[1018] | 1 | #!/usr/bin/env python |
---|
| 2 | |
---|
[2731] | 3 | import exceptions |
---|
| 4 | class TestError(exceptions.Exception): pass |
---|
[1018] | 5 | import unittest |
---|
| 6 | |
---|
| 7 | |
---|
| 8 | from Numeric import dot, allclose, array, transpose, arange, ones, Float |
---|
[2731] | 9 | from utilities.cg_solve import * |
---|
[2841] | 10 | from utilities.cg_solve import _conjugate_gradient |
---|
[2731] | 11 | from utilities.sparse import Sparse, Sparse_CSR |
---|
[1018] | 12 | |
---|
| 13 | |
---|
| 14 | class Test_CG_Solve(unittest.TestCase): |
---|
| 15 | |
---|
| 16 | def test_sparse_solve(self): |
---|
[2638] | 17 | """Solve Small Sparse Matrix""" |
---|
[1018] | 18 | |
---|
| 19 | A = [[2.0, -1.0, 0.0, 0.0 ], |
---|
| 20 | [-1.0, 2.0, -1.0, 0.0], |
---|
| 21 | [0.0, -1.0, 2.0, -1.0], |
---|
| 22 | [0.0,0.0, -1.0, 2.0]] |
---|
| 23 | |
---|
| 24 | A = Sparse(A) |
---|
| 25 | |
---|
| 26 | xe = [0.0, 1.0, 2.0, 3.0] |
---|
| 27 | b = A*xe |
---|
| 28 | x = [0.0, 0.0, 0.0, 0.0] |
---|
| 29 | |
---|
| 30 | x = conjugate_gradient(A,b,x,iprint=0) |
---|
| 31 | |
---|
| 32 | assert allclose(x,xe) |
---|
| 33 | |
---|
[1160] | 34 | def test_max_iter(self): |
---|
[2638] | 35 | """Test max iteration Small Sparse Matrix""" |
---|
[1018] | 36 | |
---|
[1160] | 37 | A = [[2.0, -1.0, 0.0, 0.0 ], |
---|
| 38 | [-1.0, 2.0, -1.0, 0.0], |
---|
| 39 | [0.0, -1.0, 2.0, -1.0], |
---|
| 40 | [0.0,0.0, -1.0, 2.0]] |
---|
| 41 | |
---|
| 42 | A = Sparse(A) |
---|
| 43 | |
---|
| 44 | xe = [0.0, 1.0, 2.0, 3.0] |
---|
| 45 | b = A*xe |
---|
| 46 | x = [0.0, 0.0, 0.0, 0.0] |
---|
| 47 | |
---|
[2662] | 48 | try: |
---|
| 49 | x = conjugate_gradient(A,b,x,iprint=0,imax=2) |
---|
| 50 | except ConvergenceError: |
---|
| 51 | pass |
---|
| 52 | else: |
---|
[2667] | 53 | msg = 'Should have raised exception' |
---|
[2731] | 54 | raise TestError, msg |
---|
[1160] | 55 | |
---|
| 56 | |
---|
[1018] | 57 | def test_solve_large(self): |
---|
| 58 | """Standard 1d laplacian """ |
---|
| 59 | |
---|
| 60 | n = 50 |
---|
| 61 | A = Sparse(n,n) |
---|
| 62 | |
---|
| 63 | for i in arange(0,n): |
---|
| 64 | A[i,i] = 1.0 |
---|
| 65 | if i > 0 : |
---|
| 66 | A[i,i-1] = -0.5 |
---|
| 67 | if i < n-1 : |
---|
| 68 | A[i,i+1] = -0.5 |
---|
| 69 | |
---|
| 70 | xe = ones( (n,), Float) |
---|
| 71 | |
---|
| 72 | b = A*xe |
---|
[2638] | 73 | x = conjugate_gradient(A,b,b,tol=1.0e-5,iprint=1) |
---|
[1018] | 74 | |
---|
| 75 | assert allclose(x,xe) |
---|
| 76 | |
---|
| 77 | def test_solve_large_2d(self): |
---|
| 78 | """Standard 2d laplacian""" |
---|
| 79 | |
---|
| 80 | n = 20 |
---|
| 81 | m = 10 |
---|
| 82 | |
---|
| 83 | A = Sparse(m*n, m*n) |
---|
| 84 | |
---|
| 85 | for i in arange(0,n): |
---|
| 86 | for j in arange(0,m): |
---|
| 87 | I = j+m*i |
---|
| 88 | A[I,I] = 4.0 |
---|
| 89 | if i > 0 : |
---|
| 90 | A[I,I-m] = -1.0 |
---|
| 91 | if i < n-1 : |
---|
| 92 | A[I,I+m] = -1.0 |
---|
| 93 | if j > 0 : |
---|
| 94 | A[I,I-1] = -1.0 |
---|
| 95 | if j < m-1 : |
---|
| 96 | A[I,I+1] = -1.0 |
---|
| 97 | |
---|
| 98 | xe = ones( (n*m,), Float) |
---|
| 99 | |
---|
| 100 | b = A*xe |
---|
| 101 | x = conjugate_gradient(A,b,b,iprint=0) |
---|
| 102 | |
---|
| 103 | assert allclose(x,xe) |
---|
| 104 | |
---|
| 105 | def test_solve_large_2d_csr_matrix(self): |
---|
| 106 | """Standard 2d laplacian with csr format |
---|
| 107 | """ |
---|
| 108 | |
---|
| 109 | n = 100 |
---|
| 110 | m = 100 |
---|
| 111 | |
---|
| 112 | A = Sparse(m*n, m*n) |
---|
| 113 | |
---|
| 114 | for i in arange(0,n): |
---|
| 115 | for j in arange(0,m): |
---|
| 116 | I = j+m*i |
---|
| 117 | A[I,I] = 4.0 |
---|
| 118 | if i > 0 : |
---|
| 119 | A[I,I-m] = -1.0 |
---|
| 120 | if i < n-1 : |
---|
| 121 | A[I,I+m] = -1.0 |
---|
| 122 | if j > 0 : |
---|
| 123 | A[I,I-1] = -1.0 |
---|
| 124 | if j < m-1 : |
---|
| 125 | A[I,I+1] = -1.0 |
---|
| 126 | |
---|
| 127 | xe = ones( (n*m,), Float) |
---|
| 128 | |
---|
| 129 | # Convert to csr format |
---|
| 130 | #print 'start covert' |
---|
| 131 | A = Sparse_CSR(A) |
---|
| 132 | #print 'finish covert' |
---|
| 133 | b = A*xe |
---|
| 134 | x = conjugate_gradient(A,b,b,iprint=20) |
---|
| 135 | |
---|
| 136 | assert allclose(x,xe) |
---|
| 137 | |
---|
| 138 | |
---|
| 139 | def test_solve_large_2d_with_default_guess(self): |
---|
| 140 | """Standard 2d laplacian using default first guess""" |
---|
| 141 | |
---|
| 142 | n = 20 |
---|
| 143 | m = 10 |
---|
| 144 | |
---|
| 145 | A = Sparse(m*n, m*n) |
---|
| 146 | |
---|
| 147 | for i in arange(0,n): |
---|
| 148 | for j in arange(0,m): |
---|
| 149 | I = j+m*i |
---|
| 150 | A[I,I] = 4.0 |
---|
| 151 | if i > 0 : |
---|
| 152 | A[I,I-m] = -1.0 |
---|
| 153 | if i < n-1 : |
---|
| 154 | A[I,I+m] = -1.0 |
---|
| 155 | if j > 0 : |
---|
| 156 | A[I,I-1] = -1.0 |
---|
| 157 | if j < m-1 : |
---|
| 158 | A[I,I+1] = -1.0 |
---|
| 159 | |
---|
| 160 | xe = ones( (n*m,), Float) |
---|
| 161 | |
---|
| 162 | b = A*xe |
---|
| 163 | x = conjugate_gradient(A,b) |
---|
| 164 | |
---|
| 165 | assert allclose(x,xe) |
---|
| 166 | |
---|
| 167 | |
---|
| 168 | def test_vector_shape_error(self): |
---|
| 169 | """Raise VectorShapeError""" |
---|
| 170 | |
---|
| 171 | A = [[2.0, -1.0, 0.0, 0.0 ], |
---|
| 172 | [-1.0, 2.0, -1.0, 0.0], |
---|
| 173 | [0.0, -1.0, 2.0, -1.0], |
---|
| 174 | [0.0,0.0, -1.0, 2.0]] |
---|
| 175 | |
---|
| 176 | A = Sparse(A) |
---|
| 177 | |
---|
| 178 | xe = [[0.0,2.0], [1.0,3.0], [2.0,4.0], [3.0,2.0]] |
---|
| 179 | |
---|
| 180 | try: |
---|
[2841] | 181 | x = _conjugate_gradient(A,xe,xe,iprint=0) |
---|
[2667] | 182 | except VectorShapeError: |
---|
[1018] | 183 | pass |
---|
| 184 | else: |
---|
| 185 | msg = 'Should have raised exception' |
---|
[2731] | 186 | raise TestError, msg |
---|
[1018] | 187 | |
---|
| 188 | |
---|
[2841] | 189 | def test_sparse_solve_matrix(self): |
---|
| 190 | """Solve Small Sparse Matrix""" |
---|
| 191 | |
---|
| 192 | A = [[2.0, -1.0, 0.0, 0.0 ], |
---|
| 193 | [-1.0, 2.0, -1.0, 0.0], |
---|
| 194 | [0.0, -1.0, 2.0, -1.0], |
---|
| 195 | [0.0,0.0, -1.0, 2.0]] |
---|
| 196 | |
---|
| 197 | A = Sparse(A) |
---|
| 198 | |
---|
| 199 | xe = [[0.0, 0.0],[1.0, 1.0],[2.0 ,2.0],[3.0, 3.0]] |
---|
| 200 | b = A*xe |
---|
| 201 | x = [[0.0, 0.0],[0.0, 0.0],[0.0 ,0.0],[0.0, 0.0]] |
---|
| 202 | x = conjugate_gradient(A,b,x,iprint=0) |
---|
| 203 | |
---|
| 204 | assert allclose(x,xe) |
---|
| 205 | |
---|
[1018] | 206 | #------------------------------------------------------------- |
---|
| 207 | if __name__ == "__main__": |
---|
| 208 | suite = unittest.makeSuite(Test_CG_Solve,'test') |
---|
[2662] | 209 | #runner = unittest.TextTestRunner(verbosity=2) |
---|
| 210 | runner = unittest.TextTestRunner(verbosity=1) |
---|
[1018] | 211 | runner.run(suite) |
---|
| 212 | |
---|