source: pypar/DOC @ 907

Last change on this file since 907 was 123, checked in by ole, 19 years ago

Files for 64 bit machine + latest Cvs version

File size: 11.0 KB
Line 
1------------------------------------------------
2PyPAR - Parallel Python, no-frills MPI interface
3
4Author:  Ole Nielsen (2001, 2002, 2003)
5Email:   Ole.Nielsen@anu.edu.au
6Version: See pypar.__version__
7Date:    See pypar.__date__
8------------------------------------------------
9
10CONTENTS:
11  TESTING THE INSTALLATION
12  GETTING STARTED 
13  FIRST PARALLEL PROGRAM     
14  PROGRAMMING FOR EFFICIENCY
15  PYPAR REFERENCE
16  DATA TYPES
17  STATUS OBJECT   
18  EXTENSIONS
19  PROBLEMS
20  REFERENCES
21
22TESTING THE INSTALLATION
23
24  After having installed pypar run
25 
26    mpirun -np 2 testpypar.py
27   
28  to verify that everything works.
29  If it doesn't try to run a C/MPI program
30  (for example ctiming.c) to see if the problem lies with
31  the local MPI installation or with pypar.
32   
33   
34GETTING STARTED
35  Assuming that the pypar C-extension compiled you should be able to
36  write
37  >> import pypar
38  from the Python prompt.
39  (This may not work under MPICH under Sunos - this doesn't matter,
40  just skip this interactive bit and go to FIRST PARALLEL PROGRAM.)
41 
42  Then you can write
43  >> pypar.size() 
44  to get the number of parallel processors in play.
45  (When using pypar from the command line this number will be 1).
46 
47  Processors are numbered from 0 to pypar.size()-1.
48  Try
49  >> pypar.rank()
50  to get the processor number of the current processor.
51  (When using pypar from the command line this number will be 0). 
52 
53  Finally, try
54  >> pypar.Get_processor_name()
55  to return host name of current node
56 
57FIRST PARALLEL PROGRAM   
58  Take a look at the file demo.py supplied with this distribution.
59  To execute it in parallel on four processors, say, run
60 
61    mpirun -np 4 demo.py
62   
63 
64  from the UNIX command line.
65  This will start four copies of the program each on its own processor.
66   
67  The program demo.py makes a message on processor 0 and
68  sends it around in a ring
69  - each processor adding a bit to it - until it arrives back at
70  processor 0.
71 
72  All parallel programs must find out what processor they are running on.
73  This is accomplished by the call
74 
75    myid = pypar.rank()
76 
77  The total number of processors is obtained from
78 
79    proc = pypar.size()
80   
81  One can then have different codes for different processors by branching
82  as in
83 
84    if myid == 0
85      ... 
86 
87  To send a general Python structure A to processor p, write
88    pypar.send(A, p)
89  and to receive something from processor q, write
90    X = pypar.receive(q) 
91 
92  This will cater for any (picklable Python structure) and make parallel
93  programs very simple and readable. While reasonably fast, it does not
94  achieve the full bandwidth obtainable by MPI.
95
96
97PROGRAMMING FOR EFFICIENCY   
98  Really low latency communication can be achieved by sticking
99  to Numeric arrays and specifying receive buffers whenever possible.
100
101  To send a Numeric array A to processor p, write
102    pypar.raw_send(A, p, use_buffer=True)
103  and to receive the array from processor q, write
104    X = pypar.receive(q, buffer=X)   
105  Note that X acts as a buffer and must be pre-allocated prior to the
106  receive statement as in Fortran and C programs using MPI.
107 
108  These forms have superseded the raw forms present in pypar
109  prior to version 1.9. The raw forms have been recast in terms of the
110  above and have been retained for backwars compatibility.
111  See the script pytiming for an example of communication of Numeric arrays.
112     
113
114MORE PARALLEL PROGRAMMING WITH PYPAR
115
116  When you are ready to move on, have a look at the supplied
117  demos and the script testpypar.py which all give examples
118  of parallel programming with pypar.
119  You can also look at a standard MPI reference (C or Fortran)
120  to get some ideas. The principles are the same in pypar except
121  that many calls have been simplified.
122 
123
124     
125PYPAR REFERENCE
126  Here is a list of functions provided by pypar:
127  (See section on Data types for explanation of 'vanilla'). 
128 
129  Identification:
130  ---------------
131   
132  size() -- Number of processors
133  rank() -- Id of current processor
134  get_processor_name() -- Return host name of current node 
135 
136  Basic send forms:
137  --------------------
138  send(x, destination)
139    Sends data x of any type to destination with default tag.
140       
141  send(x, destination, tag=t)
142    Sends data x of any type to destination with tag t.
143   
144  send(x, destination, use_buffer=True)
145    Sends data x of any type to destination
146    assuming that recipient will specify a suitable buffer.
147   
148  send(x, destination, bypass=True)
149    Send Numeric array of any type to recipient assuming
150    that a suitable buffer has been specified and that
151    recipient also specifies bypass=True
152       
153       
154  Basic receive forms: 
155  --------------------
156  y=receive(source)
157    receives data y of any type from source with default tag.
158     
159  y=receive(source, tag=t)
160    receives data y of any type from source with tag t.
161 
162  y,status=receive(source, return_status=True)
163    receives data y and status object from source
164   
165  y=receive(source, buffer=x)   
166    receives data y from source and puts
167    it in x (which must be of compatible size and type).
168    It also returns a reference to x.
169    (Although it will accept all types this form is thought to be used
170    mainly for Numeric arrays).   
171
172  Collective Communication:
173  ------------------------- 
174   
175  broadcast(x, root):
176    Broadcasts x from root to all other processors.
177    All processors must issue the same bcast.
178
179  gather(x, root):
180     Gather all elements in x to buffer of
181     size len(x) * numprocs
182     created by this function.
183     If x is multidimensional buffer will have
184     the size of zero'th dimension multiplied by numprocs.
185     A reference to the created buffer is returned.
186
187  gather(x, root, buffer=y):
188     Gather all elements in x to specified buffer y
189     from source.
190     Buffer must have size len(x) * numprocs and
191     shape[0] == x.shape[0]*numprocs.
192     A reference to the buffer y is returned.     
193
194  scatter(x, root):
195     Scatter all elements in x from root to all other processors
196     in a buffer created by this function.
197     A reference to the created buffer is returned.
198
199  scatter(x, root, buffer=y):
200     Scatter all elements in x from root to all other processors
201     using specified buffer y.
202     A reference to the buffer y is returned.     
203
204  reduce(x, op, root):
205     Reduce all elements in x at root
206     applying operation op elementwise and return result in
207     buffer created by this function. 
208     A reference to the created buffer is returned.         
209
210  reduce(x, op, root, buffer=y):
211     Reduce all elements in x to specified buffer y
212     (of the same size as x)
213     at source applying operation op elementwise.
214     A reference to the buffer y is returned.               
215
216     
217  Other functions:
218  ----------------     
219                                         
220  time() -- MPI wall time
221  barrier() -- Synchronisation point. Makes processors wait until all
222               processors have reached this point.
223  abort() -- Terminate all processes.
224  finalize() -- Cleanup MPI. No parallelism can take place after this point.
225  initialized() -- True if MPI has been initialised
226
227 
228  See pypar.py for doc strings on individual functions.   
229
230
231   
232DATA TYPES
233  Pypar automatically handles different data types differently
234  There are three protocols:
235    'array': Numeric arrays of type Int ('i', 'l'), Float ('f', 'd'),
236             or Complex ('F', 'D') can be communicated
237             with the underlying mpiext.send_array and mpiext.receive_array.
238             This is the fastest mode.
239             Note that even though the underlying C implementation does not
240             support Complex as a native datatype, pypar handles them
241             efficiently and seemlessly by transmitting them as arrays of
242             floats of twice the size. 
243    'string': Text strings can be communicated with mpiext.send_string and
244              mpiext.receive_string.
245    'vanilla': All other types can be communicated using the scripts
246               send_vanilla and receive_vanilla provided that the objects
247               can be serialised using
248               pickle (or cPickle). The latter mode is less efficient than the
249               first two but it can handle general structures.
250
251     Rules:
252     If keyword argument vanilla == 1, vanilla is chosen regardless of
253     x's type.
254     Otherwise if x is a string, the string protocol is chosen
255     If x is an array, the 'array' protocol is chosen provided that x has one
256     of the admissible typecodes.
257     
258  Function that take vanilla as a keyword argument can force vanilla mode
259  on any datatype.     
260 
261STATUS OBJECT
262  A status object can be optionally returned from receive and raw_receive by
263  specifying return_status=True in the call.
264  The status object can subsequently be queried for information about the communication.
265  The fields are:       
266    status.source: The origin of the received message (use e.g. with pypar.any_source)
267    status.tag: The tag of the received message (use e.g. with pypar.any_tag)   
268    status.error: Error code generated by underlying C function
269    status.length: Number of elements received
270    status.size: Size (in bytes) of one element
271    status.bytes(): Number of payload bytes received (excl control info)
272
273  The status object is essential when use together with any_source or any_tag.         
274 
275
276EXTENSIONS
277  At this stage only a subset of MPI is implemented. However,
278  most real-world MPI programs use only these simple functions.
279  If you find that you need other MPI calls, please feel free to
280  add them to the C-extension. Alternatively, drop me note and I'll
281  use that as an excuse to update pypar.
282 
283 
284PERFORMANCE
285  If you are passing simple Numeric arrays around you can reduce
286  the communication time by using the 'buffer' keyword arguments
287  (see REFERENCE above). These version are closer to the underlying MPI
288  implementation in that one must provide receive buffers of the right size.
289  However, you will find that these version have lower latency and
290  can be somewhat faster as they bypass
291  pypar's mechanism for automatically transferring the needed buffer size.
292  Also, using simple numeric arrays will bypass pypar's pickling of general
293  structures.
294
295  This will mainly be of interest if you are using a 'fine grained'
296  parallelism, i.e. if you have frequent communications.       
297 
298  Try both versions and see for yourself if there is any noticable difference.
299 
300
301PROBLEMS
302  If you encounter any problems with this package please drop me a line.
303  I cannot guarantee that I can help you, but I will try.
304 
305  Ole Nielsen
306  Australian National University
307  Email: Ole.Nielsen@anu.edu.au
308   
309 
310REFERENCES   
311  To learn more about MPI in general, see WEB sites
312    http://www-unix.mcs.anl.gov/mpi/
313    http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245380.pdf
314
315  or books 
316    "Using MPI, 2nd Edition", by Gropp, Lusk, and Skjellum,
317    "The LAM companion to 'Using MPI...'" by Zdzislaw Meglicki
318    "Parallel Programming With MPI", by Peter S. Pacheco
319    "RS/6000 SP: Practical MPI Programming", by Yukiya Aoyama and Jun Nakano
320     
321  To learn more about Python, see the WEB site
322    http://www.python.org
323   
324         
325
326
327
328
329
330
Note: See TracBrowser for help on using the repository browser.