1 | """Functions for numerical computations |
---|
2 | """ |
---|
3 | |
---|
4 | epsilon = 1.0e-15 |
---|
5 | |
---|
6 | |
---|
7 | |
---|
8 | |
---|
9 | |
---|
10 | def sum(x): |
---|
11 | """ |
---|
12 | Attempt to sum up elements in x |
---|
13 | """ |
---|
14 | |
---|
15 | import types, Numeric |
---|
16 | |
---|
17 | if type(x) == Numeric.ArrayType: |
---|
18 | return Numeric.sum(x) |
---|
19 | elif type(x) in [types.ListType, types.TupleType]: |
---|
20 | s = x[0] |
---|
21 | for e in x[1:]: |
---|
22 | s += e |
---|
23 | return s |
---|
24 | |
---|
25 | def mvmul(A, x): |
---|
26 | """Multiply matrix A onto vector x |
---|
27 | """ |
---|
28 | |
---|
29 | from Numeric import dot, reshape |
---|
30 | |
---|
31 | x = reshape(x, (A.shape[1], 1)) #Make x a column vector |
---|
32 | |
---|
33 | return dot(A, x) |
---|
34 | |
---|
35 | |
---|
36 | def all_equal(vec): |
---|
37 | |
---|
38 | equal = 1 |
---|
39 | v0 = vec[0] |
---|
40 | for v in vec: |
---|
41 | if v != v0: |
---|
42 | equal = 0 |
---|
43 | |
---|
44 | return equal |
---|
45 | |
---|
46 | |
---|
47 | def meshgrid(N): |
---|
48 | """Make meshgrid (a' la Matlab) |
---|
49 | """ |
---|
50 | |
---|
51 | from Numeric import ones, arange, Float, multiply |
---|
52 | |
---|
53 | d = len(N) |
---|
54 | |
---|
55 | X = [] |
---|
56 | for s in range(d): |
---|
57 | local_shape = ones(d) |
---|
58 | local_shape[s] = N[s] |
---|
59 | a = arange(N[s]) |
---|
60 | if N[s] > 1: |
---|
61 | a = a.astype(Float)/(N[s]-1) |
---|
62 | else: |
---|
63 | a = a.astype(Float) |
---|
64 | |
---|
65 | # Put ones in all other dimensions |
---|
66 | # |
---|
67 | e = [] |
---|
68 | for t in range(d): |
---|
69 | if s == t: |
---|
70 | e.append(a) |
---|
71 | else: |
---|
72 | e.append(ones(N[t])) |
---|
73 | |
---|
74 | # Take kronecker product of all dimensions |
---|
75 | # |
---|
76 | x = 1 |
---|
77 | for t in range(d): |
---|
78 | x=multiply.outer(x,e[t]) |
---|
79 | |
---|
80 | #print x, x.shape |
---|
81 | X.append(x) |
---|
82 | |
---|
83 | return X |
---|
84 | |
---|
85 | |
---|
86 | def expand(x, mask): |
---|
87 | """Expand vector x into into vector of length equal to vector |
---|
88 | mask such that elements of x are placed where mask is one. |
---|
89 | Number of ones in mask must equal len(x).""" |
---|
90 | |
---|
91 | from Numeric import sum, ArrayType, zeros |
---|
92 | |
---|
93 | assert type(x) == ArrayType |
---|
94 | assert type(mask) == ArrayType |
---|
95 | #FIXME: Assert that mask contains only ones and zeros |
---|
96 | assert len(x) == sum(mask), 'Number of ones in mask must equal length of x' |
---|
97 | |
---|
98 | d = len(mask) |
---|
99 | y = zeros(d, x.typecode()) |
---|
100 | |
---|
101 | i = 0 |
---|
102 | for s in range(d): |
---|
103 | if mask[s]: |
---|
104 | y[s] = x[i] |
---|
105 | i += 1 |
---|
106 | |
---|
107 | return y |
---|
108 | |
---|
109 | |
---|
110 | def pwr2trunc(N, e = None, dir = 0): |
---|
111 | """N1 = pwr2trunc(N, e, dir) |
---|
112 | |
---|
113 | If e is None, let e be the largest integer such that N > 2**e. |
---|
114 | |
---|
115 | If dir = 0 (default) |
---|
116 | Compute the nearest number smaller than N divisible by 2^e |
---|
117 | if dir == 1 |
---|
118 | Compute the nearest number greater than N divisible by 2^e |
---|
119 | |
---|
120 | |
---|
121 | """ |
---|
122 | |
---|
123 | import math |
---|
124 | |
---|
125 | if e is None: |
---|
126 | e = int(math.log(N)/math.log(2)) # Maximal exponent |
---|
127 | |
---|
128 | k = N % 2**e |
---|
129 | N1 = N - k |
---|
130 | if dir == 1: |
---|
131 | N1 = 2*N1 |
---|
132 | |
---|
133 | return N1, e |
---|