1 | """Script for running a tsunami inundation scenario for Sydney, NSW, Australia. |
---|
2 | |
---|
3 | Source data such as elevation and boundary data is assumed to be available in |
---|
4 | directories specified by project.py |
---|
5 | The output sww file is stored in project.outputdir |
---|
6 | |
---|
7 | The scenario is defined by a triangular mesh created from project.polygon, |
---|
8 | the elevation data and a simulated submarine landslide. |
---|
9 | |
---|
10 | Ole Nielsen and Duncan Gray, GA - 2005 and Adrian Hitchman and Jane Sexton, GA - 2006 |
---|
11 | """ |
---|
12 | |
---|
13 | |
---|
14 | #-------------------------------------------------------------------------------# Import necessary modules |
---|
15 | #------------------------------------------------------------------------------- |
---|
16 | |
---|
17 | # Standard modules |
---|
18 | import os |
---|
19 | import time |
---|
20 | |
---|
21 | # Related major packages |
---|
22 | from pyvolution.shallow_water import Domain, Reflective_boundary, Dirichlet_boundary |
---|
23 | from pyvolution.data_manager import convert_dem_from_ascii2netcdf, dem2pts |
---|
24 | #from pyvolution.data_manager_old import convert_dem_from_ascii2netcdf, dem2pts |
---|
25 | from pyvolution.combine_pts import combine_rectangular_points_files |
---|
26 | from pyvolution.pmesh2domain import pmesh_to_domain_instance |
---|
27 | from pyvolution.quantity import Quantity |
---|
28 | from Numeric import allclose |
---|
29 | from utilities.polygon import inside_polygon |
---|
30 | |
---|
31 | # Application specific imports |
---|
32 | import project # Definition of file names and polygons |
---|
33 | from pyvolution.smf import slump_tsunami # Function for submarine mudslide |
---|
34 | |
---|
35 | |
---|
36 | #------------------------------------------------------------------------------- |
---|
37 | # Preparation of topographic data |
---|
38 | # |
---|
39 | # Convert ASC 2 DEM 2 PTS using source data and store result in source data |
---|
40 | # Do for coarse and fine data |
---|
41 | # Fine pts file to be clipped to area of interest |
---|
42 | #------------------------------------------------------------------------------- |
---|
43 | |
---|
44 | # filenames |
---|
45 | coarsedemname = project.coarsedemname |
---|
46 | finedemname = project.finedemname |
---|
47 | meshname = project.meshname+'.msh' |
---|
48 | |
---|
49 | # coarse data |
---|
50 | convert_dem_from_ascii2netcdf(coarsedemname, use_cache=True, verbose=True) |
---|
51 | dem2pts(coarsedemname, use_cache=True, verbose=True) |
---|
52 | |
---|
53 | # fine data (clipping the points file to smaller area) |
---|
54 | convert_dem_from_ascii2netcdf(finedemname, use_cache=True, verbose=True) |
---|
55 | dem2pts(finedemname, |
---|
56 | easting_min=project.eastingmin, |
---|
57 | easting_max=project.eastingmax, |
---|
58 | northing_min=project.northingmin, |
---|
59 | northing_max= project.northingmax, |
---|
60 | use_cache=True, |
---|
61 | verbose=True) |
---|
62 | |
---|
63 | # combining the coarse and fine data |
---|
64 | combine_rectangular_points_files(project.finedemname + '.pts', |
---|
65 | project.coarsedemname + '.pts', |
---|
66 | project.combineddemname + '.pts') |
---|
67 | |
---|
68 | #from pmesh.create_mesh import create_mesh_from_regions |
---|
69 | #new interface |
---|
70 | from pmesh.mesh_interface import create_mesh_from_regions |
---|
71 | |
---|
72 | # original issue to Benfield |
---|
73 | interior_res = 5000 |
---|
74 | interior_regions = [[project.harbour_polygon_2, interior_res], |
---|
75 | [project.botanybay_polygon_2, interior_res]] |
---|
76 | |
---|
77 | # used for finer mesh |
---|
78 | #interior_res1 = 5000 |
---|
79 | #interior_res2 = 315 |
---|
80 | #interior_regions = [[project.newpoly1, interior_res1], |
---|
81 | # [project.south1, interior_res1], |
---|
82 | # [project.finepolymanly, interior_res2], |
---|
83 | # [project.finepolyquay, interior_res2]] |
---|
84 | |
---|
85 | # used for coastal polygons constructed by GIS guys |
---|
86 | def get_polygon_from_file(filename): |
---|
87 | """ Function to read in output from GIS determined polygon |
---|
88 | """ |
---|
89 | fid = open(filename) |
---|
90 | lines = fid.readlines() |
---|
91 | fid.close() |
---|
92 | |
---|
93 | polygon = [] |
---|
94 | for line in lines[1:]: |
---|
95 | fields = line.split(',') |
---|
96 | x = float(fields[1]) |
---|
97 | y = float(fields[2]) |
---|
98 | polygon.append([x, y]) |
---|
99 | |
---|
100 | return polygon |
---|
101 | |
---|
102 | num_polygons = 9 |
---|
103 | fileext = '.csv' |
---|
104 | filename = project.polygonptsfile |
---|
105 | |
---|
106 | #interior_res = 1000 |
---|
107 | #interior_regions = [] |
---|
108 | #bounding_polygon = project.diffpolygonall#project.demopoly |
---|
109 | #count = 0 |
---|
110 | #for p in range(1, num_polygons+1): |
---|
111 | # thefilename = filename + str(p) + fileext |
---|
112 | # print 'reading in polygon points', thefilename |
---|
113 | # interior_polygon = get_polygon_from_file(thefilename) |
---|
114 | # interior_regions.append([interior_polygon, interior_res]) |
---|
115 | # n = len(interior_polygon) |
---|
116 | # # check interior polygon falls in bounding polygon |
---|
117 | # if len(inside_polygon(interior_polygon, bounding_polygon, |
---|
118 | # closed = True, verbose = False)) <> len(interior_polygon): |
---|
119 | # print 'WARNING: interior polygon %d is outside bounding polygon' %(p) |
---|
120 | # count += 1 |
---|
121 | # # check for duplicate points in interior polygon |
---|
122 | |
---|
123 | print 'number of interior polygons: ', len(interior_regions) |
---|
124 | #if count == 0: print 'interior polygons OK' |
---|
125 | |
---|
126 | #FIXME: Fix caching of this one once the mesh_interface is ready |
---|
127 | from caching import cache |
---|
128 | |
---|
129 | # original + refined region |
---|
130 | _ = cache(create_mesh_from_regions, |
---|
131 | #project.demopoly, |
---|
132 | project.diffpolygonall2, |
---|
133 | #{'boundary_tags': {'bottom': [0], |
---|
134 | # 'right1': [1], 'right0': [2], |
---|
135 | # 'right2': [3], 'top': [4], 'left1': [5], |
---|
136 | # 'left2': [6], 'left3': [7]}, |
---|
137 | {'boundary_tags': {'bottom': [0], |
---|
138 | 'bottom1': [1], 'right': [2], |
---|
139 | 'top1': [3], 'top': [4], 'left1': [5], |
---|
140 | 'left2': [6], 'left3': [7]}, |
---|
141 | #{'boundary_tags': {'bottom': [0], 'right': [1], |
---|
142 | # 'top': [2], 'left': [3]}, |
---|
143 | 'maximum_triangle_area': 100000, |
---|
144 | 'filename': meshname, |
---|
145 | 'interior_regions': interior_regions}, |
---|
146 | verbose = True) |
---|
147 | |
---|
148 | #------------------------------------------------------------------------------- |
---|
149 | # Setup computational domain |
---|
150 | #------------------------------------------------------------------------------- |
---|
151 | |
---|
152 | domain = pmesh_to_domain_instance(meshname, Domain, |
---|
153 | use_cache = True, |
---|
154 | verbose = True) |
---|
155 | |
---|
156 | print 'Number of triangles = ', len(domain) |
---|
157 | print 'The extent is ', domain.get_extent() |
---|
158 | print domain.statistics() |
---|
159 | |
---|
160 | domain.set_name(project.basename) |
---|
161 | domain.set_datadir(project.outputdir) |
---|
162 | domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum']) |
---|
163 | |
---|
164 | |
---|
165 | #------------------------------------------------------------------------------- |
---|
166 | # Set up scenario (tsunami_source is a callable object used with set_quantity) |
---|
167 | #------------------------------------------------------------------------------- |
---|
168 | |
---|
169 | tsunami_source = slump_tsunami(length=30000.0, |
---|
170 | depth=400.0, |
---|
171 | slope=6.0, |
---|
172 | thickness=176.0, |
---|
173 | radius=3330, |
---|
174 | dphi=0.23, |
---|
175 | x0=project.slump_origin2[0], |
---|
176 | y0=project.slump_origin2[1], |
---|
177 | alpha=0.0, |
---|
178 | domain=domain, |
---|
179 | verbose=True) |
---|
180 | |
---|
181 | #------------------------------------------------------------------------------- |
---|
182 | # Setup initial conditions |
---|
183 | #------------------------------------------------------------------------------- |
---|
184 | |
---|
185 | # apply slump after 30 mins, initialise to water level of tide = 0 |
---|
186 | domain.set_quantity('stage', 0.0) |
---|
187 | domain.set_quantity('friction', 0.04) |
---|
188 | domain.set_quantity('elevation', |
---|
189 | filename = project.combineddemname + '.pts', |
---|
190 | use_cache = True, |
---|
191 | verbose = True) |
---|
192 | |
---|
193 | |
---|
194 | #------------------------------------------------------------------------------- |
---|
195 | # Setup boundary conditions (all reflective) |
---|
196 | #------------------------------------------------------------------------------- |
---|
197 | |
---|
198 | print 'Available boundary tags', domain.get_boundary_tags() |
---|
199 | |
---|
200 | Br = Reflective_boundary(domain) |
---|
201 | Bd = Dirichlet_boundary([0, 0, 0]) |
---|
202 | |
---|
203 | # original + refined regions |
---|
204 | #domain.set_boundary( {'bottom': Br, 'right1': Br, 'right0': Br, |
---|
205 | # 'right2': Br, 'top': Br, 'left1': Br, |
---|
206 | # 'left2': Br, 'left3': Br} ) |
---|
207 | # for new tests 4 April 2006 |
---|
208 | #domain.set_boundary( {'bottom': Br, 'bottom1': Br, 'right': Br, |
---|
209 | # 'top1': Br, 'top': Br, 'left1': Br, |
---|
210 | # 'left2': Br, 'left3': Br} ) |
---|
211 | |
---|
212 | # enforce Dirichlet BC - from 30/03/06 Benfield visit |
---|
213 | domain.set_boundary( {'bottom': Bd, 'bottom1': Bd, 'right': Bd, |
---|
214 | 'top1': Bd, 'top': Bd, 'left1': Bd, |
---|
215 | 'left2': Bd, 'left3': Bd} ) |
---|
216 | |
---|
217 | # increasingly finer interior regions |
---|
218 | #domain.set_boundary( {'bottom': Bd, 'right': Bd, 'left': Bd, 'top': Bd} ) |
---|
219 | |
---|
220 | |
---|
221 | #------------------------------------------------------------------------------- |
---|
222 | # Evolve system through time |
---|
223 | #------------------------------------------------------------------------------- |
---|
224 | |
---|
225 | import time |
---|
226 | t0 = time.time() |
---|
227 | thisfile = project.integraltimeseries+'.csv' |
---|
228 | fid = open(thisfile, 'w') |
---|
229 | |
---|
230 | # save every 10 secs leading up to slump initiation |
---|
231 | for t in domain.evolve(yieldstep = 10, finaltime = 60): # 6 steps |
---|
232 | domain.write_time() |
---|
233 | domain.write_boundary_statistics(tags = 'bottom') |
---|
234 | # calculate integral |
---|
235 | thisstagestep = domain.get_quantity('stage') |
---|
236 | s = '%.2f, %.2f\n' %(t, thisstagestep.get_integral()) |
---|
237 | fid.write(s) |
---|
238 | # add slump after 30 secs |
---|
239 | if allclose(t, 30): |
---|
240 | slump = Quantity(domain) |
---|
241 | slump.set_values(tsunami_source) |
---|
242 | domain.set_quantity('stage', slump + thisstagestep) |
---|
243 | #test_stage = domain.get_quantity('stage') |
---|
244 | #test_elevation = domain.get_quantity('elevation') |
---|
245 | #test_depth = test_stage - test_elevation |
---|
246 | #test_max = max(test_depth.get_values()) |
---|
247 | #print 'testing', test_max |
---|
248 | |
---|
249 | import sys; sys.exit() |
---|
250 | |
---|
251 | # save every two minutes leading up to interesting period |
---|
252 | for t in domain.evolve(yieldstep = 120, finaltime = 660, # steps |
---|
253 | skip_initial_step = True): |
---|
254 | domain.write_time() |
---|
255 | domain.write_boundary_statistics(tags = 'bottom') |
---|
256 | # calculate integral |
---|
257 | thisstagestep = domain.get_quantity('stage') |
---|
258 | s = '%.2f, %.2f\n' %(t, thisstagestep.get_integral()) |
---|
259 | fid.write(s) |
---|
260 | |
---|
261 | |
---|
262 | # save every thirty secs during interesting period |
---|
263 | for t in domain.evolve(yieldstep = 60, finaltime = 5000, # steps |
---|
264 | skip_initial_step = True): |
---|
265 | domain.write_time() |
---|
266 | domain.write_boundary_statistics(tags = 'bottom') #quantities = 'stage') |
---|
267 | # calculate integral |
---|
268 | thisstagestep = domain.get_quantity('stage') |
---|
269 | s = '%.2f, %.2f\n' %(t, thisstagestep.get_integral()) |
---|
270 | fid.write(s) |
---|
271 | |
---|
272 | |
---|
273 | import sys; sys.exit() |
---|
274 | # save every two mins for next 5000 secs |
---|
275 | for t in domain.evolve(yieldstep = 120, finaltime = 10000, # about 42 steps |
---|
276 | skip_initial_step = True): |
---|
277 | domain.write_time() |
---|
278 | domain.write_boundary_statistics(tags = 'bottom') #quantities = 'stage') |
---|
279 | # calculate integral |
---|
280 | thisstagestep = domain.get_quantity('stage') |
---|
281 | s = '%.2f, %.2f\n' %(t, thisstagestep.get_integral()) |
---|
282 | fid.write(s) |
---|
283 | |
---|
284 | # save every half hour to end of simulation |
---|
285 | for t in domain.evolve(yieldstep = 1800, finaltime = 10*60*60, # 14 steps |
---|
286 | skip_initial_step = True): |
---|
287 | domain.write_time() |
---|
288 | domain.write_boundary_statistics(tags = 'bottom') #quantities = 'stage' |
---|
289 | # calculate integral |
---|
290 | thisstagestep = domain.get_quantity('stage') |
---|
291 | s = '%.2f, %.2f\n' %(t, thisstagestep.get_integral()) |
---|
292 | fid.write(s) |
---|
293 | |
---|
294 | print 'That took %.2f seconds' %(time.time()-t0) |
---|