// Python - C extension for finite_volumes util module. // // To compile (Python2.3): // gcc -c util_ext.c -I/usr/include/python2.3 -o util_ext.o -Wall -O // gcc -shared util_ext.o -o util_ext.so // // See the module util.py // // // Ole Nielsen, GA 2004 #include "Python.h" #include "Numeric/arrayobject.h" #include "math.h" double max(double x, double y) { //Return maximum of two doubles if (x > y) return x; else return y; } double min(double x, double y) { //Return minimum of two doubles if (x < y) return x; else return y; } int _gradient(double x0, double y0, double x1, double y1, double x2, double y2, double q0, double q1, double q2, double *a, double *b) { /*Compute gradient (a,b) based on three points (x0,y0), (x1,y1) and (x2,y2) with values q0, q1 and q2. Extrapolation formula (q0 is selected as an arbitrary origin) q(x,y) = q0 + a*(x-x0) + b*(y-y0) (1) Substituting the known values for q1 and q2 into (1) yield the equations for a and b q1-q0 = a*(x1-x0) + b*(y1-y0) (2) q2-q0 = a*(x2-x0) + b*(y2-y0) (3) or in matrix form / \ / \ / \ | x1-x0 y1-y0 | | a | | q1-q0 | | | | | = | | | x2-x0 y2-y0 | | b | | q2-q0 | \ / \ / \ / which is solved using the standard determinant technique */ double det; det = (y2-y0)*(x1-x0) - (y1-y0)*(x2-x0); *a = (y2-y0)*(q1-q0) - (y1-y0)*(q2-q0); *a /= det; *b = (x1-x0)*(q2-q0) - (x2-x0)*(q1-q0); *b /= det; return 0; } int _gradient2(double x0, double y0, double x1, double y1, double q0, double q1, double *a, double *b) { /*Compute gradient (a,b) between two points (x0,y0) and (x1,y1) with values q0 and q1 such that the plane is constant in the direction orthogonal to (x1-x0, y1-y0). Extrapolation formula q(x,y) = q0 + a*(x-x0) + b*(y-y0) (1) Substituting the known values for q1 into (1) yields an under determined equation for a and b q1-q0 = a*(x1-x0) + b*(y1-y0) (2) Now add the additional requirement that the gradient in the direction orthogonal to (x1-x0, y1-y0) should be zero. The orthogonal direction is given by the vector (y0-y1, x1-x0). Define the point (x2, y2) = (x0 + y0-y1, y0 + x1-x0) on the orthognal line. Then we know that the corresponding value q2 should be equal to q0 in order to obtain the zero gradient, hence applying (1) again q0 = q2 = q(x2, y2) = q0 + a*(x2-x0) + b*(y2-y0) = q0 + a*(x0 + y0-y1-x0) + b*(y0 + x1-x0 - y0) = q0 + a*(y0-y1) + b*(x1-x0) leads to the orthogonality constraint a*(y0-y1) + b*(x1-x0) = 0 (3) which closes the system and yields / \ / \ / \ | x1-x0 y1-y0 | | a | | q1-q0 | | | | | = | | | y0-y1 x1-x0 | | b | | 0 | \ / \ / \ / which is solved using the standard determinant technique */ double det, xx, yy, qq; xx = x1-x0; yy = y1-y0; qq = q1-q0; det = xx*xx + yy*yy; //FIXME catch det == 0 *a = xx*qq/det; *b = yy*qq/det; return 0; } void _limit(int N, double beta, double* qc, double* qv, double* qmin, double* qmax) { //N are the number of elements int k, i, k3; double dq, dqa[3], phi, r; //printf("INSIDE\n"); for (k=0; k 0.0) r = (qmax[k] - qc[k])/dq; if (dq < 0.0) r = (qmin[k] - qc[k])/dq; phi = min( min(r*beta, 1.0), phi); } //Then update using phi limiter for (i=0; i<3; i++) { qv[k3+i] = qc[k] + phi*dqa[i]; } } } void print_numeric_array(PyArrayObject *x) { int i, j; for (i=0; idimensions[0]; i++) { for (j=0; jdimensions[1]; j++) { printf("%f ", *(double*) (x->data + i*x->strides[0] + j*x->strides[1])); } printf("\n"); } printf("\n"); } void print_numeric_vector(PyArrayObject *x) { int i; for (i=0; idimensions[0]; i++) { printf("%f ", *(double*) (x->data + i*x->strides[0])); } printf("\n"); } PyArrayObject *get_consecutive_array(PyObject *O, char *name) { PyArrayObject *A, *B; //Get array object from attribute /* //FIXME: THE TEST DOESN't WORK printf("Err = %d\n", PyObject_HasAttrString(O, name)); if (PyObject_HasAttrString(O, name) == 1) { B = (PyArrayObject*) PyObject_GetAttrString(O, name); if (!B) return NULL; } else { return NULL; } */ B = (PyArrayObject*) PyObject_GetAttrString(O, name); if (!B) return NULL; //Convert to consecutive array A = (PyArrayObject*) PyArray_ContiguousFromObject((PyObject*) B, B -> descr -> type, 0, 0); Py_DECREF(B); //FIXME: Is this really needed?? if (!A) return NULL; return A; }