[1] | 1 | """Class Domain - 2D triangular domains for finite-volume computations of |
---|
| 2 | the shallow water wave equation |
---|
| 3 | |
---|
| 4 | |
---|
| 5 | Copyright 2004 |
---|
| 6 | Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou |
---|
| 7 | Geoscience Australia |
---|
| 8 | """ |
---|
| 9 | |
---|
| 10 | from mesh import Mesh |
---|
| 11 | from generic_boundary_conditions import * |
---|
| 12 | |
---|
| 13 | class Domain(Mesh): |
---|
| 14 | |
---|
| 15 | def __init__(self, coordinates, vertices, boundary = None, |
---|
| 16 | conserved_quantities = None, other_quantities = None): |
---|
| 17 | |
---|
| 18 | Mesh.__init__(self, coordinates, vertices, boundary) |
---|
| 19 | |
---|
| 20 | from Numeric import zeros, Float |
---|
| 21 | from quantity import Quantity, Conserved_quantity |
---|
| 22 | |
---|
| 23 | #List of quantity names entering |
---|
| 24 | #the conservation equations |
---|
| 25 | #(Must be a subset of quantities) |
---|
| 26 | if conserved_quantities is None: |
---|
| 27 | self.conserved_quantities = [] |
---|
| 28 | else: |
---|
| 29 | self.conserved_quantities = conserved_quantities |
---|
| 30 | |
---|
| 31 | if other_quantities is None: |
---|
| 32 | other_quantities = [] |
---|
| 33 | |
---|
| 34 | #Build dictionary of Quantity instances keyed by quantity names |
---|
| 35 | self.quantities = {} |
---|
| 36 | for name in self.conserved_quantities: |
---|
| 37 | self.quantities[name] = Conserved_quantity(self) |
---|
| 38 | for name in other_quantities: |
---|
| 39 | self.quantities[name] = Quantity(self) |
---|
| 40 | |
---|
| 41 | |
---|
| 42 | #FIXME: Move these explanations elsewhere |
---|
| 43 | |
---|
| 44 | #Create an empty list for explicit forcing terms |
---|
| 45 | # |
---|
| 46 | # Explicit terms must have the form |
---|
| 47 | # |
---|
| 48 | # G(q, t) |
---|
| 49 | # |
---|
| 50 | # and explicit scheme is |
---|
| 51 | # |
---|
| 52 | # q^{(n+1}) = q^{(n)} + delta_t G(q^{n}, n delta_t) |
---|
| 53 | # |
---|
| 54 | # |
---|
| 55 | # FIXME: How to call and how function should look |
---|
| 56 | |
---|
| 57 | self.forcing_terms = [] |
---|
| 58 | |
---|
| 59 | |
---|
| 60 | #Create an empty list for semi implicit forcing terms if any |
---|
| 61 | # |
---|
| 62 | # Semi implicit forcing terms are assumed to have the form |
---|
| 63 | # |
---|
| 64 | # G(q, t) = H(q, t) q |
---|
| 65 | # |
---|
| 66 | # and the semi implicit scheme will then be |
---|
| 67 | # |
---|
| 68 | # q^{(n+1}) = q^{(n)} + delta_t H(q^{n}, n delta_t) q^{(n+1}) |
---|
| 69 | |
---|
| 70 | ###self.semi_implicit_forcing_terms = [] |
---|
| 71 | |
---|
| 72 | |
---|
| 73 | #Defaults |
---|
| 74 | from config import max_smallsteps, beta, epsilon |
---|
| 75 | self.beta = beta |
---|
| 76 | self.epsilon = epsilon |
---|
| 77 | self.default_order = 1 |
---|
| 78 | self.order = self.default_order |
---|
| 79 | self.smallsteps = 0 |
---|
| 80 | self.max_smallsteps = max_smallsteps |
---|
| 81 | self.number_of_steps = 0 |
---|
| 82 | self.number_of_first_order_steps = 0 |
---|
| 83 | |
---|
| 84 | #Model time |
---|
| 85 | self.time = 0.0 |
---|
| 86 | self.finaltime = None |
---|
| 87 | self.min_timestep = self.max_timestep = 0.0 |
---|
| 88 | |
---|
| 89 | #Checkpointing |
---|
| 90 | self.filename = 'domain' |
---|
| 91 | self.checkpoint = False |
---|
| 92 | |
---|
| 93 | |
---|
| 94 | #Public interface to Domain |
---|
| 95 | def get_conserved_quantities(self, vol_id, vertex=None, edge=None): |
---|
| 96 | """Get conserved quantities at volume vol_id |
---|
| 97 | |
---|
| 98 | If vertex is specified use it as index for vertex values |
---|
| 99 | If edge is specified use it as index for edge values |
---|
| 100 | If neither are specified use centroid values |
---|
| 101 | If both are specified an exeception is raised |
---|
| 102 | |
---|
| 103 | Return value: Vector of length == number_of_conserved quantities |
---|
| 104 | |
---|
| 105 | """ |
---|
| 106 | |
---|
| 107 | from Numeric import zeros, Float |
---|
| 108 | |
---|
| 109 | if not (vertex is None or edge is None): |
---|
| 110 | msg = 'Values for both vertex and edge was specified.' |
---|
| 111 | msg += 'Only one (or none) is allowed.' |
---|
| 112 | raise msg |
---|
| 113 | |
---|
| 114 | q = zeros( len(self.conserved_quantities), Float) |
---|
| 115 | |
---|
| 116 | for i, name in enumerate(self.conserved_quantities): |
---|
| 117 | Q = self.quantities[name] |
---|
| 118 | if vertex is not None: |
---|
| 119 | q[i] = Q.vertex_values[vol_id, vertex] |
---|
| 120 | elif edge is not None: |
---|
| 121 | q[i] = Q.edge_values[vol_id, edge] |
---|
| 122 | else: |
---|
| 123 | q[i] = Q.centroid_values[vol_id] |
---|
| 124 | |
---|
| 125 | return q |
---|
| 126 | |
---|
| 127 | def set_quantity(self, name, X, location='vertices'): |
---|
| 128 | """Set values for named quantity |
---|
| 129 | |
---|
| 130 | name: Name of quantity |
---|
| 131 | X: Compatible list, Numeric array, const or function (see below) |
---|
| 132 | location: Where values are to be stored. |
---|
| 133 | Permissible options are: vertices, edges, centroid |
---|
| 134 | |
---|
| 135 | In case of location == 'centroid' the dimension values must |
---|
| 136 | be a list of a Numerical array of length N, N being the number |
---|
| 137 | of elements in the mesh. Otherwise it must be of dimension Nx3 |
---|
| 138 | |
---|
| 139 | The values will be stored in elements following their |
---|
| 140 | internal ordering. |
---|
| 141 | """ |
---|
| 142 | |
---|
| 143 | self.quantities[name].set_values(X, location) |
---|
| 144 | |
---|
| 145 | |
---|
| 146 | def set_boundary(self, boundary_map): |
---|
| 147 | """Associate boundary objects with tagged boundary segments. |
---|
| 148 | |
---|
| 149 | Input boundary_map is a dictionary of boundary objects keyed |
---|
| 150 | by symbolic tags to matched against tags in the internal dictionary |
---|
| 151 | self.boundary. |
---|
| 152 | |
---|
| 153 | As result one pointer to a boundary object is stored for each vertex |
---|
| 154 | in the list self.boundary_objects. |
---|
| 155 | More entries may point to the same boundary object |
---|
| 156 | |
---|
| 157 | Schematically the mapping is: |
---|
| 158 | |
---|
| 159 | self.boundary_segments: k: (vol_id, edge_id) |
---|
| 160 | self.boundary: (vol_id, edge_id): tag |
---|
| 161 | boundary_map (input): tag: boundary_object |
---|
| 162 | ---------------------------------------------- |
---|
| 163 | self.boundary_objects: k: boundary_object |
---|
| 164 | |
---|
| 165 | |
---|
| 166 | Pre-condition: |
---|
| 167 | self.boundary and self.boundary_segments have been built. |
---|
| 168 | |
---|
| 169 | Post-condition: |
---|
| 170 | self.boundary_objects is built |
---|
| 171 | |
---|
| 172 | If a tag from the domain doesn't appear in the input dictionary an |
---|
| 173 | exception is raised. |
---|
| 174 | However, if a tag is not used to the domain, no error is thrown. |
---|
| 175 | FIXME: This would lead to implementation of a |
---|
| 176 | default boundary condition |
---|
| 177 | """ |
---|
| 178 | |
---|
| 179 | self.boundary_objects = [] |
---|
| 180 | for k, (vol_id, edge_id) in enumerate(self.boundary_segments): |
---|
| 181 | tag = self.boundary[ (vol_id, edge_id) ] |
---|
| 182 | |
---|
| 183 | if boundary_map.has_key(tag): |
---|
| 184 | B = boundary_map[tag] |
---|
| 185 | self.boundary_objects.append(B) |
---|
| 186 | |
---|
| 187 | else: |
---|
| 188 | msg = 'ERROR (domain.py): Tag "%s" has not been ' %tag |
---|
| 189 | msg += 'bound to a boundary object.\n' |
---|
| 190 | msg += 'All boundary tags defined in domain must appear ' |
---|
| 191 | msg += 'in the supplied dictionary.\n' |
---|
| 192 | msg += 'The tags are: %s' %self.get_boundary_tags() |
---|
| 193 | raise msg |
---|
| 194 | |
---|
| 195 | |
---|
| 196 | |
---|
| 197 | #MISC |
---|
| 198 | def check_integrity(self): |
---|
| 199 | Mesh.check_integrity(self) |
---|
| 200 | |
---|
| 201 | for quantity in self.conserved_quantities: |
---|
| 202 | msg = 'Conserved quantities must be a subset of all quantities' |
---|
| 203 | assert quantity in self.quantities, msg |
---|
| 204 | |
---|
| 205 | def write_time(self): |
---|
| 206 | if self.min_timestep == self.max_timestep: |
---|
| 207 | print 'Time = %.4f, delta t = %.8f, steps=%d (%d)'\ |
---|
| 208 | %(self.time, self.min_timestep, self.number_of_steps, |
---|
| 209 | self.number_of_first_order_steps) |
---|
| 210 | elif self.min_timestep > self.max_timestep: |
---|
| 211 | print 'Time = %.4f, steps=%d (%d)'\ |
---|
| 212 | %(self.time, self.number_of_steps, |
---|
| 213 | self.number_of_first_order_steps) |
---|
| 214 | else: |
---|
| 215 | print 'Time = %.4f, delta t in [%.8f, %.8f], steps=%d (%d)'\ |
---|
| 216 | %(self.time, self.min_timestep, |
---|
| 217 | self.max_timestep, self.number_of_steps, |
---|
| 218 | self.number_of_first_order_steps) |
---|
| 219 | |
---|
| 220 | |
---|
| 221 | def get_name(self): |
---|
| 222 | return self.filename |
---|
| 223 | |
---|
| 224 | |
---|
| 225 | |
---|
| 226 | ########################### |
---|
| 227 | #Main components of evolve |
---|
| 228 | |
---|
| 229 | def evolve(self, yieldstep = None, finaltime = None): |
---|
| 230 | """Evolve model from time=0.0 to finaltime yielding results |
---|
| 231 | every yieldstep. |
---|
| 232 | |
---|
| 233 | Internally, smaller timesteps may be taken. |
---|
| 234 | |
---|
| 235 | Evolve is implemented as a generator and is to be called as such, e.g. |
---|
| 236 | |
---|
| 237 | for t in domain.evolve(timestep, yieldstep, finaltime): |
---|
| 238 | <Do something with domain and t> |
---|
| 239 | |
---|
| 240 | """ |
---|
| 241 | |
---|
| 242 | #import data_manager |
---|
| 243 | from config import min_timestep, max_timestep, epsilon |
---|
| 244 | |
---|
| 245 | if yieldstep is None: |
---|
| 246 | yieldstep = max_timestep |
---|
| 247 | |
---|
| 248 | |
---|
| 249 | self.order = self.default_order |
---|
| 250 | |
---|
| 251 | |
---|
| 252 | self.yieldtime = 0.0 #Time between 'yields' |
---|
| 253 | |
---|
| 254 | #Initialise interval of timestep sizes (for reporting only) |
---|
| 255 | self.min_timestep = max_timestep |
---|
| 256 | self.max_timestep = min_timestep |
---|
| 257 | self.finaltime = finaltime |
---|
| 258 | self.number_of_steps = 0 |
---|
| 259 | self.number_of_first_order_steps = 0 |
---|
| 260 | |
---|
| 261 | #Initial update of vertex and edge values |
---|
| 262 | self.distribute_to_vertices_and_edges() |
---|
| 263 | |
---|
| 264 | |
---|
| 265 | #Or maybe restore from latest checkpoint |
---|
| 266 | if self.checkpoint is True: |
---|
| 267 | self.goto_latest_checkpoint() |
---|
| 268 | |
---|
| 269 | |
---|
| 270 | yield(self.time) #Yield initial values |
---|
| 271 | |
---|
| 272 | while True: |
---|
| 273 | #Update boundary values |
---|
| 274 | self.update_boundary() |
---|
| 275 | |
---|
| 276 | #Compute fluxes across each element edge |
---|
| 277 | self.compute_fluxes() |
---|
| 278 | |
---|
| 279 | #Update timestep to fit yieldstep and finaltime |
---|
| 280 | self.update_timestep(yieldstep, finaltime) |
---|
| 281 | |
---|
| 282 | #Update conserved quantities |
---|
| 283 | self.update_conserved_quantities() |
---|
| 284 | |
---|
| 285 | #Update vertex and edge values |
---|
| 286 | self.distribute_to_vertices_and_edges() |
---|
| 287 | |
---|
| 288 | #Update time |
---|
| 289 | self.time += self.timestep |
---|
| 290 | self.yieldtime += self.timestep |
---|
| 291 | self.number_of_steps += 1 |
---|
| 292 | if self.order == 1: |
---|
| 293 | self.number_of_first_order_steps += 1 |
---|
| 294 | |
---|
| 295 | #Yield results |
---|
| 296 | if finaltime is not None and abs(self.time - finaltime) < epsilon: |
---|
| 297 | # Yield final time and stop |
---|
| 298 | yield(self.time) |
---|
| 299 | break |
---|
| 300 | |
---|
| 301 | |
---|
| 302 | if abs(self.yieldtime - yieldstep) < epsilon: |
---|
| 303 | # Yield (intermediate) time and allow inspection of domain |
---|
| 304 | |
---|
| 305 | if self.checkpoint is True: |
---|
| 306 | self.store_checkpoint() |
---|
| 307 | self.delete_old_checkpoints() |
---|
| 308 | |
---|
| 309 | #Pass control on to outer loop for more specific actions |
---|
| 310 | yield(self.time) |
---|
| 311 | |
---|
| 312 | # Reinitialise |
---|
| 313 | self.yieldtime = 0.0 |
---|
| 314 | self.min_timestep = max_timestep |
---|
| 315 | self.max_timestep = min_timestep |
---|
| 316 | self.number_of_steps = 0 |
---|
| 317 | self.number_of_first_order_steps = 0 |
---|
| 318 | |
---|
| 319 | |
---|
| 320 | def evolve_to_end(self, finaltime = 1.0): |
---|
| 321 | """Iterate evolve all the way to the end |
---|
| 322 | """ |
---|
| 323 | |
---|
| 324 | for _ in self.evolve(yieldstep=None, finaltime=finaltime): |
---|
| 325 | pass |
---|
| 326 | |
---|
| 327 | |
---|
| 328 | |
---|
| 329 | def update_boundary(self): |
---|
| 330 | """Go through list of boundary objects and update boundary values |
---|
| 331 | for all conserved quantities on boundary. |
---|
| 332 | """ |
---|
| 333 | |
---|
| 334 | #FIXME: Update only those that change (if that can be worked out) |
---|
| 335 | for i, B in enumerate(self.boundary_objects): |
---|
| 336 | vol_id, edge_id = self.boundary_segments[i] |
---|
| 337 | q = B.evaluate(vol_id, edge_id) |
---|
| 338 | |
---|
| 339 | for j, name in enumerate(self.conserved_quantities): |
---|
| 340 | Q = self.quantities[name] |
---|
| 341 | Q.boundary_values[i] = q[j] |
---|
| 342 | |
---|
| 343 | |
---|
| 344 | def compute_fluxes(self): |
---|
| 345 | msg = 'Method compute_fluxes must be overridden by Domain subclass' |
---|
| 346 | raise msg |
---|
| 347 | |
---|
| 348 | |
---|
| 349 | def update_timestep(self, yieldstep, finaltime): |
---|
| 350 | |
---|
| 351 | from config import min_timestep |
---|
| 352 | |
---|
| 353 | timestep = self.timestep |
---|
| 354 | |
---|
| 355 | #Record maximal and minimal values of timestep for reporting |
---|
| 356 | self.max_timestep = max(timestep, self.max_timestep) |
---|
| 357 | self.min_timestep = min(timestep, self.min_timestep) |
---|
| 358 | |
---|
| 359 | #Protect against degenerate time steps |
---|
| 360 | if timestep < min_timestep: |
---|
| 361 | |
---|
| 362 | #Number of consecutive small steps taken b4 taking action |
---|
| 363 | self.smallsteps += 1 |
---|
| 364 | |
---|
| 365 | if self.smallsteps > self.max_smallsteps: |
---|
| 366 | self.smallsteps = 0 #Reset |
---|
| 367 | |
---|
| 368 | if self.order == 1: |
---|
| 369 | msg = 'Minimal timestep %.16f reached ' %self.min_timestep |
---|
| 370 | msg += 'using 1 order scheme' |
---|
| 371 | |
---|
| 372 | raise msg |
---|
| 373 | else: |
---|
| 374 | #Try to overcome situation by switching to 1 order |
---|
| 375 | self.order = 1 |
---|
| 376 | |
---|
| 377 | else: |
---|
| 378 | self.smallsteps = 0 |
---|
| 379 | if self.order == 1: |
---|
| 380 | if self.order != self.default_order: |
---|
| 381 | self.order = 2 |
---|
| 382 | |
---|
| 383 | |
---|
| 384 | #Ensure that final time is not exceeded |
---|
| 385 | if finaltime is not None and self.time + timestep > finaltime: |
---|
| 386 | timestep = finaltime-self.time |
---|
| 387 | |
---|
| 388 | #Ensure that model time is aligned with yieldsteps |
---|
| 389 | if self.yieldtime + timestep > yieldstep: |
---|
| 390 | timestep = yieldstep-self.yieldtime |
---|
| 391 | |
---|
| 392 | self.timestep = timestep |
---|
| 393 | |
---|
| 394 | |
---|
| 395 | |
---|
| 396 | def compute_forcing_terms(self): |
---|
| 397 | """If there are any forcing functions driving the system |
---|
| 398 | they should be defined in Domain subclass and appended to |
---|
| 399 | the list self.forcing_terms |
---|
| 400 | """ |
---|
| 401 | |
---|
| 402 | for f in self.forcing_terms: |
---|
| 403 | f(self) |
---|
| 404 | |
---|
| 405 | |
---|
| 406 | def update_conserved_quantities(self): |
---|
| 407 | """Update vectors of conserved quantities using previously |
---|
| 408 | computed fluxes specified forcing functions. |
---|
| 409 | """ |
---|
| 410 | |
---|
| 411 | from Numeric import ones, sum, equal, Float |
---|
| 412 | |
---|
| 413 | N = self.number_of_elements |
---|
| 414 | d = len(self.conserved_quantities) |
---|
| 415 | |
---|
| 416 | timestep = self.timestep |
---|
| 417 | |
---|
| 418 | #Compute forcing terms |
---|
| 419 | self.compute_forcing_terms() |
---|
| 420 | |
---|
| 421 | #Update conserved_quantities from explicit updates |
---|
| 422 | for name in self.conserved_quantities: |
---|
| 423 | Q = self.quantities[name] |
---|
| 424 | Q.update(timestep) |
---|
| 425 | |
---|
| 426 | #Clean up |
---|
| 427 | #Note that Q.explicit_update is reset by compute_fluxes |
---|
| 428 | Q.semi_implicit_update[:] = 0.0 |
---|
| 429 | |
---|
| 430 | |
---|
| 431 | |
---|
| 432 | def distribute_to_vertices_and_edges(self): |
---|
| 433 | """Extrapolate conserved quantities from centroid to |
---|
| 434 | vertices and edge-midpoints for each volume |
---|
| 435 | |
---|
| 436 | Default implementation is straight first order, |
---|
| 437 | i.e. constant values throughout each element and |
---|
| 438 | no reference to non-conserved quantities. |
---|
| 439 | """ |
---|
| 440 | |
---|
| 441 | for name in self.conserved_quantities: |
---|
| 442 | Q = self.quantities[name] |
---|
| 443 | if self.order == 1: |
---|
| 444 | Q.extrapolate_first_order() |
---|
| 445 | elif self.order == 2: |
---|
| 446 | Q.extrapolate_second_order() |
---|
| 447 | Q.limit() |
---|
| 448 | else: |
---|
| 449 | raise 'Unknown order' |
---|
| 450 | Q.interpolate_from_vertices_to_edges() |
---|
| 451 | |
---|
| 452 | |
---|
| 453 | |
---|
| 454 | ############################################## |
---|
| 455 | #Initialise module |
---|
| 456 | |
---|
| 457 | #Optimisation with psyco |
---|
| 458 | from config import use_psyco |
---|
| 459 | if use_psyco: |
---|
| 460 | try: |
---|
| 461 | import psyco |
---|
| 462 | except: |
---|
| 463 | msg = 'WARNING: psyco (speedup) could not import'+\ |
---|
| 464 | ', you may want to consider installing it' |
---|
| 465 | print msg |
---|
| 466 | else: |
---|
| 467 | psyco.bind(Domain.update_boundary) |
---|
| 468 | psyco.bind(Domain.update_timestep) #Not worth it |
---|
| 469 | psyco.bind(Domain.update_conserved_quantities) |
---|
| 470 | psyco.bind(Domain.distribute_to_vertices_and_edges) |
---|
| 471 | |
---|
| 472 | |
---|
| 473 | if __name__ == "__main__": |
---|
| 474 | pass |
---|