1 | """ Conversion routines. |
---|
2 | ANUGA needs to deal with many different file formats, and this |
---|
3 | module provides routines for easily converting between them. |
---|
4 | |
---|
5 | These routines are necessarily high level, sitting above the various |
---|
6 | ANUGA modules. They take a file as input, and output a file. |
---|
7 | """ |
---|
8 | |
---|
9 | #non ANUGA imports |
---|
10 | from anuga.file.netcdf import NetCDFFile |
---|
11 | import numpy as num |
---|
12 | import os.path |
---|
13 | import os |
---|
14 | |
---|
15 | #ANUGA imports |
---|
16 | from anuga.coordinate_transforms.geo_reference import Geo_reference, \ |
---|
17 | write_NetCDF_georeference, ensure_geo_reference |
---|
18 | from anuga.abstract_2d_finite_volumes.pmesh2domain import \ |
---|
19 | pmesh_to_domain_instance |
---|
20 | from anuga.utilities.numerical_tools import ensure_numeric |
---|
21 | from anuga.config import netcdf_mode_r, netcdf_mode_w, netcdf_mode_a, \ |
---|
22 | netcdf_float |
---|
23 | |
---|
24 | from anuga.anuga_exceptions import * |
---|
25 | |
---|
26 | |
---|
27 | #shallow water imports |
---|
28 | from anuga.file.sww import Read_sww, Write_sww |
---|
29 | from anuga.shallow_water.shallow_water_domain import Domain |
---|
30 | from anuga.shallow_water.shallow_water_domain import Domain |
---|
31 | |
---|
32 | |
---|
33 | def sww2obj(filename, size): |
---|
34 | """ Convert netcdf based data output to obj |
---|
35 | |
---|
36 | Convert SWW data to OBJ data. |
---|
37 | basefilename Stem of filename, needs size and extension added. |
---|
38 | size The number of lines to write. |
---|
39 | """ |
---|
40 | |
---|
41 | if filename[-4:] != '.sww': |
---|
42 | raise IOError('Output file %s should be of type .sww.' % sww_file) |
---|
43 | |
---|
44 | basefilename = filename[:-4] |
---|
45 | |
---|
46 | # Get NetCDF |
---|
47 | nc_fname = create_filename('.', basefilename, 'sww', size) |
---|
48 | log.critical('Reading from %s' % nc_fname) |
---|
49 | fid = NetCDFFile(nc_fname, netcdf_mode_r) #Open existing file for read |
---|
50 | |
---|
51 | # Get the variables |
---|
52 | x = fid.variables['x'] |
---|
53 | y = fid.variables['y'] |
---|
54 | z = fid.variables['elevation'] |
---|
55 | time = fid.variables['time'] |
---|
56 | stage = fid.variables['stage'] |
---|
57 | |
---|
58 | M = size #Number of lines |
---|
59 | xx = num.zeros((M,3), num.float) |
---|
60 | yy = num.zeros((M,3), num.float) |
---|
61 | zz = num.zeros((M,3), num.float) |
---|
62 | |
---|
63 | for i in range(M): |
---|
64 | for j in range(3): |
---|
65 | xx[i,j] = x[i+j*M] |
---|
66 | yy[i,j] = y[i+j*M] |
---|
67 | zz[i,j] = z[i+j*M] |
---|
68 | |
---|
69 | # Write obj for bathymetry |
---|
70 | FN = create_filename('.', basefilename, 'obj', size) |
---|
71 | write_obj(FN,xx,yy,zz) |
---|
72 | |
---|
73 | # Now read all the data with variable information, combine with |
---|
74 | # x,y info and store as obj |
---|
75 | for k in range(len(time)): |
---|
76 | t = time[k] |
---|
77 | log.critical('Processing timestep %f' % t) |
---|
78 | |
---|
79 | for i in range(M): |
---|
80 | for j in range(3): |
---|
81 | zz[i,j] = stage[k,i+j*M] |
---|
82 | |
---|
83 | #Write obj for variable data |
---|
84 | #FN = create_filename(basefilename, 'obj', size, time=t) |
---|
85 | FN = create_filename('.', basefilename[:5], 'obj', size, time=t) |
---|
86 | write_obj(FN, xx, yy, zz) |
---|
87 | |
---|
88 | def timefile2netcdf(file_text, file_out = None, quantity_names=None, \ |
---|
89 | time_as_seconds=False): |
---|
90 | """Template for converting typical text files with time series to |
---|
91 | NetCDF tms file. |
---|
92 | |
---|
93 | The file format is assumed to be either two fields separated by a comma: |
---|
94 | |
---|
95 | time [DD/MM/YY hh:mm:ss], value0 value1 value2 ... |
---|
96 | |
---|
97 | E.g |
---|
98 | |
---|
99 | 31/08/04 00:00:00, 1.328223 0 0 |
---|
100 | 31/08/04 00:15:00, 1.292912 0 0 |
---|
101 | |
---|
102 | or time (seconds), value0 value1 value2 ... |
---|
103 | |
---|
104 | 0.0, 1.328223 0 0 |
---|
105 | 0.1, 1.292912 0 0 |
---|
106 | |
---|
107 | will provide a time dependent function f(t) with three attributes |
---|
108 | |
---|
109 | filename is assumed to be the rootname with extensions .txt/.tms and .sww |
---|
110 | """ |
---|
111 | |
---|
112 | import time, calendar |
---|
113 | from anuga.config import time_format |
---|
114 | from anuga.utilities.numerical_tools import ensure_numeric |
---|
115 | |
---|
116 | if file_text[-4:] != '.txt': |
---|
117 | raise IOError('Input file %s should be of type .txt.' % file_text) |
---|
118 | |
---|
119 | if file_out == None: |
---|
120 | file_out = file_text[:-4] + '.tms' |
---|
121 | |
---|
122 | fid = open(file_text) |
---|
123 | line = fid.readline() |
---|
124 | fid.close() |
---|
125 | |
---|
126 | fields = line.split(',') |
---|
127 | msg = "File %s must have the format 'datetime, value0 value1 value2 ...'" \ |
---|
128 | % file_text |
---|
129 | assert len(fields) == 2, msg |
---|
130 | |
---|
131 | if not time_as_seconds: |
---|
132 | try: |
---|
133 | starttime = calendar.timegm(time.strptime(fields[0], time_format)) |
---|
134 | except ValueError: |
---|
135 | msg = 'First field in file %s must be' % file_text |
---|
136 | msg += ' date-time with format %s.\n' % time_format |
---|
137 | msg += 'I got %s instead.' % fields[0] |
---|
138 | raise DataTimeError, msg |
---|
139 | else: |
---|
140 | try: |
---|
141 | starttime = float(fields[0]) |
---|
142 | except Error: |
---|
143 | msg = "Bad time format" |
---|
144 | raise DataTimeError, msg |
---|
145 | |
---|
146 | # Split values |
---|
147 | values = [] |
---|
148 | for value in fields[1].split(): |
---|
149 | values.append(float(value)) |
---|
150 | |
---|
151 | q = ensure_numeric(values) |
---|
152 | |
---|
153 | msg = 'ERROR: File must contain at least one independent value' |
---|
154 | assert len(q.shape) == 1, msg |
---|
155 | |
---|
156 | # Read times proper |
---|
157 | from anuga.config import time_format |
---|
158 | import time, calendar |
---|
159 | |
---|
160 | fid = open(file_text) |
---|
161 | lines = fid.readlines() |
---|
162 | fid.close() |
---|
163 | |
---|
164 | N = len(lines) |
---|
165 | d = len(q) |
---|
166 | |
---|
167 | T = num.zeros(N, num.float) # Time |
---|
168 | Q = num.zeros((N, d), num.float) # Values |
---|
169 | |
---|
170 | for i, line in enumerate(lines): |
---|
171 | fields = line.split(',') |
---|
172 | if not time_as_seconds: |
---|
173 | realtime = calendar.timegm(time.strptime(fields[0], time_format)) |
---|
174 | else: |
---|
175 | realtime = float(fields[0]) |
---|
176 | T[i] = realtime - starttime |
---|
177 | |
---|
178 | for j, value in enumerate(fields[1].split()): |
---|
179 | Q[i, j] = float(value) |
---|
180 | |
---|
181 | msg = 'File %s must list time as a monotonuosly ' % file_text |
---|
182 | msg += 'increasing sequence' |
---|
183 | assert num.alltrue(T[1:] - T[:-1] > 0), msg |
---|
184 | |
---|
185 | #Create NetCDF file |
---|
186 | fid = NetCDFFile(file_out, netcdf_mode_w) |
---|
187 | |
---|
188 | fid.institution = 'Geoscience Australia' |
---|
189 | fid.description = 'Time series' |
---|
190 | |
---|
191 | #Reference point |
---|
192 | #Start time in seconds since the epoch (midnight 1/1/1970) |
---|
193 | #FIXME: Use Georef |
---|
194 | fid.starttime = starttime |
---|
195 | |
---|
196 | # dimension definitions |
---|
197 | #fid.createDimension('number_of_volumes', self.number_of_volumes) |
---|
198 | #fid.createDimension('number_of_vertices', 3) |
---|
199 | |
---|
200 | fid.createDimension('number_of_timesteps', len(T)) |
---|
201 | |
---|
202 | fid.createVariable('time', netcdf_float, ('number_of_timesteps',)) |
---|
203 | |
---|
204 | fid.variables['time'][:] = T |
---|
205 | |
---|
206 | for i in range(Q.shape[1]): |
---|
207 | try: |
---|
208 | name = quantity_names[i] |
---|
209 | except: |
---|
210 | name = 'Attribute%d' % i |
---|
211 | |
---|
212 | fid.createVariable(name, netcdf_float, ('number_of_timesteps',)) |
---|
213 | fid.variables[name][:] = Q[:,i] |
---|
214 | |
---|
215 | fid.close() |
---|
216 | |
---|
217 | |
---|
218 | |
---|
219 | def tsh2sww(filename, verbose=False): |
---|
220 | """ |
---|
221 | to check if a tsh/msh file 'looks' good. |
---|
222 | """ |
---|
223 | |
---|
224 | if filename[-4:] != '.tsh' and filename[-4:] != '.msh': |
---|
225 | raise IOError('Input file %s should be .tsh or .msh.' % name_out) |
---|
226 | |
---|
227 | if verbose == True: log.critical('Creating domain from %s' % filename) |
---|
228 | |
---|
229 | domain = pmesh_to_domain_instance(filename, Domain) |
---|
230 | |
---|
231 | if verbose == True: log.critical("Number of triangles = %s" % len(domain)) |
---|
232 | |
---|
233 | domain.smooth = True |
---|
234 | domain.format = 'sww' #Native netcdf visualisation format |
---|
235 | file_path, filename = path.split(filename) |
---|
236 | filename, ext = path.splitext(filename) |
---|
237 | domain.set_name(filename) |
---|
238 | domain.reduction = mean |
---|
239 | |
---|
240 | if verbose == True: log.critical("file_path = %s" % file_path) |
---|
241 | |
---|
242 | if file_path == "": |
---|
243 | file_path = "." |
---|
244 | domain.set_datadir(file_path) |
---|
245 | |
---|
246 | if verbose == True: |
---|
247 | log.critical("Output written to %s%s%s.%s" |
---|
248 | % (domain.get_datadir(), sep, domain.get_name(), |
---|
249 | domain.format)) |
---|
250 | |
---|
251 | sww = SWW_file(domain) |
---|
252 | sww.store_connectivity() |
---|
253 | sww.store_timestep() |
---|
254 | |
---|
255 | |
---|
256 | |
---|
257 | def get_min_max_indices(latitudes_ref, longitudes_ref, |
---|
258 | minlat=None, maxlat=None, |
---|
259 | minlon=None, maxlon=None): |
---|
260 | """ |
---|
261 | Return max, min indexes (for slicing) of the lat and long arrays to cover |
---|
262 | the area specified with min/max lat/long. |
---|
263 | |
---|
264 | Think of the latitudes and longitudes describing a 2d surface. |
---|
265 | The area returned is, if possible, just big enough to cover the |
---|
266 | inputed max/min area. (This will not be possible if the max/min area |
---|
267 | has a section outside of the latitudes/longitudes area.) |
---|
268 | |
---|
269 | asset longitudes are sorted, |
---|
270 | long - from low to high (west to east, eg 148 - 151) |
---|
271 | assert latitudes are sorted, ascending or decending |
---|
272 | """ |
---|
273 | |
---|
274 | latitudes = latitudes_ref[:] |
---|
275 | longitudes = longitudes_ref[:] |
---|
276 | |
---|
277 | latitudes = ensure_numeric(latitudes) |
---|
278 | longitudes = ensure_numeric(longitudes) |
---|
279 | |
---|
280 | assert num.allclose(num.sort(longitudes), longitudes) |
---|
281 | |
---|
282 | #print latitudes[0],longitudes[0] |
---|
283 | #print len(latitudes),len(longitudes) |
---|
284 | #print latitudes[len(latitudes)-1],longitudes[len(longitudes)-1] |
---|
285 | |
---|
286 | lat_ascending = True |
---|
287 | if not num.allclose(num.sort(latitudes), latitudes): |
---|
288 | lat_ascending = False |
---|
289 | # reverse order of lat, so it's in ascending order |
---|
290 | latitudes = latitudes[::-1] |
---|
291 | assert num.allclose(num.sort(latitudes), latitudes) |
---|
292 | |
---|
293 | largest_lat_index = len(latitudes)-1 |
---|
294 | |
---|
295 | #Cut out a smaller extent. |
---|
296 | if minlat == None: |
---|
297 | lat_min_index = 0 |
---|
298 | else: |
---|
299 | lat_min_index = num.searchsorted(latitudes, minlat)-1 |
---|
300 | if lat_min_index < 0: |
---|
301 | lat_min_index = 0 |
---|
302 | |
---|
303 | if maxlat == None: |
---|
304 | lat_max_index = largest_lat_index #len(latitudes) |
---|
305 | else: |
---|
306 | lat_max_index = num.searchsorted(latitudes, maxlat) |
---|
307 | if lat_max_index > largest_lat_index: |
---|
308 | lat_max_index = largest_lat_index |
---|
309 | |
---|
310 | if minlon == None: |
---|
311 | lon_min_index = 0 |
---|
312 | else: |
---|
313 | lon_min_index = num.searchsorted(longitudes, minlon)-1 |
---|
314 | if lon_min_index < 0: |
---|
315 | lon_min_index = 0 |
---|
316 | |
---|
317 | if maxlon == None: |
---|
318 | lon_max_index = len(longitudes) |
---|
319 | else: |
---|
320 | lon_max_index = num.searchsorted(longitudes, maxlon) |
---|
321 | |
---|
322 | # Reversing the indexes, if the lat array is decending |
---|
323 | if lat_ascending is False: |
---|
324 | lat_min_index, lat_max_index = largest_lat_index - lat_max_index, \ |
---|
325 | largest_lat_index - lat_min_index |
---|
326 | lat_max_index = lat_max_index + 1 # taking into account how slicing works |
---|
327 | lon_max_index = lon_max_index + 1 # taking into account how slicing works |
---|
328 | |
---|
329 | return lat_min_index, lat_max_index, lon_min_index, lon_max_index |
---|
330 | |
---|
331 | |
---|
332 | def write_obj(filename, x, y, z): |
---|
333 | """Store x,y,z vectors into filename (obj format). |
---|
334 | |
---|
335 | Vectors are assumed to have dimension (M,3) where |
---|
336 | M corresponds to the number elements. |
---|
337 | triangles are assumed to be disconnected |
---|
338 | |
---|
339 | The three numbers in each vector correspond to three vertices, |
---|
340 | |
---|
341 | e.g. the x coordinate of vertex 1 of element i is in x[i,1] |
---|
342 | """ |
---|
343 | |
---|
344 | import os.path |
---|
345 | |
---|
346 | root, ext = os.path.splitext(filename) |
---|
347 | if ext == '.obj': |
---|
348 | FN = filename |
---|
349 | else: |
---|
350 | FN = filename + '.obj' |
---|
351 | |
---|
352 | outfile = open(FN, 'wb') |
---|
353 | outfile.write("# Triangulation as an obj file\n") |
---|
354 | |
---|
355 | M, N = x.shape |
---|
356 | assert N == 3 #Assuming three vertices per element |
---|
357 | |
---|
358 | for i in range(M): |
---|
359 | for j in range(N): |
---|
360 | outfile.write("v %f %f %f\n" % (x[i,j], y[i,j], z[i,j])) |
---|
361 | |
---|
362 | for i in range(M): |
---|
363 | base = i * N |
---|
364 | outfile.write("f %d %d %d\n" % (base+1, base+2, base+3)) |
---|
365 | |
---|
366 | outfile.close() |
---|
367 | |
---|