source: production/onslow_2006/run_onslow.py @ 3535

Last change on this file since 3535 was 3535, checked in by duncan, 18 years ago

change imports so reflect the new structure

File size: 9.7 KB
RevLine 
[2773]1"""Script for running a tsunami inundation scenario for Onslow, WA, Australia.
2
3Source data such as elevation and boundary data is assumed to be available in
4directories specified by project.py
5The output sww file is stored in project.outputtimedir
6
7The scenario is defined by a triangular mesh created from project.polygon,
8the elevation data and a simulated submarine landslide.
9
10Ole Nielsen and Duncan Gray, GA - 2005 and Nick Bartzis, GA - 2006
11"""
12
13
14#-------------------------------------------------------------------------------# Import necessary modules
15#-------------------------------------------------------------------------------
16
17# Standard modules
18import os
19import time
[3276]20from shutil import copy
21from os import mkdir, access, F_OK
22import sys
[2773]23
24# Related major packages
[3514]25from anuga.pyvolution.shallow_water import Domain, Reflective_boundary, \
[2773]26                            Dirichlet_boundary, Time_boundary, File_boundary
[3514]27from anuga.pyvolution.data_manager import convert_dem_from_ascii2netcdf, dem2pts
28from anuga.pyvolution.combine_pts import combine_rectangular_points_files
29from anuga.pyvolution.pmesh2domain import pmesh_to_domain_instance
30from anuga.geospatial_data.geospatial_data import *
31from anuga.pyvolution.util import Screen_Catcher
[2773]32
33# Application specific imports
34import project                 # Definition of file names and polygons
35
36#-------------------------------------------------------------------------------
[3276]37# Copy scripts to time stamped output directory and capture screen
38# output to file
[2773]39#-------------------------------------------------------------------------------
40
41# creates copy of code in output dir if dir doesn't exist
42if access(project.outputtimedir,F_OK) == 0 :
43    mkdir (project.outputtimedir)
44copy (project.codedirname, project.outputtimedir + project.codename)
45copy (project.codedir + 'run_onslow.py', project.outputtimedir + 'run_onslow.py')
46print'output dir', project.outputtimedir
47
48#normal screen output is stored in
49screen_output_name = project.outputtimedir + "screen_output.txt"
50screen_error_name = project.outputtimedir + "screen_error.txt"
51
52#used to catch screen output to file
53sys.stdout = Screen_Catcher(screen_output_name)
54#sys.stderr = Screen_Catcher(screen_output_name)
55sys.stderr = Screen_Catcher(screen_error_name)
56
[3276]57print 'USER:    ', project.user
[3261]58
[3276]59#-------------------------------------------------------------------------------
60# Preparation of topographic data
61#
62# Convert ASC 2 DEM 2 PTS using source data and store result in source data
63# Do for coarse and fine data
64# Fine pts file to be clipped to area of interest
65#-------------------------------------------------------------------------------
66
67# filenames
68onshore_dem_name = project.onshore_dem_name
69islands_dem_name = project.islands_dem_name
70coast_points = project.coast_dem_name
71offshore_points = project.offshore_dem_name
72meshname = project.meshname+'.msh'
73source_dir = project.boundarydir
74
[2773]75copied_files = False
76
77# files to be used
[3261]78files_used = [onshore_dem_name, offshore_points, coast_points,]
[2773]79
80# fine data (clipping the points file to smaller area)
81# creates DEM from asc data
82convert_dem_from_ascii2netcdf(onshore_dem_name, use_cache=True, verbose=True)
83
[3261]84#creates pts file for onshore DEM
[2773]85dem2pts(onshore_dem_name,
86        easting_min=project.eastingmin,
87        easting_max=project.eastingmax,
88        northing_min=project.northingmin,
89        northing_max= project.northingmax,
90        use_cache=True, 
91        verbose=True)
92
[3261]93convert_dem_from_ascii2netcdf(islands_dem_name, use_cache=True, verbose=True)
94
95#creates pts file for islands DEM
96dem2pts(islands_dem_name, use_cache=True, verbose=True)
97
[2773]98print'create G1'
99G1 = Geospatial_data(file_name = project.offshore_dem_name + '.xya')
100print'create G2'
101G2 = Geospatial_data(file_name = project.onshore_dem_name + '.pts')
[3261]102print'create G3'
103G3 = Geospatial_data(file_name = project.coast_dem_name + '.xya')
104print'create G4'
105G4 = Geospatial_data(file_name = project.islands_dem_name + '.pts')
106print'add G1+G2+G3+G4'
107G = G1 + G2 + G3 + G4
[2773]108print'export G'
109G.export_points_file(project.combined_dem_name + '.pts')
110
111#-------------------------------------------------------------------------------                                 
112# Create the triangular mesh based on overall clipping polygon with a tagged
113# boundary and interior regions defined in project.py along with
114# resolutions (maximal area of per triangle) for each polygon
115#-------------------------------------------------------------------------------
116
[3535]117from anuga.pmesh.mesh_interface import create_mesh_from_regions
[3276]118
[2773]119#new
[3276]120region_res = 200000
121coast_res = 25000
122onslow_res = 5000
[2773]123interior_regions = [[project.poly_onslow, onslow_res],
[3261]124                    [project.poly_coast, coast_res],
125                    [project.poly_region, region_res]]
[2773]126
127print 'number of interior regions', len(interior_regions)
128
129from caching import cache
130_ = cache(create_mesh_from_regions,
131          project.polyAll,
132          {'boundary_tags': {'top': [0], 'topleft': [1],
133                             'topleft1': [2], 'bottomleft': [3],
134                             'bottom': [4], 'bottomright': [5],
135                             'topright':[6]},
[3264]136           'maximum_triangle_area': 100000,
[2773]137           'filename': meshname,           
138           'interior_regions': interior_regions},
[3249]139          verbose = True, evaluate=True)
[2773]140
141
142#-------------------------------------------------------------------------------                                 
143# Setup computational domain
144#-------------------------------------------------------------------------------                                 
145
146domain = pmesh_to_domain_instance(meshname, Domain,
147                                  use_cache = False,
148                                  verbose = True)
149
150print 'Number of triangles = ', len(domain)
151print 'The extent is ', domain.get_extent()
152print domain.statistics()
153
154domain.set_name(project.basename)
155domain.set_datadir(project.outputtimedir)
156domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum'])
157
158
159#-------------------------------------------------------------------------------                                 
160# Setup initial conditions
161#-------------------------------------------------------------------------------
162
[2863]163tide = 0.0
[2773]164
165domain.set_quantity('stage', tide)
166domain.set_quantity('friction', 0.0) 
167print 'hi and file',project.combined_dem_name + '.pts'
168
169domain.set_quantity('elevation', 
170#                    0.
171#                    filename = project.onshore_dem_name + '.pts',
172                    filename = project.combined_dem_name + '.pts',
173#                    filename = project.offshore_dem_name + '.pts',
174                    use_cache = True,
175                    verbose = True,
176                    alpha = 0.1
177                    )
178
179print 'hi1'
180
181#-------------------------------------------------------------------------------                                 
182# Setup boundary conditions (all reflective)
183#-------------------------------------------------------------------------------
184print 'start ferret2sww'
[3514]185from anuga.pyvolution.data_manager import ferret2sww
[2773]186
187south = project.south
188north = project.north
189west = project.west
190east = project.east
191
192#note only need to do when an SWW file for the MOST boundary doesn't exist
193cache(ferret2sww,
194      (source_dir + project.boundary_basename,
195       source_dir + project.boundary_basename), 
196#      (project.MOST_dir + project.boundary_basename,
197#       source_dir + project.boundary_basename),
198      {'verbose': True,
199# note didn't work with the below
200#       'minlat': south - 1,
201#       'maxlat': north + 1,
202#       'minlon': west - 1,
203#       'maxlon': east + 1,
204       'minlat': south,
205       'maxlat': north,
206       'minlon': west,
207       'maxlon': east,
208#       'origin': project.mesh_origin,
209       'origin': domain.geo_reference.get_origin(),
210       'mean_stage': tide,
211       'zscale': 1,                 #Enhance tsunami
212       'fail_on_NaN': False,
213       'inverted_bathymetry': True},
214      #evaluate = True,
[3276]215       verbose = True,
216       dependencies = source_dir + project.boundary_basename + '.sww')
[2773]217
218
219print 'Available boundary tags', domain.get_boundary_tags()
220
221Bf = File_boundary(source_dir + project.boundary_basename + '.sww', 
222                    domain, verbose = True)
223Br = Reflective_boundary(domain)
224Bd = Dirichlet_boundary([tide,0,0])
225
226
227# 7 min square wave starting at 1 min, 6m high
228Bw = Time_boundary(domain = domain,
229                   f=lambda t: [(60<t<480)*6, 0, 0])
230
231domain.set_boundary( {'top': Bf, 'topleft': Bf,
[3276]232                      'topleft1': Bf, 'bottomleft': Bd,
233                      'bottom': Br, 'bottomright': Br, 'topright': Bd} )
[2773]234
235#-------------------------------------------------------------------------------                                 
236# Evolve system through time
237#-------------------------------------------------------------------------------
238import time
239t0 = time.time()
240
[3276]241for t in domain.evolve(yieldstep = 240, finaltime = 7200): 
[2773]242    domain.write_time()
243    domain.write_boundary_statistics(tags = 'top')     
244
[3276]245for t in domain.evolve(yieldstep = 120, finaltime = 12600
[2773]246                       ,skip_initial_step = True): 
247    domain.write_time()
248    domain.write_boundary_statistics(tags = 'top')     
249
[3276]250for t in domain.evolve(yieldstep = 60, finaltime = 19800
[2773]251                       ,skip_initial_step = True): 
252    domain.write_time()
253    domain.write_boundary_statistics(tags = 'top')     
254   
[3276]255for t in domain.evolve(yieldstep = 120, finaltime = 25200
256                       ,skip_initial_step = True): 
257    domain.write_time()
258    domain.write_boundary_statistics(tags = 'top')     
259
260for t in domain.evolve(yieldstep = 240, finaltime = 36000
261                       ,skip_initial_step = True): 
262    domain.write_time()
263    domain.write_boundary_statistics(tags = 'top')
264   
[2773]265print 'That took %.2f seconds' %(time.time()-t0)
266
267print 'finished'
Note: See TracBrowser for help on using the repository browser.