"""Script for running a tsunami inundation scenario for Onslow, WA, Australia. Source data such as elevation and boundary data is assumed to be available in directories specified by project.py The output sww file is stored in project.outputtimedir The scenario is defined by a triangular mesh created from project.polygon, the elevation data and a simulated submarine landslide. Ole Nielsen and Duncan Gray, GA - 2005 and Nick Bartzis, GA - 2006 """ #-------------------------------------------------------------------------------# Import necessary modules #------------------------------------------------------------------------------- # Standard modules import os import time from shutil import copy from os import mkdir, access, F_OK import sys # Related major packages from pyvolution.shallow_water import Domain, Reflective_boundary, \ Dirichlet_boundary, Time_boundary, File_boundary from pyvolution.data_manager import convert_dem_from_ascii2netcdf, dem2pts from pyvolution.combine_pts import combine_rectangular_points_files from pyvolution.pmesh2domain import pmesh_to_domain_instance from geospatial_data import * from pyvolution.util import Screen_Catcher # Application specific imports import project # Definition of file names and polygons #------------------------------------------------------------------------------- # Copy scripts to time stamped output directory and capture screen # output to file #------------------------------------------------------------------------------- # creates copy of code in output dir if dir doesn't exist if access(project.outputtimedir,F_OK) == 0 : mkdir (project.outputtimedir) copy (project.codedirname, project.outputtimedir + project.codename) copy (project.codedir + 'run_onslow.py', project.outputtimedir + 'run_onslow.py') print'output dir', project.outputtimedir #normal screen output is stored in screen_output_name = project.outputtimedir + "screen_output.txt" screen_error_name = project.outputtimedir + "screen_error.txt" #used to catch screen output to file sys.stdout = Screen_Catcher(screen_output_name) #sys.stderr = Screen_Catcher(screen_output_name) sys.stderr = Screen_Catcher(screen_error_name) print 'USER: ', project.user #------------------------------------------------------------------------------- # Preparation of topographic data # # Convert ASC 2 DEM 2 PTS using source data and store result in source data # Do for coarse and fine data # Fine pts file to be clipped to area of interest #------------------------------------------------------------------------------- # filenames onshore_dem_name = project.onshore_dem_name islands_dem_name = project.islands_dem_name coast_points = project.coast_dem_name offshore_points = project.offshore_dem_name meshname = project.meshname+'.msh' source_dir = project.boundarydir copied_files = False # files to be used files_used = [onshore_dem_name, offshore_points, coast_points,] # fine data (clipping the points file to smaller area) # creates DEM from asc data convert_dem_from_ascii2netcdf(onshore_dem_name, use_cache=True, verbose=True) #creates pts file for onshore DEM dem2pts(onshore_dem_name, easting_min=project.eastingmin, easting_max=project.eastingmax, northing_min=project.northingmin, northing_max= project.northingmax, use_cache=True, verbose=True) convert_dem_from_ascii2netcdf(islands_dem_name, use_cache=True, verbose=True) #creates pts file for islands DEM dem2pts(islands_dem_name, use_cache=True, verbose=True) print'create G1' G1 = Geospatial_data(file_name = project.offshore_dem_name + '.xya') print'create G2' G2 = Geospatial_data(file_name = project.onshore_dem_name + '.pts') print'create G3' G3 = Geospatial_data(file_name = project.coast_dem_name + '.xya') print'create G4' G4 = Geospatial_data(file_name = project.islands_dem_name + '.pts') print'add G1+G2+G3+G4' G = G1 + G2 + G3 + G4 print'export G' G.export_points_file(project.combined_dem_name + '.pts') #------------------------------------------------------------------------------- # Create the triangular mesh based on overall clipping polygon with a tagged # boundary and interior regions defined in project.py along with # resolutions (maximal area of per triangle) for each polygon #------------------------------------------------------------------------------- from pmesh.mesh_interface import create_mesh_from_regions #new region_res = 200000 coast_res = 25000 onslow_res = 5000 interior_regions = [[project.poly_onslow, onslow_res], [project.poly_coast, coast_res], [project.poly_region, region_res]] print 'number of interior regions', len(interior_regions) from caching import cache _ = cache(create_mesh_from_regions, project.polyAll, {'boundary_tags': {'top': [0], 'topleft': [1], 'topleft1': [2], 'bottomleft': [3], 'bottom': [4], 'bottomright': [5], 'topright':[6]}, 'maximum_triangle_area': 100000, 'filename': meshname, 'interior_regions': interior_regions}, verbose = True, evaluate=True) #------------------------------------------------------------------------------- # Setup computational domain #------------------------------------------------------------------------------- domain = pmesh_to_domain_instance(meshname, Domain, use_cache = False, verbose = True) print 'Number of triangles = ', len(domain) print 'The extent is ', domain.get_extent() print domain.statistics() domain.set_name(project.basename) domain.set_datadir(project.outputtimedir) domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum']) #------------------------------------------------------------------------------- # Setup initial conditions #------------------------------------------------------------------------------- tide = 0.0 domain.set_quantity('stage', tide) domain.set_quantity('friction', 0.0) print 'hi and file',project.combined_dem_name + '.pts' domain.set_quantity('elevation', # 0. # filename = project.onshore_dem_name + '.pts', filename = project.combined_dem_name + '.pts', # filename = project.offshore_dem_name + '.pts', use_cache = True, verbose = True, alpha = 0.1 ) print 'hi1' #------------------------------------------------------------------------------- # Setup boundary conditions (all reflective) #------------------------------------------------------------------------------- print 'start ferret2sww' from pyvolution.data_manager import ferret2sww south = project.south north = project.north west = project.west east = project.east #note only need to do when an SWW file for the MOST boundary doesn't exist cache(ferret2sww, (source_dir + project.boundary_basename, source_dir + project.boundary_basename), # (project.MOST_dir + project.boundary_basename, # source_dir + project.boundary_basename), {'verbose': True, # note didn't work with the below # 'minlat': south - 1, # 'maxlat': north + 1, # 'minlon': west - 1, # 'maxlon': east + 1, 'minlat': south, 'maxlat': north, 'minlon': west, 'maxlon': east, # 'origin': project.mesh_origin, 'origin': domain.geo_reference.get_origin(), 'mean_stage': tide, 'zscale': 1, #Enhance tsunami 'fail_on_NaN': False, 'inverted_bathymetry': True}, #evaluate = True, verbose = True, dependencies = source_dir + project.boundary_basename + '.sww') print 'Available boundary tags', domain.get_boundary_tags() Bf = File_boundary(source_dir + project.boundary_basename + '.sww', domain, verbose = True) Br = Reflective_boundary(domain) Bd = Dirichlet_boundary([tide,0,0]) # 7 min square wave starting at 1 min, 6m high Bw = Time_boundary(domain = domain, f=lambda t: [(60