
---|
168 | |
---|
169 | // Return values a and b |
---|
170 | result = Py_BuildValue("i", res); |
---|
171 | return result; |
---|
172 | } |
---|
173 | |
---|
174 | |
---|
175 | |
---|
176 | PyObject *separate_points_by_polygon(PyObject *self, PyObject *args) { |
---|
177 | //def separate_points_by_polygon(points, polygon, closed, verbose, one_point): |
---|
178 | // """Determine whether points are inside or outside a polygon |
---|
179 | // |
---|
180 | // Input: |
---|
181 | // point - Tuple of (x, y) coordinates, or list of tuples |
---|
182 | // polygon - list of vertices of polygon |
---|
183 | // closed - (optional) determine whether points on boundary should be |
---|
184 | // regarded as belonging to the polygon (closed = True) |
---|
185 | // or not (closed = False) |
---|
186 | |
---|
187 | // |
---|
188 | // Output: |
---|
189 | // indices: array of same length as points with indices of points falling |
---|
190 | // inside the polygon listed from the beginning and indices of points |
---|
191 | // falling outside listed from the end. |
---|
192 | // |
---|
193 | // count: count of points falling inside the polygon |
---|
194 | // |
---|
195 | // The indices of points inside are obtained as indices[:count] |
---|
196 | // The indices of points outside are obtained as indices[count:] |
---|
197 | // |
---|
198 | // Examples: |
---|
199 | // separate_polygon( [[0.5, 0.5], [1, -0.5], [0.3, 0.2]] ) |
---|
200 | // will return the indices [0, 2, 1] as only the first and the last point |
---|
201 | // is inside the unit square |
---|
202 | // |
---|
203 | // Remarks: |
---|
204 | // The vertices may be listed clockwise or counterclockwise and |
---|
205 | // the first point may optionally be repeated. |
---|
206 | // Polygons do not need to be convex. |
---|
207 | // Polygons can have holes in them and points inside a hole is |
---|
208 | // regarded as being outside the polygon. |
---|
209 | // |
---|
210 | // |
---|
211 | // Algorithm is based on work by Darel Finley, |
---|
212 | // http://www.alienryderflex.com/polygon/ |
---|
213 | // |
---|
214 | // |
---|
215 | |
---|
216 | PyArrayObject |
---|
217 | *points, |
---|
218 | *polygon, |
---|
219 | *indices; |
---|
220 | |
---|
221 | int closed, verbose; //Flags |
---|
222 | int count, M, N; |
---|
223 | |
---|
224 | // Convert Python arguments to C |
---|
225 | if (!PyArg_ParseTuple(args, "OOOii", |
---|
226 | &points, |
---|
227 | &polygon, |
---|
228 | &indices, |
---|
229 | &closed, |
---|
230 | &verbose)) |
---|
231 | return NULL; |
---|
232 | |
---|
233 | M = points -> dimensions[0]; //Number of points |
---|
234 | N = polygon -> dimensions[0]; //Number of vertices in polygon |
---|
235 | |
---|
236 | if (verbose) printf("Got %d points and %d polygon vertices\n", M, N); |
---|
237 | |
---|
238 | //Call underlying routine |
---|
239 | count = _separate_points_by_polygon(M, N, |
---|
240 | (double*) points -> data, |
---|
241 | (double*) polygon -> data, |
---|
242 | (long*) indices -> data, |
---|
243 | closed, verbose); |
---|
244 | |
---|
245 | //NOTE: return number of points inside.. |
---|
246 | return Py_BuildValue("i", count); |
---|
247 | } |
---|
248 | |
---|
249 | |
---|
250 | |
---|
251 | PyObject *gradient(PyObject *self, PyObject *args) { |
---|
252 | // |
---|
253 | // a,b = gradient(x0, y0, x1, y1, x2, y2, q0, q1, q2) |
---|
254 | // |
---|
255 | |
---|
256 | double x0, y0, x1, y1, x2, y2, q0, q1, q2, a, b; |
---|
257 | PyObject *result; |
---|
258 | |
---|
259 | // Convert Python arguments to C |
---|
260 | if (!PyArg_ParseTuple(args, "ddddddddd", &x0, &y0, &x1, &y1, &x2, &y2, |
---|
261 | &q0, &q1, &q2)) |
---|
262 | return NULL; |
---|
263 | |
---|
264 | |
---|
265 | // Call underlying routine |
---|
266 | _gradient(x0, y0, x1, y1, x2, y2, |
---|
267 | q0, q1, q2, &a, &b); |
---|
268 | |
---|
269 | // Return values a and b |
---|
270 | result = Py_BuildValue("dd", a, b); |
---|
271 | return result; |
---|
272 | } |
---|
273 | |
---|
274 | PyObject *gradient2(PyObject *self, PyObject *args) { |
---|
275 | // |
---|
276 | // a,b = gradient2(x0, y0, x1, y1, q0, q1) |
---|
277 | // |
---|
278 | |
---|
279 | double x0, y0, x1, y1, q0, q1, a, b; |
---|
280 | PyObject *result; |
---|
281 | |
---|
282 | // Convert Python arguments to C |
---|
283 | if (!PyArg_ParseTuple(args, "dddddd", &x0, &y0, &x1, &y1, &q0, &q1)) |
---|
284 | return NULL; |
---|
285 | |
---|
286 | |
---|
287 | // Call underlying routine |
---|
288 | _gradient2(x0, y0, x1, y1, q0, q1, &a, &b); |
---|
289 | |
---|
290 | // Return values a and b |
---|
291 | result = Py_BuildValue("dd", a, b); |
---|
292 | return result; |
---|
293 | } |
---|
294 | |
---|
295 | // Method table for python module |
---|
296 | static struct PyMethodDef MethodTable[] = { |
---|
297 | /* The cast of the function is necessary since PyCFunction values |
---|
298 | * only take two PyObject* parameters, and rotate() takes |
---|
299 | * three. |
---|
300 | */ |
---|
301 | |
---|
302 | //{"rotate", (PyCFunction)rotate, METH_VARARGS | METH_KEYWORDS, "Print out"}, |
---|
303 | {"gradient", gradient, METH_VARARGS, "Print out"}, |
---|
304 | {"gradient2", gradient2, METH_VARARGS, "Print out"}, |
---|
305 | {"point_on_line", point_on_line, METH_VARARGS, "Print out"}, |
---|
306 | //{"inside_polygon", inside_polygon, METH_VARARGS, "Print out"}, |
---|
307 | {"separate_points_by_polygon", separate_points_by_polygon, |
---|
308 | METH_VARARGS, "Print out"}, |
---|
309 | {NULL, NULL, 0, NULL} /* sentinel */ |
---|
310 | }; |
---|
311 | |
---|
312 | |
---|
313 | |
---|
314 | // Module initialisation |
---|
315 | void initutil_ext(void){ |
---|
316 | Py_InitModule("util_ext", MethodTable); |
---|
317 | |
---|
318 | import_array(); //Necessary for handling of NumPY structures |
---|
319 | } |
---|
320 | |
---|
321 | |
---|
322 | |
---|
323 | |
---|
324 | //OBSOLETE |
---|
325 | |
---|
326 | int _inside_polygon(int M, // Number of points |
---|
327 | int N, // Number of polygon vertices |
---|
328 | double* points, |
---|
329 | double* polygon, |
---|
330 | long* indices, // M-Array for storage indices |
---|
331 | int closed, |
---|
332 | int verbose) { |
---|
333 | |
---|
334 | double minpx, maxpx, minpy, maxpy, x, y, px_i, py_i, px_j, py_j; |
---|
335 | int i, j, k, count, inside; |
---|
336 | |
---|
337 | //Find min and max of poly used for optimisation when points |
---|
338 | //are far away from polygon |
---|
339 | |
---|
340 | minpx = polygon[0]; maxpx = minpx; |
---|
341 | minpy = polygon[1]; maxpy = minpy; |
---|
342 | |
---|
343 | for (i=0; i<N; i++) { |
---|
344 | px_i = polygon[2*i]; |
---|
345 | py_i = polygon[2*i + 1]; |
---|
346 | |
---|
347 | if (px_i < minpx) minpx = px_i; |
---|
348 | if (px_i > maxpx) maxpx = px_i; |
---|
349 | if (py_i < minpy) minpy = py_i; |
---|
350 | if (py_i > maxpy) maxpy = py_i; |
---|
351 | } |
---|
352 | |
---|
353 | //Begin main loop (for each point) |
---|
354 | count = 0; |
---|
355 | for (k=0; k<M; k++) { |
---|
356 | if (verbose){ |
---|
357 | if (k %((M+10)/10)==0) printf("Doing %d of %d\n", k, M); |
---|
358 | } |
---|
359 | |
---|
360 | x = points[2*k]; |
---|
361 | y = points[2*k + 1]; |
---|
362 | |
---|
363 | inside = 0; |
---|
364 | |
---|
365 | //Optimisation |
---|
366 | if ((x > maxpx) || (x < minpx)) continue; |
---|
367 | if ((y > maxpy) || (y < minpy)) continue; |
---|
368 | |
---|
369 | //Check polygon |
---|
370 | for (i=0; i<N; i++) { |
---|
371 | //printf("k,i=%d,%d\n", k, i); |
---|
372 | j = (i+1)%N; |
---|
373 | |
---|
374 | px_i = polygon[2*i]; |
---|
375 | py_i = polygon[2*i+1]; |
---|
376 | px_j = polygon[2*j]; |
---|
377 | py_j = polygon[2*j+1]; |
---|
378 | |
---|
379 | //Check for case where point is contained in line segment |
---|
380 | if (_point_on_line(x, y, px_i, py_i, px_j, py_j)) { |
---|
381 | if (closed == 1) { |
---|
382 | inside = 1; |
---|
383 | } else { |
---|
384 | inside = 0; |
---|
385 | } |
---|
386 | break; |
---|
387 | } else { |
---|
388 | //Check if truly inside polygon |
---|
389 | if ( ((py_i < y) && (py_j >= y)) || |
---|
390 | ((py_j < y) && (py_i >= y)) ) { |
---|
391 | if (px_i + (y-py_i)/(py_j-py_i)*(px_j-px_i) < x) |
---|
392 | inside = 1-inside; |
---|
393 | } |
---|
394 | } |
---|
395 | } |
---|
396 | if (inside == 1) { |
---|
397 | indices[count] = k; |
---|
398 | count++; |
---|
399 | } |
---|
400 | } // End k |
---|
401 | |
---|
402 | return count; |
---|
403 | } |
---|
404 | |
---|
405 | |
---|
406 | |
---|
407 | PyObject *inside_polygon(PyObject *self, PyObject *args) { |
---|
408 | //def inside_polygon(point, polygon, closed, verbose, one_point): |
---|
409 | // """Determine whether points are inside or outside a polygon |
---|
410 | // |
---|
411 | // Input: |
---|
412 | // point - Tuple of (x, y) coordinates, or list of tuples |
---|
413 | // polygon - list of vertices of polygon |
---|
414 | // one_poin - If True Boolean value should be returned |
---|
415 | // If False, indices of points inside returned |
---|
416 | // closed - (optional) determine whether points on boundary should be |
---|
417 | // regarded as belonging to the polygon (closed = True) |
---|
418 | // or not (closed = False) |
---|
419 | |
---|
420 | // |
---|
421 | // Output: |
---|
422 | // If one point is considered, True or False is returned. |
---|
423 | // If multiple points are passed in, the function returns indices |
---|
424 | // of those points that fall inside the polygon |
---|
425 | // |
---|
426 | // Examples: |
---|
427 | // inside_polygon( [0.5, 0.5], [[0,0], [1,0], [1,1], [0,1]] ) |
---|
428 | // will evaluate to True as the point 0.5, 0.5 is inside the unit square |
---|
429 | // |
---|
430 | // inside_polygon( [[0.5, 0.5], [1, -0.5], [0.3, 0.2]] ) |
---|
431 | // will return the indices [0, 2] as only the first and the last point |
---|
432 | // is inside the unit square |
---|
433 | // |
---|
434 | // Remarks: |
---|
435 | // The vertices may be listed clockwise or counterclockwise and |
---|
436 | // the first point may optionally be repeated. |
---|
437 | // Polygons do not need to be convex. |
---|
438 | // Polygons can have holes in them and points inside a hole is |
---|
439 | // regarded as being outside the polygon. |
---|
440 | // |
---|
441 | // |
---|
442 | // Algorithm is based on work by Darel Finley, |
---|
443 | // http://www.alienryderflex.com/polygon/ |
---|
444 | // |
---|
445 | // |
---|
446 | |
---|
447 | PyArrayObject |
---|
448 | *point, |
---|
449 | *polygon, |
---|
450 | *indices; |
---|
451 | |
---|
452 | int closed, verbose; //Flags |
---|
453 | int count, M, N; |
---|
454 | |
---|
455 | // Convert Python arguments to C |
---|
456 | if (!PyArg_ParseTuple(args, "OOOii", |
---|
457 | &point, |
---|
458 | &polygon, |
---|
459 | &indices, |
---|
460 | &closed, |
---|
461 | &verbose)) |
---|
462 | return NULL; |
---|
463 | |
---|
464 | M = point -> dimensions[0]; //Number of points |
---|
465 | N = polygon -> dimensions[0]; //Number of vertices in polygon |
---|
466 | |
---|
467 | if (verbose) printf("Got %d points and %d polygon vertices\n", M, N); |
---|
468 | |
---|
469 | //Call underlying routine |
---|
470 | count = _inside_polygon(M, N, |
---|
471 | (double*) point -> data, |
---|
472 | (double*) polygon -> data, |
---|
473 | (long*) indices -> data, |
---|
474 | closed, verbose); |
---|
475 | |
---|
476 | //NOTE: return number of points inside.. |
---|
477 | //printf("COunt=%d\n", count); |
---|
478 | return Py_BuildValue("i", count); |
---|
479 | } |
---|