1 | """ |
---|
2 | Generic implementation of update_timestep and update_ghosts for |
---|
3 | parallel domains (eg shallow_water or advection) |
---|
4 | |
---|
5 | Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou |
---|
6 | Geoscience Australia, 2004-2010 |
---|
7 | |
---|
8 | """ |
---|
9 | |
---|
10 | import numpy as num |
---|
11 | |
---|
12 | import anuga.utilities.parallel_abstraction as pypar |
---|
13 | |
---|
14 | |
---|
15 | |
---|
16 | |
---|
17 | def setup_buffers(domain): |
---|
18 | """Buffers for synchronisation of timesteps |
---|
19 | """ |
---|
20 | |
---|
21 | domain.local_timestep = num.zeros(1, num.float) |
---|
22 | domain.global_timestep = num.zeros(1, num.float) |
---|
23 | |
---|
24 | domain.local_timesteps = num.zeros(domain.numproc, num.float) |
---|
25 | |
---|
26 | domain.communication_time = 0.0 |
---|
27 | domain.communication_reduce_time = 0.0 |
---|
28 | domain.communication_broadcast_time = 0.0 |
---|
29 | |
---|
30 | |
---|
31 | def communicate_flux_timestep(domain, yieldstep, finaltime): |
---|
32 | """Calculate local timestep |
---|
33 | """ |
---|
34 | |
---|
35 | import time |
---|
36 | |
---|
37 | #Compute minimal timestep across all processes |
---|
38 | domain.local_timestep[0] = domain.flux_timestep |
---|
39 | t0 = time.time() |
---|
40 | |
---|
41 | |
---|
42 | import anuga.parallel.pypar_ext as par_exts |
---|
43 | |
---|
44 | par_exts.allreduce(domain.local_timestep, pypar.MIN, |
---|
45 | buffer=domain.global_timestep, |
---|
46 | bypass=True) |
---|
47 | |
---|
48 | domain.communication_reduce_time += time.time()-t0 |
---|
49 | |
---|
50 | |
---|
51 | |
---|
52 | |
---|
53 | # pypar.reduce(domain.local_timestep, pypar.MIN, 0, |
---|
54 | # buffer=domain.global_timestep, |
---|
55 | # bypass=True) |
---|
56 | # |
---|
57 | # |
---|
58 | # domain.communication_reduce_time += time.time()-t0 |
---|
59 | |
---|
60 | |
---|
61 | #Broadcast minimal timestep to all processors |
---|
62 | t0 = time.time() |
---|
63 | #pypar.broadcast(domain.global_timestep, 0)#, bypass=True) |
---|
64 | |
---|
65 | domain.communication_broadcast_time += time.time()-t0 |
---|
66 | |
---|
67 | #old_flux_timestep = domain.flux_timestep |
---|
68 | domain.flux_timestep = domain.global_timestep[0] |
---|
69 | |
---|
70 | |
---|
71 | |
---|
72 | def communicate_ghosts_blocking(domain): |
---|
73 | |
---|
74 | # We must send the information from the full cells and |
---|
75 | # receive the information for the ghost cells |
---|
76 | # We have a dictionary of lists with ghosts expecting updates from |
---|
77 | # the separate processors |
---|
78 | |
---|
79 | import numpy as num |
---|
80 | import time |
---|
81 | t0 = time.time() |
---|
82 | |
---|
83 | # update of non-local ghost cells |
---|
84 | for iproc in range(domain.numproc): |
---|
85 | if iproc == domain.processor: |
---|
86 | #Send data from iproc processor to other processors |
---|
87 | for send_proc in domain.full_send_dict: |
---|
88 | if send_proc != iproc: |
---|
89 | |
---|
90 | Idf = domain.full_send_dict[send_proc][0] |
---|
91 | Xout = domain.full_send_dict[send_proc][2] |
---|
92 | |
---|
93 | for i, q in enumerate(domain.conserved_quantities): |
---|
94 | #print 'Send',i,q |
---|
95 | Q_cv = domain.quantities[q].centroid_values |
---|
96 | Xout[:,i] = num.take(Q_cv, Idf) |
---|
97 | |
---|
98 | pypar.send(Xout, int(send_proc), use_buffer=True, bypass=True) |
---|
99 | |
---|
100 | |
---|
101 | else: |
---|
102 | #Receive data from the iproc processor |
---|
103 | if domain.ghost_recv_dict.has_key(iproc): |
---|
104 | |
---|
105 | Idg = domain.ghost_recv_dict[iproc][0] |
---|
106 | X = domain.ghost_recv_dict[iproc][2] |
---|
107 | |
---|
108 | X = pypar.receive(int(iproc), buffer=X, bypass=True) |
---|
109 | |
---|
110 | for i, q in enumerate(domain.conserved_quantities): |
---|
111 | #print 'Receive',i,q |
---|
112 | Q_cv = domain.quantities[q].centroid_values |
---|
113 | num.put(Q_cv, Idg, X[:,i]) |
---|
114 | |
---|
115 | #local update of ghost cells |
---|
116 | iproc = domain.processor |
---|
117 | if domain.full_send_dict.has_key(iproc): |
---|
118 | |
---|
119 | # LINDA: |
---|
120 | # now store full as local id, global id, value |
---|
121 | Idf = domain.full_send_dict[iproc][0] |
---|
122 | |
---|
123 | # LINDA: |
---|
124 | # now store ghost as local id, global id, value |
---|
125 | Idg = domain.ghost_recv_dict[iproc][0] |
---|
126 | |
---|
127 | for i, q in enumerate(domain.conserved_quantities): |
---|
128 | #print 'LOCAL SEND RECEIVE',i,q |
---|
129 | Q_cv = domain.quantities[q].centroid_values |
---|
130 | num.put(Q_cv, Idg, num.take(Q_cv, Idf)) |
---|
131 | |
---|
132 | domain.communication_time += time.time()-t0 |
---|
133 | |
---|
134 | |
---|
135 | |
---|
136 | def communicate_ghosts_asynchronous(domain): |
---|
137 | |
---|
138 | # We must send the information from the full cells and |
---|
139 | # receive the information for the ghost cells |
---|
140 | # We have a dictionary of lists with ghosts expecting updates from |
---|
141 | # the separate processors |
---|
142 | # Using isend and irecv |
---|
143 | |
---|
144 | import numpy as num |
---|
145 | import time |
---|
146 | t0 = time.time() |
---|
147 | |
---|
148 | # update of non-local ghost cells by copying full cell data into the |
---|
149 | # Xout buffer arrays |
---|
150 | |
---|
151 | #iproc == domain.processor |
---|
152 | |
---|
153 | #Setup send buffer arrays for sending full data to other processors |
---|
154 | for send_proc in domain.full_send_dict: |
---|
155 | Idf = domain.full_send_dict[send_proc][0] |
---|
156 | Xout = domain.full_send_dict[send_proc][2] |
---|
157 | |
---|
158 | for i, q in enumerate(domain.conserved_quantities): |
---|
159 | #print 'Store send data',i,q |
---|
160 | Q_cv = domain.quantities[q].centroid_values |
---|
161 | Xout[:,i] = num.take(Q_cv, Idf) |
---|
162 | |
---|
163 | |
---|
164 | |
---|
165 | # from pprint import pprint |
---|
166 | # |
---|
167 | # if pypar.rank() == 0: |
---|
168 | # print 'Before commun 0' |
---|
169 | # pprint(domain.full_send_dict) |
---|
170 | # |
---|
171 | # if pypar.rank() == 1: |
---|
172 | # print 'Before commun 1' |
---|
173 | # pprint(domain.full_send_dict) |
---|
174 | |
---|
175 | |
---|
176 | # Do all the comuunication using isend/irecv via the buffers in the |
---|
177 | # full_send_dict and ghost_recv_dict |
---|
178 | from anuga.parallel import mpiextras |
---|
179 | |
---|
180 | mpiextras.send_recv_via_dicts(domain.full_send_dict,domain.ghost_recv_dict) |
---|
181 | |
---|
182 | # |
---|
183 | # if pypar.rank() == 0: |
---|
184 | # print 'After commun 0' |
---|
185 | # pprint(domain.ghost_recv_dict) |
---|
186 | # |
---|
187 | # if pypar.rank() == 1: |
---|
188 | # print 'After commun 1' |
---|
189 | # pprint(domain.ghost_recv_dict) |
---|
190 | |
---|
191 | # Now copy data from receive buffers to the domain |
---|
192 | for recv_proc in domain.ghost_recv_dict: |
---|
193 | Idg = domain.ghost_recv_dict[recv_proc][0] |
---|
194 | X = domain.ghost_recv_dict[recv_proc][2] |
---|
195 | |
---|
196 | #print recv_proc |
---|
197 | #print X |
---|
198 | |
---|
199 | for i, q in enumerate(domain.conserved_quantities): |
---|
200 | #print 'Read receive data',i,q |
---|
201 | Q_cv = domain.quantities[q].centroid_values |
---|
202 | num.put(Q_cv, Idg, X[:,i]) |
---|
203 | |
---|
204 | |
---|
205 | domain.communication_time += time.time()-t0 |
---|
206 | |
---|
207 | |
---|