1 | """Simple water flow example using ANUGA |
---|
2 | |
---|
3 | Water flowing down a channel with a topography that varies with time |
---|
4 | """ |
---|
5 | |
---|
6 | #------------------------------------------------------------------------------ |
---|
7 | # Import necessary modules |
---|
8 | #------------------------------------------------------------------------------ |
---|
9 | from anuga import rectangular_cross |
---|
10 | from anuga import Domain |
---|
11 | from anuga import Reflective_boundary |
---|
12 | from anuga import Dirichlet_boundary |
---|
13 | from anuga import Time_boundary |
---|
14 | |
---|
15 | #------------------------------------------------------------------------------ |
---|
16 | # Setup computational domain |
---|
17 | #------------------------------------------------------------------------------ |
---|
18 | length = 24. |
---|
19 | width = 5. |
---|
20 | dx = dy = 0.2 #.1 # Resolution: Length of subdivisions on both axes |
---|
21 | |
---|
22 | points, vertices, boundary = rectangular_cross(int(length/dx), int(width/dy), |
---|
23 | len1=length, len2=width) |
---|
24 | domain = Domain(points, vertices, boundary) |
---|
25 | domain.set_name('channel_variable_bed_0.2_newviewer') # Output name |
---|
26 | print domain.statistics() |
---|
27 | domain.set_quantities_to_be_stored({'elevation': 2, |
---|
28 | 'stage': 2}) |
---|
29 | |
---|
30 | #------------------------------------------------------------------------------ |
---|
31 | # Setup initial conditions |
---|
32 | #------------------------------------------------------------------------------ |
---|
33 | def topography(x,y): |
---|
34 | """Complex topography defined by a function of vectors x and y.""" |
---|
35 | |
---|
36 | z = -x/100 |
---|
37 | |
---|
38 | N = len(x) |
---|
39 | for i in range(N): |
---|
40 | # Step |
---|
41 | if 2 < x[i] < 4: |
---|
42 | z[i] += 0.4 - 0.05*y[i] |
---|
43 | |
---|
44 | # Permanent pole |
---|
45 | if (x[i] - 8)**2 + (y[i] - 2)**2 < 0.4**2: |
---|
46 | z[i] += 1 |
---|
47 | return z |
---|
48 | |
---|
49 | |
---|
50 | def pole_increment(x,y): |
---|
51 | """This provides a small increment to a pole located mid stream |
---|
52 | For use with variable elevation data |
---|
53 | """ |
---|
54 | |
---|
55 | z = 0.0*x |
---|
56 | |
---|
57 | N = len(x) |
---|
58 | for i in range(N): |
---|
59 | # Pole 1 |
---|
60 | if (x[i] - 12)**2 + (y[i] - 3)**2 < 0.4**2: |
---|
61 | z[i] += 0.01 |
---|
62 | |
---|
63 | for i in range(N): |
---|
64 | # Pole 2 |
---|
65 | if (x[i] - 14)**2 + (y[i] - 2)**2 < 0.4**2: |
---|
66 | z[i] += 0.005 |
---|
67 | |
---|
68 | return z |
---|
69 | |
---|
70 | |
---|
71 | domain.set_quantity('elevation', topography) # elevation is a function |
---|
72 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
73 | domain.set_quantity('stage', expression='elevation') # Dry initial condition |
---|
74 | |
---|
75 | #------------------------------------------------------------------------------ |
---|
76 | # Setup boundary conditions |
---|
77 | #------------------------------------------------------------------------------ |
---|
78 | Bi = Dirichlet_boundary([0.4, 0, 0]) # Inflow |
---|
79 | Br = Reflective_boundary(domain) # Solid reflective wall |
---|
80 | Bo = Dirichlet_boundary([-5, 0, 0]) # Outflow |
---|
81 | |
---|
82 | domain.set_boundary({'left': Bi, 'right': Bo, 'top': Br, 'bottom': Br}) |
---|
83 | |
---|
84 | #------------------------------------------------------------------------------ |
---|
85 | # Evolve system through time |
---|
86 | #------------------------------------------------------------------------------ |
---|
87 | |
---|
88 | growing = False |
---|
89 | shrinking = False |
---|
90 | done = False |
---|
91 | for t in domain.evolve(yieldstep=0.1, finaltime=40.0): |
---|
92 | print domain.timestepping_statistics() |
---|
93 | |
---|
94 | #w = domain.get_quantity('stage').\ |
---|
95 | # get_values(interpolation_points=[[18, 2.5]]) |
---|
96 | #print 'Level at gauge point = %.2fm' % w |
---|
97 | |
---|
98 | #z = domain.get_quantity('elevation').\ |
---|
99 | # get_values(interpolation_points=[[12, 3]]) |
---|
100 | #print 'Elevation at pole location = %.2fm' % z |
---|
101 | |
---|
102 | # Start variable elevation after 10 seconds |
---|
103 | if t > 10 and not (shrinking or growing or done): |
---|
104 | growing = True |
---|
105 | |
---|
106 | # Stop growing when pole has reached a certain height |
---|
107 | if t > 16 and growing: |
---|
108 | growing = False |
---|
109 | shrinking = False |
---|
110 | |
---|
111 | # Start shrinking |
---|
112 | if t > 20: |
---|
113 | shrinking = True |
---|
114 | growing = False |
---|
115 | |
---|
116 | # Stop changing when pole has shrunk to original level |
---|
117 | if t > 25 and shrinking: |
---|
118 | done = True |
---|
119 | shrinking = growing = False |
---|
120 | domain.set_quantity('elevation', topography) |
---|
121 | |
---|
122 | # Grow or shrink |
---|
123 | if growing: |
---|
124 | domain.add_quantity('elevation', pole_increment) |
---|
125 | |
---|
126 | if shrinking: |
---|
127 | domain.add_quantity('elevation', lambda x,y: -2*pole_increment(x,y)) |
---|
128 | |
---|