source: production/pt_hedland_2006/run_pt_hedland.py @ 3535

Last change on this file since 3535 was 3535, checked in by duncan, 17 years ago

change imports so reflect the new structure

File size: 9.1 KB
Line 
1"""Script for running a tsunami inundation scenario for Onslow, WA, Australia.
2
3Source data such as elevation and boundary data is assumed to be available in
4directories specified by project.py
5The output sww file is stored in project.outputtimedir
6
7The scenario is defined by a triangular mesh created from project.polygon,
8the elevation data and a simulated submarine landslide.
9
10Ole Nielsen and Duncan Gray, GA - 2005 and Nick Bartzis, GA - 2006
11"""
12#-------------------------------------------------------------------------------# Import necessary modules
13#-------------------------------------------------------------------------------
14
15# Standard modules
16from os import sep
17from os.path import dirname, basename
18import time
19
20# Related major packages
21from anuga.pyvolution.shallow_water import Domain, Reflective_boundary, \
22                            Dirichlet_boundary, Time_boundary, File_boundary
23from anuga.pyvolution.data_manager import convert_dem_from_ascii2netcdf, \
24     dem2pts
25from anuga.pyvolution.combine_pts import combine_rectangular_points_files
26from anuga.pyvolution.pmesh2domain import pmesh_to_domain_instance
27from shutil import copy
28from os import mkdir, access, F_OK
29from anuga.geospatial_data.geospatial_data import *
30import sys
31from anuga.pyvolution.util import Screen_Catcher
32
33# Application specific imports
34import project                 # Definition of file names and polygons
35
36#-------------------------------------------------------------------------------
37# Copy scripts to time stamped output directory and capture screen
38# output to file
39#-------------------------------------------------------------------------------
40
41# creates copy of code in output dir if dir doesn't exist
42if access(project.outputtimedir,F_OK) == 0 :
43    mkdir (project.outputtimedir)
44copy (dirname(project.__file__) +sep+ project.__name__+'.py', project.outputtimedir + project.__name__+'.py')
45copy (__file__, project.outputtimedir + basename(__file__))
46print 'project.outputtimedir',project.outputtimedir
47
48# normal screen output is stored in
49screen_output_name = project.outputtimedir + "screen_output.txt"
50screen_error_name = project.outputtimedir + "screen_error.txt"
51
52# used to catch screen output to file
53sys.stdout = Screen_Catcher(screen_output_name)
54sys.stderr = Screen_Catcher(screen_error_name)
55print 'USER:    ', project.user
56
57#-------------------------------------------------------------------------------
58# Preparation of topographic data
59#
60# Convert ASC 2 DEM 2 PTS using source data and store result in source data
61# Do for coarse and fine data
62# Fine pts file to be clipped to area of interest
63#-------------------------------------------------------------------------------
64
65# filenames
66meshname = project.meshname+'.msh'
67source_dir = project.boundarydir
68
69# fine data (clipping the points file to smaller area)
70# creates DEM from asc data
71convert_dem_from_ascii2netcdf(project.onshore_dem_name, use_cache=True, verbose=True)
72
73#creates pts file from DEM
74dem2pts(project.onshore_dem_name,
75        easting_min=project.eastingmin,
76        easting_max=project.eastingmax,
77        northing_min=project.northingmin,
78        northing_max= project.northingmax,
79        use_cache=True,
80        verbose=True)
81
82print 'create G1'
83G1 = Geospatial_data(file_name = project.offshore_dem_name1 + '.xya')
84print 'create G2'
85G2 = Geospatial_data(file_name = project.offshore_dem_name2 + '.xya')
86print 'create G3'
87G3 = Geospatial_data(file_name = project.onshore_dem_name + '.pts')
88print 'create G4'
89G4 = Geospatial_data(file_name = project.coast_dem_name + '.xya')
90print 'add G1+G2+G3+G4'
91G = G1 + G2 + G3 + G4
92print 'export G'
93G.export_points_file(project.combined_dem_name + '.pts')
94
95#-------------------------------------------------------------------------------                                 
96# Create the triangular mesh based on overall clipping polygon with a tagged
97# boundary and interior regions defined in project.py along with
98# resolutions (maximal area of per triangle) for each polygon
99#-------------------------------------------------------------------------------
100
101from anuga.pmesh.mesh_interface import create_mesh_from_regions
102
103region_res = 500000
104coast_res = 500
105pt_hedland_res = 5000
106interior_regions = [[project.poly_pt_hedland, pt_hedland_res],
107                    [project.poly_region, region_res]]
108
109print 'number of interior regions', len(interior_regions)
110
111from anuga.utilities.polygon import plot_polygons
112if sys.platform == 'win32':
113    #figname = project.outputtimedir + 'pt_hedland_polys'
114    figname = 'pt_hedland_polys_test'
115    plot_polygons([project.polyAll,project.poly_pt_hedland,project.poly_region],
116              figname,
117              verbose = True)   
118
119print 'start create mesh from regions'
120from caching import cache
121_ = cache(create_mesh_from_regions,
122          project.polyAll,
123          {'boundary_tags': {'topright': [0], 'topleft': [1],
124                             'left': [2], 'bottom0': [3],
125                             'bottom1': [4], 'bottom2': [5],
126                             'bottom3': [6], 'right': [7]},
127           'maximum_triangle_area': 250000,
128           'filename': meshname,           
129           'interior_regions': interior_regions},
130          verbose = True, evaluate=True)
131
132#-------------------------------------------------------------------------------                                 
133# Setup computational domain
134#-------------------------------------------------------------------------------                                 
135domain = Domain(meshname, use_cache = False, verbose = True)
136
137print domain.statistics()
138print 'Number of triangles = ', len(domain)
139print 'The extent is ', domain.get_extent()
140print domain.statistics()
141
142domain.set_name(project.basename)
143domain.set_datadir(project.outputtimedir)
144domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum'])
145
146#-------------------------------------------------------------------------------                                 
147# Setup initial conditions
148#-------------------------------------------------------------------------------
149
150tide = 0.
151#high
152#tide = 3.6
153#low
154#tide = -3.9
155
156domain.set_quantity('stage', tide)
157domain.set_quantity('friction', 0.0) 
158print 'hi and file',project.combined_dem_name + '.pts'
159
160domain.set_quantity('elevation', 
161                    filename = project.combined_dem_name + '.pts',
162                    use_cache = True,
163                    verbose = True,
164                    alpha = 0.1
165                    )
166
167#-------------------------------------------------------------------------------                                 
168# Setup boundary conditions (all reflective)
169#-------------------------------------------------------------------------------
170print 'start ferret2sww'
171# skipped as results in file SU-AU_clipped is correct for all WA
172
173from anuga.pyvolution.data_manager import ferret2sww
174
175south = project.south
176north = project.north
177west = project.west
178east = project.east
179
180#note only need to do when an SWW file for the MOST boundary doesn't exist
181cache(ferret2sww,
182      (source_dir + project.boundary_basename,
183       source_dir + project.boundary_basename+'_'+project.basename), 
184      {'verbose': True,
185       'minlat': south,
186       'maxlat': north,
187       'minlon': west,
188       'maxlon': east,
189#       'origin': project.mesh_origin,
190       'origin': domain.geo_reference.get_origin(),
191       'mean_stage': tide,
192       'zscale': 1,                 #Enhance tsunami
193       'fail_on_NaN': False,
194       'inverted_bathymetry': True},
195       evaluate = True,
196       verbose = True,
197      dependencies = source_dir + project.boundary_basename + '.sww')
198
199print 'Available boundary tags', domain.get_boundary_tags()
200
201Bf = File_boundary(source_dir + project.boundary_basename + '.sww', 
202                    domain, verbose = True)
203Br = Reflective_boundary(domain)
204Bd = Dirichlet_boundary([tide,0,0])
205domain.set_boundary( {'topright': Bf,'topleft': Bf, 'left':  Bd, 'bottom0': Bd,
206                      'bottom1': Bd, 'bottom2': Bd, 'bottom3': Bd, 
207                        'right': Bd})
208
209#-------------------------------------------------------------------------------                                 
210# Evolve system through time
211#-------------------------------------------------------------------------------
212import time
213t0 = time.time()
214
215for t in domain.evolve(yieldstep = 240, finaltime = 10800): 
216    domain.write_time()
217    domain.write_boundary_statistics(tags = 'topright')     
218
219for t in domain.evolve(yieldstep = 120, finaltime = 16200
220                       ,skip_initial_step = True): 
221    domain.write_time()
222    domain.write_boundary_statistics(tags = 'topright')     
223
224for t in domain.evolve(yieldstep = 60, finaltime = 21600
225                       ,skip_initial_step = True): 
226    domain.write_time()
227    domain.write_boundary_statistics(tags = 'topright')     
228   
229for t in domain.evolve(yieldstep = 120, finaltime = 27000
230                       ,skip_initial_step = True): 
231    domain.write_time()
232    domain.write_boundary_statistics(tags = 'topright')     
233
234for t in domain.evolve(yieldstep = 240, finaltime = 36000
235                       ,skip_initial_step = True): 
236    domain.write_time()
237    domain.write_boundary_statistics(tags = 'topright')   
238 
239print 'That took %.2f seconds' %(time.time()-t0)
240
241print 'finished'
Note: See TracBrowser for help on using the repository browser.