[5897] | 1 | """Class Domain - 2D triangular domains for finite-volume computations of |
---|
| 2 | conservation laws. |
---|
[7780] | 3 | |
---|
| 4 | This is the base class for various domain models, such as: the Advection |
---|
| 5 | implementation is a simple algorithm, mainly for testing purposes, and |
---|
| 6 | the standard Shallow Water Wave domain (simply known as Domain) is the |
---|
| 7 | standard for realistic simulation. |
---|
[5897] | 8 | |
---|
| 9 | |
---|
| 10 | Copyright 2004 |
---|
| 11 | Ole Nielsen, Stephen Roberts, Duncan Gray |
---|
| 12 | Geoscience Australia |
---|
| 13 | """ |
---|
| 14 | |
---|
[6226] | 15 | import types |
---|
| 16 | from time import time as walltime |
---|
| 17 | |
---|
[5897] | 18 | from anuga.abstract_2d_finite_volumes.neighbour_mesh import Mesh |
---|
[7737] | 19 | from pmesh2domain import pmesh_to_domain |
---|
| 20 | from region import Set_region as region_set_region |
---|
[7711] | 21 | from anuga.geometry.polygon import inside_polygon |
---|
[5897] | 22 | from anuga.abstract_2d_finite_volumes.util import get_textual_float |
---|
[6129] | 23 | from quantity import Quantity |
---|
[7317] | 24 | import anuga.utilities.log as log |
---|
[6129] | 25 | |
---|
[7276] | 26 | import numpy as num |
---|
[5897] | 27 | |
---|
[7737] | 28 | class Generic_Domain: |
---|
[7810] | 29 | ''' |
---|
| 30 | Generic computational Domain constructor. |
---|
[6181] | 31 | # @param source Name of mesh file or coords of mesh vertices. |
---|
| 32 | # @param triangles Mesh connectivity (see mesh.py for more information). |
---|
| 33 | # @param boundary (see mesh.py for more information) |
---|
| 34 | # @param conserved_quantities List of names of quantities to be conserved. |
---|
| 35 | # @param other_quantities List of names of other quantities. |
---|
[6226] | 36 | # @param tagged_elements ?? |
---|
| 37 | # @param geo_reference ?? |
---|
| 38 | # @param use_inscribed_circle ?? |
---|
| 39 | # @param mesh_filename ?? |
---|
| 40 | # @param use_cache ?? |
---|
| 41 | # @param verbose True if this method is to be verbose. |
---|
| 42 | # @param full_send_dict ?? |
---|
| 43 | # @param ghost_recv_dict ?? |
---|
| 44 | # @param processor ?? |
---|
| 45 | # @param numproc ?? |
---|
| 46 | # @param number_of_full_nodes ?? |
---|
[7810] | 47 | # @param number_of_full_triangles ?? |
---|
| 48 | ''' |
---|
| 49 | |
---|
[6181] | 50 | def __init__(self, source=None, |
---|
| 51 | triangles=None, |
---|
| 52 | boundary=None, |
---|
| 53 | conserved_quantities=None, |
---|
[7519] | 54 | evolved_quantities=None, |
---|
[6181] | 55 | other_quantities=None, |
---|
| 56 | tagged_elements=None, |
---|
| 57 | geo_reference=None, |
---|
| 58 | use_inscribed_circle=False, |
---|
| 59 | mesh_filename=None, |
---|
| 60 | use_cache=False, |
---|
| 61 | verbose=False, |
---|
| 62 | full_send_dict=None, |
---|
| 63 | ghost_recv_dict=None, |
---|
| 64 | processor=0, |
---|
| 65 | numproc=1, |
---|
| 66 | number_of_full_nodes=None, |
---|
| 67 | number_of_full_triangles=None): |
---|
[5897] | 68 | |
---|
| 69 | """Instantiate generic computational Domain. |
---|
| 70 | |
---|
| 71 | Input: |
---|
| 72 | source: Either a mesh filename or coordinates of mesh vertices. |
---|
| 73 | If it is a filename values specified for triangles will |
---|
| 74 | be overridden. |
---|
| 75 | triangles: Mesh connectivity (see mesh.py for more information) |
---|
| 76 | boundary: See mesh.py for more information |
---|
| 77 | |
---|
| 78 | conserved_quantities: List of quantity names entering the |
---|
| 79 | conservation equations |
---|
[7519] | 80 | evolved_quantities: List of all quantities that evolve |
---|
[5897] | 81 | other_quantities: List of other quantity names |
---|
| 82 | |
---|
| 83 | tagged_elements: |
---|
| 84 | ... |
---|
| 85 | """ |
---|
| 86 | |
---|
[6717] | 87 | number_of_full_nodes=None |
---|
| 88 | number_of_full_triangles=None |
---|
| 89 | |
---|
[5897] | 90 | # Determine whether source is a mesh filename or coordinates |
---|
| 91 | if type(source) == types.StringType: |
---|
| 92 | mesh_filename = source |
---|
| 93 | else: |
---|
| 94 | coordinates = source |
---|
| 95 | |
---|
| 96 | # In case a filename has been specified, extract content |
---|
| 97 | if mesh_filename is not None: |
---|
| 98 | coordinates, triangles, boundary, vertex_quantity_dict, \ |
---|
| 99 | tagged_elements, geo_reference = \ |
---|
| 100 | pmesh_to_domain(file_name=mesh_filename, |
---|
| 101 | use_cache=use_cache, |
---|
| 102 | verbose=verbose) |
---|
| 103 | |
---|
| 104 | # Initialise underlying mesh structure |
---|
[6191] | 105 | self.mesh = Mesh(coordinates, triangles, |
---|
| 106 | boundary=boundary, |
---|
| 107 | tagged_elements=tagged_elements, |
---|
| 108 | geo_reference=geo_reference, |
---|
| 109 | use_inscribed_circle=use_inscribed_circle, |
---|
| 110 | number_of_full_nodes=number_of_full_nodes, |
---|
| 111 | number_of_full_triangles=number_of_full_triangles, |
---|
| 112 | verbose=verbose) |
---|
[6226] | 113 | |
---|
[6191] | 114 | # Expose Mesh attributes (FIXME: Maybe turn into methods) |
---|
[6717] | 115 | self.triangles = self.mesh.triangles |
---|
[6191] | 116 | self.centroid_coordinates = self.mesh.centroid_coordinates |
---|
[6226] | 117 | self.vertex_coordinates = self.mesh.vertex_coordinates |
---|
[6191] | 118 | self.boundary = self.mesh.boundary |
---|
| 119 | self.neighbours = self.mesh.neighbours |
---|
[6226] | 120 | self.surrogate_neighbours = self.mesh.surrogate_neighbours |
---|
[6191] | 121 | self.neighbour_edges = self.mesh.neighbour_edges |
---|
| 122 | self.normals = self.mesh.normals |
---|
[6226] | 123 | self.edgelengths = self.mesh.edgelengths |
---|
| 124 | self.radii = self.mesh.radii |
---|
| 125 | self.areas = self.mesh.areas |
---|
| 126 | |
---|
| 127 | self.number_of_boundaries = self.mesh.number_of_boundaries |
---|
[6191] | 128 | self.number_of_full_nodes = self.mesh.number_of_full_nodes |
---|
[6226] | 129 | self.number_of_full_triangles = self.mesh.number_of_full_triangles |
---|
[7810] | 130 | self.number_of_triangles_per_node = \ |
---|
| 131 | self.mesh.number_of_triangles_per_node |
---|
[5897] | 132 | |
---|
[6191] | 133 | self.vertex_value_indices = self.mesh.vertex_value_indices |
---|
[6226] | 134 | self.number_of_triangles = self.mesh.number_of_triangles |
---|
[6191] | 135 | |
---|
| 136 | self.geo_reference = self.mesh.geo_reference |
---|
[6226] | 137 | |
---|
[7317] | 138 | if verbose: log.critical('Initialising Domain') |
---|
[5897] | 139 | |
---|
[6181] | 140 | # List of quantity names entering the conservation equations |
---|
[5897] | 141 | if conserved_quantities is None: |
---|
| 142 | self.conserved_quantities = [] |
---|
| 143 | else: |
---|
| 144 | self.conserved_quantities = conserved_quantities |
---|
| 145 | |
---|
[7519] | 146 | if evolved_quantities is None: |
---|
| 147 | self.evolved_quantities = self.conserved_quantities |
---|
| 148 | else: |
---|
| 149 | self.evolved_quantities = evolved_quantities |
---|
| 150 | |
---|
[5897] | 151 | # List of other quantity names |
---|
| 152 | if other_quantities is None: |
---|
| 153 | self.other_quantities = [] |
---|
| 154 | else: |
---|
| 155 | self.other_quantities = other_quantities |
---|
| 156 | |
---|
[7810] | 157 | # Test that conserved_quantities are stored in the first entries of |
---|
| 158 | # evolved_quantities |
---|
[7519] | 159 | for i, quantity in enumerate(self.conserved_quantities): |
---|
[7810] | 160 | msg = 'The conserved quantities must be the first entries of ' |
---|
| 161 | msg += 'evolved_quantities' |
---|
[7519] | 162 | assert quantity == self.evolved_quantities[i], msg |
---|
| 163 | |
---|
| 164 | |
---|
[6051] | 165 | # Build dictionary of Quantity instances keyed by quantity names |
---|
[5897] | 166 | self.quantities = {} |
---|
| 167 | |
---|
[7519] | 168 | for name in self.evolved_quantities: |
---|
[5897] | 169 | self.quantities[name] = Quantity(self) |
---|
| 170 | for name in self.other_quantities: |
---|
| 171 | self.quantities[name] = Quantity(self) |
---|
| 172 | |
---|
[7967] | 173 | # Create an empty list for forcing terms |
---|
[5897] | 174 | self.forcing_terms = [] |
---|
| 175 | |
---|
[7967] | 176 | # Create an empty list for fractional step operators |
---|
| 177 | self.fractional_step_operators = [] |
---|
| 178 | |
---|
[6051] | 179 | # Setup the ghost cell communication |
---|
[5897] | 180 | if full_send_dict is None: |
---|
| 181 | self.full_send_dict = {} |
---|
| 182 | else: |
---|
[6181] | 183 | self.full_send_dict = full_send_dict |
---|
[5897] | 184 | |
---|
| 185 | # List of other quantity names |
---|
| 186 | if ghost_recv_dict is None: |
---|
| 187 | self.ghost_recv_dict = {} |
---|
| 188 | else: |
---|
| 189 | self.ghost_recv_dict = ghost_recv_dict |
---|
| 190 | |
---|
| 191 | self.processor = processor |
---|
| 192 | self.numproc = numproc |
---|
| 193 | |
---|
| 194 | # Setup Communication Buffers |
---|
[7317] | 195 | if verbose: log.critical('Domain: Set up communication buffers ' |
---|
| 196 | '(parallel)') |
---|
[5897] | 197 | self.nsys = len(self.conserved_quantities) |
---|
| 198 | for key in self.full_send_dict: |
---|
| 199 | buffer_shape = self.full_send_dict[key][0].shape[0] |
---|
[6181] | 200 | self.full_send_dict[key].append(num.zeros((buffer_shape, self.nsys), |
---|
[7276] | 201 | num.float)) |
---|
[5897] | 202 | |
---|
| 203 | for key in self.ghost_recv_dict: |
---|
| 204 | buffer_shape = self.ghost_recv_dict[key][0].shape[0] |
---|
[7810] | 205 | self.ghost_recv_dict[key].append( \ |
---|
| 206 | num.zeros((buffer_shape, self.nsys), |
---|
[7276] | 207 | num.float)) |
---|
[5897] | 208 | |
---|
| 209 | # Setup cell full flag |
---|
| 210 | # =1 for full |
---|
| 211 | # =0 for ghost |
---|
| 212 | N = len(self) #number_of_elements |
---|
| 213 | self.number_of_elements = N |
---|
[7276] | 214 | self.tri_full_flag = num.ones(N, num.int) |
---|
[5897] | 215 | for i in self.ghost_recv_dict.keys(): |
---|
| 216 | for id in self.ghost_recv_dict[i][0]: |
---|
| 217 | self.tri_full_flag[id] = 0 |
---|
| 218 | |
---|
| 219 | # Test the assumption that all full triangles are store before |
---|
| 220 | # the ghost triangles. |
---|
[6181] | 221 | if not num.allclose(self.tri_full_flag[:self.number_of_full_nodes], 1): |
---|
[6717] | 222 | if self.numproc>1: |
---|
[7317] | 223 | log.critical('WARNING: Not all full triangles are store before ' |
---|
| 224 | 'ghost triangles') |
---|
[5897] | 225 | |
---|
| 226 | # Defaults |
---|
| 227 | from anuga.config import max_smallsteps, beta_w, epsilon |
---|
| 228 | from anuga.config import CFL |
---|
| 229 | from anuga.config import timestepping_method |
---|
| 230 | from anuga.config import protect_against_isolated_degenerate_timesteps |
---|
[6181] | 231 | from anuga.config import default_order |
---|
[7485] | 232 | from anuga.config import max_timestep, min_timestep |
---|
[6181] | 233 | |
---|
[5897] | 234 | self.beta_w = beta_w |
---|
| 235 | self.epsilon = epsilon |
---|
[6181] | 236 | self.protect_against_isolated_degenerate_timesteps = \ |
---|
| 237 | protect_against_isolated_degenerate_timesteps |
---|
| 238 | |
---|
[7573] | 239 | |
---|
| 240 | self.centroid_transmissive_bc = False |
---|
[5957] | 241 | self.set_default_order(default_order) |
---|
[5897] | 242 | |
---|
| 243 | self.smallsteps = 0 |
---|
| 244 | self.max_smallsteps = max_smallsteps |
---|
| 245 | self.number_of_steps = 0 |
---|
| 246 | self.number_of_first_order_steps = 0 |
---|
| 247 | self.CFL = CFL |
---|
| 248 | self.set_timestepping_method(timestepping_method) |
---|
| 249 | self.set_beta(beta_w) |
---|
[7485] | 250 | self.set_evolve_max_timestep(max_timestep) |
---|
| 251 | self.set_evolve_min_timestep(min_timestep) |
---|
[6181] | 252 | self.boundary_map = None # Will be populated by set_boundary |
---|
[5897] | 253 | |
---|
| 254 | # Model time |
---|
| 255 | self.time = 0.0 |
---|
| 256 | self.finaltime = None |
---|
[7492] | 257 | self.recorded_min_timestep = self.recorded_max_timestep = 0.0 |
---|
[5897] | 258 | self.starttime = 0 # Physical starttime if any |
---|
| 259 | # (0 is 1 Jan 1970 00:00:00) |
---|
| 260 | self.timestep = 0.0 |
---|
| 261 | self.flux_timestep = 0.0 |
---|
| 262 | |
---|
| 263 | self.last_walltime = walltime() |
---|
[6181] | 264 | |
---|
[5897] | 265 | # Monitoring |
---|
| 266 | self.quantities_to_be_monitored = None |
---|
| 267 | self.monitor_polygon = None |
---|
[6181] | 268 | self.monitor_time_interval = None |
---|
[5897] | 269 | self.monitor_indices = None |
---|
| 270 | |
---|
| 271 | # Checkpointing and storage |
---|
| 272 | from anuga.config import default_datadir |
---|
[6181] | 273 | |
---|
[5897] | 274 | self.datadir = default_datadir |
---|
| 275 | self.simulation_name = 'domain' |
---|
| 276 | self.checkpoint = False |
---|
| 277 | |
---|
[6181] | 278 | # To avoid calculating the flux across each edge twice, keep an integer |
---|
| 279 | # (boolean) array, to be used during the flux calculation. |
---|
[5897] | 280 | N = len(self) # Number_of_triangles |
---|
[7276] | 281 | self.already_computed_flux = num.zeros((N, 3), num.int) |
---|
[5897] | 282 | |
---|
| 283 | # Storage for maximal speeds computed for each triangle by |
---|
[6181] | 284 | # compute_fluxes. |
---|
[5897] | 285 | # This is used for diagnostics only (reset at every yieldstep) |
---|
[7276] | 286 | self.max_speed = num.zeros(N, num.float) |
---|
[5897] | 287 | |
---|
| 288 | if mesh_filename is not None: |
---|
[6181] | 289 | # If the mesh file passed any quantity values, |
---|
| 290 | # initialise with these values. |
---|
[7317] | 291 | if verbose: log.critical('Domain: Initialising quantity values') |
---|
[5897] | 292 | self.set_quantity_vertices_dict(vertex_quantity_dict) |
---|
| 293 | |
---|
[7317] | 294 | if verbose: log.critical('Domain: Done') |
---|
[5897] | 295 | |
---|
[6226] | 296 | ###### |
---|
[6191] | 297 | # Expose underlying Mesh functionality |
---|
[6226] | 298 | ###### |
---|
| 299 | |
---|
[6191] | 300 | def __len__(self): |
---|
| 301 | return len(self.mesh) |
---|
| 302 | |
---|
| 303 | def get_centroid_coordinates(self, *args, **kwargs): |
---|
| 304 | return self.mesh.get_centroid_coordinates(*args, **kwargs) |
---|
[6226] | 305 | |
---|
[6191] | 306 | def get_radii(self, *args, **kwargs): |
---|
[6226] | 307 | return self.mesh.get_radii(*args, **kwargs) |
---|
| 308 | |
---|
[6191] | 309 | def get_areas(self, *args, **kwargs): |
---|
[6226] | 310 | return self.mesh.get_areas(*args, **kwargs) |
---|
[6191] | 311 | |
---|
| 312 | def get_area(self, *args, **kwargs): |
---|
| 313 | return self.mesh.get_area(*args, **kwargs) |
---|
| 314 | |
---|
| 315 | def get_vertex_coordinates(self, *args, **kwargs): |
---|
[6226] | 316 | return self.mesh.get_vertex_coordinates(*args, **kwargs) |
---|
[7498] | 317 | |
---|
| 318 | def get_vertex_coordinate(self, *args, **kwargs): |
---|
| 319 | return self.mesh.get_vertex_coordinate(*args, **kwargs) |
---|
| 320 | |
---|
| 321 | def get_edge_midpoint_coordinates(self, *args, **kwargs): |
---|
[7810] | 322 | return self.mesh.get_edge_midpoint_coordinates(*args, **kwargs) |
---|
[7498] | 323 | |
---|
| 324 | def get_edge_midpoint_coordinate(self, *args, **kwargs): |
---|
| 325 | return self.mesh.get_edge_midpoint_coordinate(*args, **kwargs) |
---|
[6191] | 326 | |
---|
| 327 | def get_triangles(self, *args, **kwargs): |
---|
[6226] | 328 | return self.mesh.get_triangles(*args, **kwargs) |
---|
| 329 | |
---|
[6191] | 330 | def get_nodes(self, *args, **kwargs): |
---|
| 331 | return self.mesh.get_nodes(*args, **kwargs) |
---|
[6226] | 332 | |
---|
[6191] | 333 | def get_number_of_nodes(self, *args, **kwargs): |
---|
| 334 | return self.mesh.get_number_of_nodes(*args, **kwargs) |
---|
[6226] | 335 | |
---|
[7519] | 336 | def get_number_of_triangles(self, *args, **kwargs): |
---|
| 337 | return self.mesh.get_number_of_triangles(*args, **kwargs) |
---|
| 338 | |
---|
[6191] | 339 | def get_normal(self, *args, **kwargs): |
---|
[6226] | 340 | return self.mesh.get_normal(*args, **kwargs) |
---|
| 341 | |
---|
[6717] | 342 | def get_triangle_containing_point(self, *args, **kwargs): |
---|
| 343 | return self.mesh.get_triangle_containing_point(*args, **kwargs) |
---|
| 344 | |
---|
[6191] | 345 | def get_intersecting_segments(self, *args, **kwargs): |
---|
| 346 | return self.mesh.get_intersecting_segments(*args, **kwargs) |
---|
[6226] | 347 | |
---|
[6191] | 348 | def get_disconnected_triangles(self, *args, **kwargs): |
---|
| 349 | return self.mesh.get_disconnected_triangles(*args, **kwargs) |
---|
[6226] | 350 | |
---|
[6191] | 351 | def get_boundary_tags(self, *args, **kwargs): |
---|
| 352 | return self.mesh.get_boundary_tags(*args, **kwargs) |
---|
| 353 | |
---|
| 354 | def get_boundary_polygon(self, *args, **kwargs): |
---|
| 355 | return self.mesh.get_boundary_polygon(*args, **kwargs) |
---|
[6226] | 356 | |
---|
[6309] | 357 | # FIXME(Ole): This doesn't seem to be required |
---|
[6191] | 358 | def get_number_of_triangles_per_node(self, *args, **kwargs): |
---|
| 359 | return self.mesh.get_number_of_triangles_per_node(*args, **kwargs) |
---|
[6226] | 360 | |
---|
[6191] | 361 | def get_triangles_and_vertices_per_node(self, *args, **kwargs): |
---|
| 362 | return self.mesh.get_triangles_and_vertices_per_node(*args, **kwargs) |
---|
[6226] | 363 | |
---|
[6191] | 364 | def get_interpolation_object(self, *args, **kwargs): |
---|
[6226] | 365 | return self.mesh.get_interpolation_object(*args, **kwargs) |
---|
| 366 | |
---|
[6191] | 367 | def get_tagged_elements(self, *args, **kwargs): |
---|
[6226] | 368 | return self.mesh.get_tagged_elements(*args, **kwargs) |
---|
| 369 | |
---|
[6191] | 370 | def get_lone_vertices(self, *args, **kwargs): |
---|
[6226] | 371 | return self.mesh.get_lone_vertices(*args, **kwargs) |
---|
| 372 | |
---|
[6191] | 373 | def get_unique_vertices(self, *args, **kwargs): |
---|
[6226] | 374 | return self.mesh.get_unique_vertices(*args, **kwargs) |
---|
[6191] | 375 | |
---|
| 376 | def get_georeference(self, *args, **kwargs): |
---|
| 377 | return self.mesh.get_georeference(*args, **kwargs) |
---|
[6226] | 378 | |
---|
[6191] | 379 | def set_georeference(self, *args, **kwargs): |
---|
[6226] | 380 | self.mesh.set_georeference(*args, **kwargs) |
---|
| 381 | |
---|
[6191] | 382 | def build_tagged_elements_dictionary(self, *args, **kwargs): |
---|
| 383 | self.mesh.build_tagged_elements_dictionary(*args, **kwargs) |
---|
[6226] | 384 | |
---|
[6191] | 385 | def statistics(self, *args, **kwargs): |
---|
[6226] | 386 | return self.mesh.statistics(*args, **kwargs) |
---|
[6309] | 387 | |
---|
| 388 | def get_extent(self, *args, **kwargs): |
---|
| 389 | return self.mesh.get_extent(*args, **kwargs) |
---|
[6226] | 390 | |
---|
[6181] | 391 | ## |
---|
| 392 | # @brief Get conserved quantities for a volume. |
---|
| 393 | # @param vol_id ID of the volume we want the conserved quantities for. |
---|
| 394 | # @param vertex If specified, use as index for edge values. |
---|
| 395 | # @param edge If specified, use as index for edge values. |
---|
| 396 | # @return Vector of conserved quantities. |
---|
| 397 | # @note If neither 'vertex' or 'edge' specified, use centroid values. |
---|
| 398 | # @note If both 'vertex' and 'edge' specified, raise exception. |
---|
| 399 | def get_conserved_quantities(self, vol_id, |
---|
| 400 | vertex=None, |
---|
| 401 | edge=None): |
---|
[6226] | 402 | """Get conserved quantities at volume vol_id. |
---|
[5897] | 403 | |
---|
| 404 | If vertex is specified use it as index for vertex values |
---|
| 405 | If edge is specified use it as index for edge values |
---|
| 406 | If neither are specified use centroid values |
---|
| 407 | If both are specified an exeception is raised |
---|
| 408 | |
---|
| 409 | Return value: Vector of length == number_of_conserved quantities |
---|
| 410 | """ |
---|
| 411 | |
---|
| 412 | if not (vertex is None or edge is None): |
---|
| 413 | msg = 'Values for both vertex and edge was specified.' |
---|
| 414 | msg += 'Only one (or none) is allowed.' |
---|
[6181] | 415 | raise Exception, msg |
---|
[5897] | 416 | |
---|
[7276] | 417 | q = num.zeros(len(self.conserved_quantities), num.float) |
---|
[5897] | 418 | |
---|
| 419 | for i, name in enumerate(self.conserved_quantities): |
---|
| 420 | Q = self.quantities[name] |
---|
| 421 | if vertex is not None: |
---|
| 422 | q[i] = Q.vertex_values[vol_id, vertex] |
---|
| 423 | elif edge is not None: |
---|
| 424 | q[i] = Q.edge_values[vol_id, edge] |
---|
| 425 | else: |
---|
| 426 | q[i] = Q.centroid_values[vol_id] |
---|
| 427 | |
---|
| 428 | return q |
---|
| 429 | |
---|
[6181] | 430 | ## |
---|
[7519] | 431 | # @brief Get evolved quantities for a volume. |
---|
| 432 | # @param vol_id ID of the volume we want the conserved quantities for. |
---|
| 433 | # @param vertex If specified, use as index for edge values. |
---|
| 434 | # @param edge If specified, use as index for edge values. |
---|
| 435 | # @return Vector of conserved quantities. |
---|
| 436 | # @note If neither 'vertex' or 'edge' specified, use centroid values. |
---|
| 437 | # @note If both 'vertex' and 'edge' specified, raise exception. |
---|
| 438 | def get_evolved_quantities(self, vol_id, |
---|
| 439 | vertex=None, |
---|
| 440 | edge=None): |
---|
| 441 | """Get evolved quantities at volume vol_id. |
---|
| 442 | |
---|
| 443 | If vertex is specified use it as index for vertex values |
---|
| 444 | If edge is specified use it as index for edge values |
---|
| 445 | If neither are specified use centroid values |
---|
| 446 | If both are specified an exeception is raised |
---|
| 447 | |
---|
| 448 | Return value: Vector of length == number_of_conserved quantities |
---|
| 449 | """ |
---|
| 450 | |
---|
| 451 | if not (vertex is None or edge is None): |
---|
| 452 | msg = 'Values for both vertex and edge was specified.' |
---|
| 453 | msg += 'Only one (or none) is allowed.' |
---|
| 454 | raise Exception, msg |
---|
| 455 | |
---|
| 456 | q = num.zeros(len(self.evolved_quantities), num.float) |
---|
| 457 | |
---|
| 458 | for i, name in enumerate(self.evolved_quantities): |
---|
| 459 | Q = self.quantities[name] |
---|
| 460 | if vertex is not None: |
---|
| 461 | q[i] = Q.vertex_values[vol_id, vertex] |
---|
| 462 | elif edge is not None: |
---|
| 463 | q[i] = Q.edge_values[vol_id, edge] |
---|
| 464 | else: |
---|
| 465 | q[i] = Q.centroid_values[vol_id] |
---|
| 466 | |
---|
| 467 | return q |
---|
| 468 | |
---|
| 469 | ## |
---|
| 470 | # @brief |
---|
| 471 | # @param flag |
---|
| 472 | def set_CFL(self, cfl=1.0): |
---|
| 473 | """Set CFL parameter, warn if greater than 1.0 |
---|
| 474 | """ |
---|
| 475 | if cfl > 1.0: |
---|
| 476 | self.CFL = cfl |
---|
| 477 | log.warn('Setting CFL > 1.0') |
---|
| 478 | |
---|
| 479 | assert cfl > 0.0 |
---|
| 480 | self.CFL = cfl |
---|
| 481 | |
---|
| 482 | |
---|
| 483 | |
---|
| 484 | ## |
---|
[6181] | 485 | # @brief Set the relative model time. |
---|
| 486 | # @param time The new model time (seconds). |
---|
[5897] | 487 | def set_time(self, time=0.0): |
---|
[6226] | 488 | """Set the model time (seconds).""" |
---|
| 489 | |
---|
[5897] | 490 | # FIXME: this is setting the relative time |
---|
| 491 | # Note that get_time and set_time are now not symmetric |
---|
| 492 | |
---|
| 493 | self.time = time |
---|
| 494 | |
---|
[6181] | 495 | ## |
---|
| 496 | # @brief Get the model time. |
---|
| 497 | # @return The absolute model time (seconds). |
---|
[5897] | 498 | def get_time(self): |
---|
[6226] | 499 | """Get the absolute model time (seconds).""" |
---|
[5897] | 500 | |
---|
[8065] | 501 | return self.time + self.starttime |
---|
[5897] | 502 | |
---|
[8065] | 503 | |
---|
[6181] | 504 | ## |
---|
[7967] | 505 | # @brief Get current timestep. |
---|
| 506 | # @return The curent timestep (seconds). |
---|
| 507 | def get_timestep(self): |
---|
| 508 | """et current timestep (seconds).""" |
---|
| 509 | |
---|
| 510 | return self.timestep |
---|
| 511 | |
---|
| 512 | ## |
---|
[6181] | 513 | # @brief Set the default beta for limiting. |
---|
| 514 | # @param beta The new beta value. |
---|
| 515 | def set_beta(self, beta): |
---|
[6226] | 516 | """Set default beta for limiting.""" |
---|
[5897] | 517 | |
---|
| 518 | self.beta = beta |
---|
| 519 | for name in self.quantities: |
---|
| 520 | Q = self.quantities[name] |
---|
| 521 | Q.set_beta(beta) |
---|
| 522 | |
---|
[6181] | 523 | ## |
---|
| 524 | # @brief Get the beta value used for limiting. |
---|
| 525 | # @return The beta value used for limiting. |
---|
[5897] | 526 | def get_beta(self): |
---|
[6226] | 527 | """Get default beta for limiting.""" |
---|
[5897] | 528 | |
---|
| 529 | return self.beta |
---|
| 530 | |
---|
[7485] | 531 | |
---|
[6181] | 532 | ## |
---|
[7573] | 533 | # @brief Set the behaviour of the transmissive boundary condition |
---|
| 534 | # @param flag. True or False flag |
---|
| 535 | def set_centroid_transmissive_bc(self, flag): |
---|
| 536 | """Set behaviour of the transmissive boundary condition, namely |
---|
| 537 | calculate the BC using the centroid value of neighbouring cell |
---|
| 538 | or the calculated edge value. |
---|
| 539 | |
---|
| 540 | Centroid value is safer. |
---|
| 541 | |
---|
| 542 | Some of the limiters (extrapolate_second_order_and_limit_by_edge) |
---|
| 543 | don't limit boundary edge values (so that linear functions are reconstructed), |
---|
| 544 | |
---|
| 545 | In this case it is possible for a run away inflow to occur at a transmissive |
---|
| 546 | boundary. In this case set centroid_transmissive_bc to True""" |
---|
| 547 | |
---|
| 548 | self.centroid_transmissive_bc = flag |
---|
| 549 | |
---|
| 550 | ## |
---|
| 551 | # @brief Get the centroid_transmissive_bc flag |
---|
| 552 | # @return The beta value used for limiting. |
---|
| 553 | def get_centroid_transmissive_bc(self): |
---|
| 554 | """Get value of centroid_transmissive_bc flag.""" |
---|
| 555 | |
---|
| 556 | return self.centroid_transmissive_bc |
---|
| 557 | |
---|
| 558 | |
---|
| 559 | ## |
---|
[7485] | 560 | # @brief Set the max timestep for time evolution |
---|
| 561 | # @param max_timestep The new max timestep value. |
---|
| 562 | def set_evolve_max_timestep(self, max_timestep): |
---|
| 563 | """Set default max_timestep for evolving.""" |
---|
| 564 | |
---|
| 565 | self.evolve_max_timestep = max_timestep |
---|
| 566 | |
---|
| 567 | |
---|
| 568 | ## |
---|
| 569 | # @brief Get the max timestep for time evolution |
---|
| 570 | # @return The max timestep value. |
---|
| 571 | def get_evolve_max_timestep(self): |
---|
| 572 | """Set default max_timestep for evolving.""" |
---|
| 573 | |
---|
| 574 | return self.evolve_max_timestep |
---|
| 575 | |
---|
| 576 | ## |
---|
| 577 | # @brief Set the min timestep for time evolution |
---|
| 578 | # @param min_timestep The new min timestep value. |
---|
| 579 | def set_evolve_min_timestep(self, min_timestep): |
---|
| 580 | """Set default min_timestep for evolving.""" |
---|
| 581 | |
---|
| 582 | self.evolve_min_timestep = min_timestep |
---|
| 583 | |
---|
| 584 | |
---|
| 585 | ## |
---|
| 586 | # @brief Get the min timestep for time evolution |
---|
| 587 | # @return The min timestep value. |
---|
| 588 | def get_evolve_min_timestep(self): |
---|
| 589 | """Set default max_timestep for evolving.""" |
---|
| 590 | |
---|
| 591 | return self.evolve_min_timestep |
---|
| 592 | |
---|
| 593 | |
---|
| 594 | |
---|
| 595 | ## |
---|
[6181] | 596 | # @brief Set default (spatial) order. |
---|
| 597 | # @param n The new spatial order value. |
---|
| 598 | # @note If 'n' is not 1 or 2, raise exception. |
---|
[5897] | 599 | def set_default_order(self, n): |
---|
[6226] | 600 | """Set default (spatial) order to either 1 or 2.""" |
---|
[5897] | 601 | |
---|
[6181] | 602 | msg = 'Default order must be either 1 or 2. I got %s' % n |
---|
[5897] | 603 | assert n in [1,2], msg |
---|
| 604 | |
---|
| 605 | self.default_order = n |
---|
| 606 | self._order_ = self.default_order |
---|
| 607 | |
---|
[6181] | 608 | ## |
---|
| 609 | # @brief Set values of named quantities. |
---|
| 610 | # @param quantity_dict Dictionary containing name/value pairs. |
---|
[5897] | 611 | def set_quantity_vertices_dict(self, quantity_dict): |
---|
| 612 | """Set values for named quantities. |
---|
[6181] | 613 | Supplied dictionary contains name/value pairs: |
---|
[5897] | 614 | |
---|
[6181] | 615 | name: Name of quantity |
---|
[7276] | 616 | value: Compatible list, numeric array, const or function (see below) |
---|
[5897] | 617 | |
---|
[6181] | 618 | The values will be stored in elements following their internal ordering. |
---|
| 619 | """ |
---|
[5897] | 620 | |
---|
| 621 | # FIXME: Could we name this a bit more intuitively |
---|
| 622 | # E.g. set_quantities_from_dictionary |
---|
| 623 | for key in quantity_dict.keys(): |
---|
| 624 | self.set_quantity(key, quantity_dict[key], location='vertices') |
---|
| 625 | |
---|
[6181] | 626 | ## |
---|
| 627 | # @brief Set value(s) for a named quantity. |
---|
| 628 | # @param name Name of quantity to be updated. |
---|
| 629 | # @param args Positional args. |
---|
| 630 | # @param kwargs Keyword args. |
---|
| 631 | # @note If 'kwargs' dict has 'expression' key, evaluate expression. |
---|
| 632 | def set_quantity(self, name, |
---|
| 633 | *args, **kwargs): |
---|
[5897] | 634 | """Set values for named quantity |
---|
| 635 | |
---|
| 636 | One keyword argument is documented here: |
---|
| 637 | expression = None, # Arbitrary expression |
---|
| 638 | |
---|
| 639 | expression: |
---|
| 640 | Arbitrary expression involving quantity names |
---|
| 641 | |
---|
| 642 | See Quantity.set_values for further documentation. |
---|
| 643 | """ |
---|
| 644 | |
---|
| 645 | # Do the expression stuff |
---|
| 646 | if kwargs.has_key('expression'): |
---|
| 647 | expression = kwargs['expression'] |
---|
| 648 | del kwargs['expression'] |
---|
| 649 | |
---|
| 650 | Q = self.create_quantity_from_expression(expression) |
---|
| 651 | kwargs['quantity'] = Q |
---|
| 652 | |
---|
| 653 | # Assign values |
---|
| 654 | self.quantities[name].set_values(*args, **kwargs) |
---|
[6181] | 655 | |
---|
| 656 | ## |
---|
| 657 | # @brief Add to a named quantity value. |
---|
| 658 | # @param name Name of quantity to be added to. |
---|
| 659 | # @param args Positional args. |
---|
| 660 | # @param kwargs Keyword args. |
---|
| 661 | # @note If 'kwargs' dict has 'expression' key, evaluate expression. |
---|
| 662 | def add_quantity(self, name, |
---|
| 663 | *args, **kwargs): |
---|
[6129] | 664 | """Add values to a named quantity |
---|
[6181] | 665 | |
---|
[6129] | 666 | E.g add_quantity('elevation', X) |
---|
[6181] | 667 | |
---|
[6129] | 668 | Option are the same as in set_quantity. |
---|
| 669 | """ |
---|
[6181] | 670 | |
---|
[6129] | 671 | # Do the expression stuff |
---|
| 672 | if kwargs.has_key('expression'): |
---|
| 673 | expression = kwargs['expression'] |
---|
| 674 | Q2 = self.create_quantity_from_expression(expression) |
---|
[6181] | 675 | else: |
---|
[6129] | 676 | # Create new temporary quantity |
---|
| 677 | Q2 = Quantity(self) |
---|
[6181] | 678 | |
---|
[6129] | 679 | # Assign specified values to temporary quantity |
---|
| 680 | Q2.set_values(*args, **kwargs) |
---|
[6181] | 681 | |
---|
[6129] | 682 | # Add temporary quantity to named quantity |
---|
| 683 | Q1 = self.get_quantity(name) |
---|
| 684 | self.set_quantity(name, Q1 + Q2) |
---|
[5897] | 685 | |
---|
[6181] | 686 | ## |
---|
| 687 | # @brief Get list of quantity names for the Domain. |
---|
| 688 | # @return List of quantity names. |
---|
[5897] | 689 | def get_quantity_names(self): |
---|
| 690 | """Get a list of all the quantity names that this domain is aware of. |
---|
| 691 | Any value in the result should be a valid input to get_quantity. |
---|
| 692 | """ |
---|
[6181] | 693 | |
---|
[5897] | 694 | return self.quantities.keys() |
---|
| 695 | |
---|
[6181] | 696 | ## |
---|
| 697 | # @brief Get a quantity object. |
---|
| 698 | # @param name Name of the quantity value. |
---|
| 699 | # @param location ?? |
---|
| 700 | # @param indices ?? |
---|
| 701 | # @return The quantity value object. |
---|
| 702 | # @note 'location' and 'indices' are unused. |
---|
| 703 | def get_quantity(self, name, |
---|
| 704 | location='vertices', |
---|
| 705 | indices = None): |
---|
[5897] | 706 | """Get pointer to quantity object. |
---|
| 707 | |
---|
| 708 | name: Name of quantity |
---|
| 709 | |
---|
| 710 | See methods inside the quantity object for more options |
---|
| 711 | |
---|
| 712 | FIXME: clean input args |
---|
| 713 | """ |
---|
| 714 | |
---|
| 715 | return self.quantities[name] #.get_values( location, indices = indices) |
---|
| 716 | |
---|
[6181] | 717 | ## |
---|
| 718 | # @brief Create a quantity value from an expression. |
---|
| 719 | # @param expression The expression (string) to be evaluated. |
---|
| 720 | # @return The expression value, evaluated from this Domain's quantities. |
---|
| 721 | # @note Valid expression operators are as defined in class Quantity. |
---|
[5897] | 722 | def create_quantity_from_expression(self, expression): |
---|
[6181] | 723 | """Create new quantity from other quantities using arbitrary expression. |
---|
[5897] | 724 | |
---|
| 725 | Combine existing quantities in domain using expression and return |
---|
| 726 | result as a new quantity. |
---|
| 727 | |
---|
| 728 | Note, the new quantity could e.g. be used in set_quantity |
---|
| 729 | |
---|
| 730 | Valid expressions are limited to operators defined in class Quantity |
---|
| 731 | |
---|
| 732 | Examples creating derived quantities: |
---|
| 733 | Depth = domain.create_quantity_from_expression('stage-elevation') |
---|
[6181] | 734 | exp = '(xmomentum*xmomentum + ymomentum*ymomentum)**0.5' |
---|
[5897] | 735 | Absolute_momentum = domain.create_quantity_from_expression(exp) |
---|
| 736 | """ |
---|
| 737 | |
---|
| 738 | from anuga.abstract_2d_finite_volumes.util import\ |
---|
| 739 | apply_expression_to_dictionary |
---|
[6181] | 740 | |
---|
[5897] | 741 | return apply_expression_to_dictionary(expression, self.quantities) |
---|
| 742 | |
---|
[6181] | 743 | ## |
---|
| 744 | # @brief Associate boundary objects with tagged boundary segments. |
---|
| 745 | # @param boundary_map A dict of boundary objects keyed by symbolic tags to |
---|
| 746 | # matched against tags in the internal dictionary |
---|
| 747 | # self.boundary. |
---|
[5897] | 748 | def set_boundary(self, boundary_map): |
---|
| 749 | """Associate boundary objects with tagged boundary segments. |
---|
| 750 | |
---|
| 751 | Input boundary_map is a dictionary of boundary objects keyed |
---|
| 752 | by symbolic tags to matched against tags in the internal dictionary |
---|
| 753 | self.boundary. |
---|
| 754 | |
---|
| 755 | As result one pointer to a boundary object is stored for each vertex |
---|
| 756 | in the list self.boundary_objects. |
---|
| 757 | More entries may point to the same boundary object |
---|
| 758 | |
---|
| 759 | Schematically the mapping is from two dictionaries to one list |
---|
| 760 | where the index is used as pointer to the boundary_values arrays |
---|
| 761 | within each quantity. |
---|
| 762 | |
---|
| 763 | self.boundary: (vol_id, edge_id): tag |
---|
| 764 | boundary_map (input): tag: boundary_object |
---|
| 765 | ---------------------------------------------- |
---|
| 766 | self.boundary_objects: ((vol_id, edge_id), boundary_object) |
---|
| 767 | |
---|
| 768 | Pre-condition: |
---|
| 769 | self.boundary has been built. |
---|
| 770 | |
---|
| 771 | Post-condition: |
---|
| 772 | self.boundary_objects is built |
---|
| 773 | |
---|
| 774 | If a tag from the domain doesn't appear in the input dictionary an |
---|
| 775 | exception is raised. |
---|
| 776 | However, if a tag is not used to the domain, no error is thrown. |
---|
[6181] | 777 | FIXME: This would lead to implementation of a default boundary condition |
---|
[5897] | 778 | |
---|
| 779 | Note: If a segment is listed in the boundary dictionary and if it is |
---|
[6181] | 780 | not None, it *will* become a boundary - even if there is a neighbouring |
---|
| 781 | triangle. This would be the case for internal boundaries. |
---|
[5897] | 782 | |
---|
| 783 | Boundary objects that are None will be skipped. |
---|
| 784 | |
---|
[6181] | 785 | If a boundary_map has already been set (i.e. set_boundary has been |
---|
| 786 | called before), the old boundary map will be updated with new values. |
---|
| 787 | The new map need not define all boundary tags, and can thus change only |
---|
| 788 | those that are needed. |
---|
[5897] | 789 | |
---|
| 790 | FIXME: If set_boundary is called multiple times and if Boundary |
---|
| 791 | object is changed into None, the neighbour structure will not be |
---|
| 792 | restored!!! |
---|
| 793 | """ |
---|
| 794 | |
---|
| 795 | if self.boundary_map is None: |
---|
| 796 | # This the first call to set_boundary. Store |
---|
| 797 | # map for later updates and for use with boundary_stats. |
---|
[6181] | 798 | self.boundary_map = boundary_map |
---|
| 799 | else: |
---|
[5897] | 800 | # This is a modification of an already existing map |
---|
| 801 | # Update map an proceed normally |
---|
| 802 | for key in boundary_map.keys(): |
---|
| 803 | self.boundary_map[key] = boundary_map[key] |
---|
[6181] | 804 | |
---|
[5897] | 805 | # FIXME (Ole): Try to remove the sorting and fix test_mesh.py |
---|
| 806 | x = self.boundary.keys() |
---|
| 807 | x.sort() |
---|
| 808 | |
---|
| 809 | # Loop through edges that lie on the boundary and associate them with |
---|
| 810 | # callable boundary objects depending on their tags |
---|
[6181] | 811 | self.boundary_objects = [] |
---|
[5897] | 812 | for k, (vol_id, edge_id) in enumerate(x): |
---|
[6181] | 813 | tag = self.boundary[(vol_id, edge_id)] |
---|
[5897] | 814 | |
---|
| 815 | if self.boundary_map.has_key(tag): |
---|
| 816 | B = self.boundary_map[tag] # Get callable boundary object |
---|
| 817 | |
---|
| 818 | if B is not None: |
---|
[6181] | 819 | self.boundary_objects.append(((vol_id, edge_id), B)) |
---|
[5897] | 820 | self.neighbours[vol_id, edge_id] = \ |
---|
[6181] | 821 | -len(self.boundary_objects) |
---|
[5897] | 822 | else: |
---|
| 823 | pass |
---|
| 824 | #FIXME: Check and perhaps fix neighbour structure |
---|
| 825 | else: |
---|
| 826 | msg = 'ERROR (domain.py): Tag "%s" has not been ' %tag |
---|
| 827 | msg += 'bound to a boundary object.\n' |
---|
| 828 | msg += 'All boundary tags defined in domain must appear ' |
---|
| 829 | msg += 'in set_boundary.\n' |
---|
| 830 | msg += 'The tags are: %s' %self.get_boundary_tags() |
---|
[6181] | 831 | raise Exception, msg |
---|
[5897] | 832 | |
---|
[6181] | 833 | ## |
---|
| 834 | # @brief Set quantities based on a regional tag. |
---|
[6226] | 835 | # @param args |
---|
| 836 | # @param kwargs |
---|
[6181] | 837 | def set_region(self, *args, **kwargs): |
---|
| 838 | """Set quantities based on a regional tag. |
---|
[5897] | 839 | |
---|
| 840 | It is most often called with the following parameters; |
---|
| 841 | (self, tag, quantity, X, location='vertices') |
---|
[6181] | 842 | tag: the name of the regional tag used to specify the region |
---|
[5897] | 843 | quantity: Name of quantity to change |
---|
[6181] | 844 | X: const or function - how the quantity is changed |
---|
[5897] | 845 | location: Where values are to be stored. |
---|
| 846 | Permissible options are: vertices, centroid and unique vertices |
---|
| 847 | |
---|
| 848 | A callable region class or a list of callable region classes |
---|
| 849 | can also be passed into this function. |
---|
| 850 | """ |
---|
| 851 | |
---|
| 852 | if len(args) == 1: |
---|
| 853 | self._set_region(*args, **kwargs) |
---|
| 854 | else: |
---|
| 855 | # Assume it is arguments for the region.set_region function |
---|
| 856 | func = region_set_region(*args, **kwargs) |
---|
| 857 | self._set_region(func) |
---|
[6181] | 858 | |
---|
| 859 | ## |
---|
| 860 | # @brief ?? |
---|
| 861 | # @param functions A list or tuple of ?? |
---|
[5897] | 862 | def _set_region(self, functions): |
---|
[6181] | 863 | # coerce to an iterable (list or tuple) |
---|
| 864 | if type(functions) not in [types.ListType, types.TupleType]: |
---|
| 865 | functions = [functions] |
---|
| 866 | |
---|
[5897] | 867 | # The order of functions in the list is used. |
---|
[6191] | 868 | tagged_elements = self.get_tagged_elements() |
---|
[5897] | 869 | for function in functions: |
---|
[6191] | 870 | for tag in tagged_elements.keys(): |
---|
| 871 | function(tag, tagged_elements[tag], self) |
---|
[5897] | 872 | |
---|
[6181] | 873 | ## |
---|
| 874 | # @brief Specify the quantities which will be monitored for extrema. |
---|
| 875 | # @param q Single or list of quantity names to monitor. |
---|
| 876 | # @param polygon If specified, monitor only triangles inside polygon. |
---|
| 877 | # @param time_interval If specified, monitor only timesteps inside interval. |
---|
| 878 | # @note If 'q' is None, do no monitoring. |
---|
[5897] | 879 | def set_quantities_to_be_monitored(self, q, |
---|
[6181] | 880 | polygon=None, |
---|
| 881 | time_interval=None): |
---|
[5897] | 882 | """Specify which quantities will be monitored for extrema. |
---|
| 883 | |
---|
| 884 | q must be either: |
---|
[6181] | 885 | - the name of a quantity or derived quantity such as 'stage-elevation' |
---|
[5897] | 886 | - a list of quantity names |
---|
| 887 | - None |
---|
| 888 | |
---|
| 889 | In the two first cases, the named quantities will be monitored at |
---|
| 890 | each internal timestep |
---|
[6181] | 891 | |
---|
[5897] | 892 | If q is None, monitoring will be switched off altogether. |
---|
| 893 | |
---|
[6181] | 894 | polygon (if specified) will only monitor triangles inside polygon. |
---|
[5897] | 895 | If omitted all triangles will be included. |
---|
| 896 | |
---|
[6181] | 897 | time_interval, if specified, will restrict monitoring to time steps in |
---|
[5897] | 898 | that interval. If omitted all timesteps will be included. |
---|
| 899 | """ |
---|
| 900 | |
---|
| 901 | from anuga.abstract_2d_finite_volumes.util import\ |
---|
[6181] | 902 | apply_expression_to_dictionary |
---|
[5897] | 903 | |
---|
| 904 | if q is None: |
---|
| 905 | self.quantities_to_be_monitored = None |
---|
| 906 | self.monitor_polygon = None |
---|
| 907 | self.monitor_time_interval = None |
---|
[6181] | 908 | self.monitor_indices = None |
---|
[5897] | 909 | return |
---|
| 910 | |
---|
[6181] | 911 | # coerce 'q' to a list if it's a string |
---|
[5897] | 912 | if isinstance(q, basestring): |
---|
[6181] | 913 | q = [q] |
---|
[5897] | 914 | |
---|
[6181] | 915 | # Check correctness and initialise |
---|
[5897] | 916 | self.quantities_to_be_monitored = {} |
---|
| 917 | for quantity_name in q: |
---|
[6181] | 918 | msg = 'Quantity %s is not a valid conserved quantity' \ |
---|
| 919 | % quantity_name |
---|
[5897] | 920 | |
---|
| 921 | if not quantity_name in self.quantities: |
---|
| 922 | # See if this expression is valid |
---|
| 923 | apply_expression_to_dictionary(quantity_name, self.quantities) |
---|
| 924 | |
---|
| 925 | # Initialise extrema information |
---|
| 926 | info_block = {'min': None, # Min value |
---|
| 927 | 'max': None, # Max value |
---|
| 928 | 'min_location': None, # Argmin (x, y) |
---|
| 929 | 'max_location': None, # Argmax (x, y) |
---|
[6181] | 930 | 'min_time': None, # Argmin (t) |
---|
[5897] | 931 | 'max_time': None} # Argmax (t) |
---|
[6181] | 932 | |
---|
[5897] | 933 | self.quantities_to_be_monitored[quantity_name] = info_block |
---|
| 934 | |
---|
| 935 | if polygon is not None: |
---|
| 936 | # Check input |
---|
| 937 | if isinstance(polygon, basestring): |
---|
| 938 | # Check if multiple quantities were accidentally |
---|
| 939 | # given as separate argument rather than a list. |
---|
[6181] | 940 | msg = ('Multiple quantities must be specified in a list. ' |
---|
| 941 | 'Not as multiple arguments. ' |
---|
| 942 | 'I got "%s" as a second argument') % polygon |
---|
| 943 | |
---|
[5897] | 944 | if polygon in self.quantities: |
---|
| 945 | raise Exception, msg |
---|
[6181] | 946 | |
---|
[5897] | 947 | try: |
---|
| 948 | apply_expression_to_dictionary(polygon, self.quantities) |
---|
| 949 | except: |
---|
[6181] | 950 | # At least polygon wasn't expression involving quantitites |
---|
[5897] | 951 | pass |
---|
| 952 | else: |
---|
| 953 | raise Exception, msg |
---|
| 954 | |
---|
| 955 | # In any case, we don't allow polygon to be a string |
---|
[6181] | 956 | msg = ('argument "polygon" must not be a string: ' |
---|
| 957 | 'I got polygon="%s"') % polygon |
---|
[5897] | 958 | raise Exception, msg |
---|
| 959 | |
---|
| 960 | # Get indices for centroids that are inside polygon |
---|
| 961 | points = self.get_centroid_coordinates(absolute=True) |
---|
| 962 | self.monitor_indices = inside_polygon(points, polygon) |
---|
| 963 | |
---|
| 964 | if time_interval is not None: |
---|
| 965 | assert len(time_interval) == 2 |
---|
| 966 | |
---|
| 967 | self.monitor_polygon = polygon |
---|
[6181] | 968 | self.monitor_time_interval = time_interval |
---|
[5897] | 969 | |
---|
[6181] | 970 | ## |
---|
| 971 | # @brief Check Domain integrity. |
---|
| 972 | # @note Raises an exception if integrity breached. |
---|
[5897] | 973 | def check_integrity(self): |
---|
[6191] | 974 | self.mesh.check_integrity() |
---|
[5897] | 975 | |
---|
| 976 | for quantity in self.conserved_quantities: |
---|
| 977 | msg = 'Conserved quantities must be a subset of all quantities' |
---|
| 978 | assert quantity in self.quantities, msg |
---|
| 979 | |
---|
| 980 | |
---|
[7519] | 981 | for i, quantity in enumerate(self.conserved_quantities): |
---|
[7810] | 982 | msg = 'Conserved quantities must be the first entries ' |
---|
| 983 | msg += 'of evolved_quantities' |
---|
[7519] | 984 | assert quantity == self.evolved_quantities[i], msg |
---|
| 985 | |
---|
| 986 | |
---|
[6181] | 987 | ## |
---|
| 988 | # @brief Print timestep stats to stdout. |
---|
| 989 | # @param track_speeds If True, print smallest track speed. |
---|
[5897] | 990 | def write_time(self, track_speeds=False): |
---|
[7317] | 991 | log.critical(self.timestepping_statistics(track_speeds)) |
---|
[5897] | 992 | |
---|
[6181] | 993 | ## |
---|
| 994 | # @brief Get timestepping stats string. |
---|
| 995 | # @param track_speeds If True, report location of smallest timestep. |
---|
| 996 | # @param triangle_id If specified, use specific triangle. |
---|
| 997 | # @return A string containing timestep stats. |
---|
| 998 | def timestepping_statistics(self, track_speeds=False, |
---|
| 999 | triangle_id=None): |
---|
| 1000 | """Return string with time stepping statistics |
---|
[5897] | 1001 | |
---|
| 1002 | Optional boolean keyword track_speeds decides whether to report |
---|
| 1003 | location of smallest timestep as well as a histogram and percentile |
---|
| 1004 | report. |
---|
| 1005 | |
---|
| 1006 | Optional keyword triangle_id can be used to specify a particular |
---|
[6181] | 1007 | triangle rather than the one with the largest speed. |
---|
[5897] | 1008 | """ |
---|
| 1009 | |
---|
| 1010 | from anuga.utilities.numerical_tools import histogram, create_bins |
---|
| 1011 | |
---|
[6181] | 1012 | # qwidth determines the the width of the text field used for quantities |
---|
[5897] | 1013 | qwidth = self.qwidth = 12 |
---|
| 1014 | |
---|
| 1015 | msg = '' |
---|
| 1016 | |
---|
| 1017 | model_time = self.get_time() |
---|
[7492] | 1018 | if self.recorded_min_timestep == self.recorded_max_timestep: |
---|
[6181] | 1019 | msg += 'Time = %.4f, delta t = %.8f, steps=%d' \ |
---|
[7810] | 1020 | % (model_time, self.recorded_min_timestep, \ |
---|
| 1021 | self.number_of_steps) |
---|
[7492] | 1022 | elif self.recorded_min_timestep > self.recorded_max_timestep: |
---|
[6181] | 1023 | msg += 'Time = %.4f, steps=%d' \ |
---|
| 1024 | % (model_time, self.number_of_steps) |
---|
[5897] | 1025 | else: |
---|
[6181] | 1026 | msg += 'Time = %.4f, delta t in [%.8f, %.8f], steps=%d' \ |
---|
[7492] | 1027 | % (model_time, self.recorded_min_timestep, |
---|
| 1028 | self.recorded_max_timestep, self.number_of_steps) |
---|
[6181] | 1029 | |
---|
| 1030 | msg += ' (%ds)' % (walltime() - self.last_walltime) |
---|
| 1031 | self.last_walltime = walltime() |
---|
| 1032 | |
---|
[5897] | 1033 | if track_speeds is True: |
---|
| 1034 | msg += '\n' |
---|
| 1035 | |
---|
| 1036 | # Setup 10 bins for speed histogram |
---|
| 1037 | bins = create_bins(self.max_speed, 10) |
---|
| 1038 | hist = histogram(self.max_speed, bins) |
---|
| 1039 | |
---|
| 1040 | msg += '------------------------------------------------\n' |
---|
[7276] | 1041 | msg += ' Speeds in [%f, %f]\n' % (num.min(self.max_speed), |
---|
| 1042 | num.max(self.max_speed)) |
---|
[5897] | 1043 | msg += ' Histogram:\n' |
---|
| 1044 | |
---|
| 1045 | hi = bins[0] |
---|
| 1046 | for i, count in enumerate(hist): |
---|
| 1047 | lo = hi |
---|
| 1048 | if i+1 < len(bins): |
---|
[6181] | 1049 | # Open upper interval |
---|
[5897] | 1050 | hi = bins[i+1] |
---|
[6181] | 1051 | msg += ' [%f, %f[: %d\n' % (lo, hi, count) |
---|
[5897] | 1052 | else: |
---|
| 1053 | # Closed upper interval |
---|
[7276] | 1054 | hi = num.max(self.max_speed) |
---|
[6181] | 1055 | msg += ' [%f, %f]: %d\n' % (lo, hi, count) |
---|
[5897] | 1056 | |
---|
[7276] | 1057 | N = len(self.max_speed.flat) |
---|
[5897] | 1058 | if N > 10: |
---|
| 1059 | msg += ' Percentiles (10%):\n' |
---|
| 1060 | speed = self.max_speed.tolist() |
---|
| 1061 | speed.sort() |
---|
| 1062 | |
---|
| 1063 | k = 0 |
---|
| 1064 | lower = min(speed) |
---|
[6181] | 1065 | for i, a in enumerate(speed): |
---|
[5897] | 1066 | if i % (N/10) == 0 and i != 0: |
---|
| 1067 | # For every 10% of the sorted speeds |
---|
[6181] | 1068 | msg += ' %d speeds in [%f, %f]\n' % (i-k, lower, a) |
---|
[5897] | 1069 | lower = a |
---|
| 1070 | k = i |
---|
[6181] | 1071 | |
---|
[5897] | 1072 | msg += ' %d speeds in [%f, %f]\n'\ |
---|
[6181] | 1073 | % (N-k, lower, max(speed)) |
---|
[5897] | 1074 | |
---|
| 1075 | # Find index of largest computed flux speed |
---|
| 1076 | if triangle_id is None: |
---|
[6145] | 1077 | k = self.k = num.argmax(self.max_speed) |
---|
[5897] | 1078 | else: |
---|
[6181] | 1079 | errmsg = 'Triangle_id %d does not exist in mesh: %s' \ |
---|
| 1080 | % (triangle_id, str(self)) |
---|
[5897] | 1081 | assert 0 <= triangle_id < len(self), errmsg |
---|
| 1082 | k = self.k = triangle_id |
---|
| 1083 | |
---|
[7053] | 1084 | x, y = self.get_centroid_coordinates(absolute=True)[k] |
---|
[5897] | 1085 | radius = self.get_radii()[k] |
---|
[6181] | 1086 | area = self.get_areas()[k] |
---|
| 1087 | max_speed = self.max_speed[k] |
---|
[5897] | 1088 | |
---|
[6181] | 1089 | msg += ' Triangle #%d with centroid (%.4f, %.4f), ' % (k, x, y) |
---|
| 1090 | msg += 'area = %.4f and radius = %.4f ' % (area, radius) |
---|
[5897] | 1091 | if triangle_id is None: |
---|
[6181] | 1092 | msg += 'had the largest computed speed: %.6f m/s ' % (max_speed) |
---|
[5897] | 1093 | else: |
---|
[6181] | 1094 | msg += 'had computed speed: %.6f m/s ' % (max_speed) |
---|
| 1095 | |
---|
[5897] | 1096 | if max_speed > 0.0: |
---|
[6181] | 1097 | msg += '(timestep=%.6f)\n' % (radius/max_speed) |
---|
[5897] | 1098 | else: |
---|
[6181] | 1099 | msg += '(timestep=%.6f)\n' % (0) |
---|
| 1100 | |
---|
[5897] | 1101 | # Report all quantity values at vertices, edges and centroid |
---|
| 1102 | msg += ' Quantity' |
---|
| 1103 | msg += '------------\n' |
---|
| 1104 | for name in self.quantities: |
---|
| 1105 | q = self.quantities[name] |
---|
| 1106 | |
---|
| 1107 | V = q.get_values(location='vertices', indices=[k])[0] |
---|
| 1108 | E = q.get_values(location='edges', indices=[k])[0] |
---|
[6181] | 1109 | C = q.get_values(location='centroids', indices=[k]) |
---|
[5897] | 1110 | |
---|
[6181] | 1111 | s = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n' \ |
---|
| 1112 | % (name.ljust(qwidth), V[0], V[1], V[2]) |
---|
[5897] | 1113 | |
---|
[6181] | 1114 | s += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n' \ |
---|
| 1115 | % (name.ljust(qwidth), E[0], E[1], E[2]) |
---|
[5897] | 1116 | |
---|
[6181] | 1117 | s += ' %s: centroid_value = %.4f\n' \ |
---|
| 1118 | % (name.ljust(qwidth), C[0]) |
---|
| 1119 | |
---|
[5897] | 1120 | msg += s |
---|
| 1121 | |
---|
| 1122 | return msg |
---|
| 1123 | |
---|
[6181] | 1124 | ## |
---|
| 1125 | # @brief Print boundary forcing stats at each timestep to stdout. |
---|
| 1126 | # @param quantities A name or list of names of quantities to report. |
---|
| 1127 | # @param tags A name or list of names of tags to report. |
---|
| 1128 | def write_boundary_statistics(self, quantities=None, tags=None): |
---|
[7317] | 1129 | log.critical(self.boundary_statistics(quantities, tags)) |
---|
[5897] | 1130 | |
---|
[6181] | 1131 | # @brief Get a string containing boundary forcing stats at each timestep. |
---|
| 1132 | # @param quantities A name or list of names of quantities to report. |
---|
| 1133 | # @param tags A name or list of names of tags to report. |
---|
| 1134 | # @note If 'quantities' is None, report all. Same for 'tags'. |
---|
| 1135 | def boundary_statistics(self, quantities=None, |
---|
| 1136 | tags=None): |
---|
[5897] | 1137 | """Output statistics about boundary forcing at each timestep |
---|
| 1138 | |
---|
| 1139 | Input: |
---|
| 1140 | quantities: either None, a string or a list of strings naming the |
---|
| 1141 | quantities to be reported |
---|
| 1142 | tags: either None, a string or a list of strings naming the |
---|
| 1143 | tags to be reported |
---|
| 1144 | |
---|
| 1145 | Example output: |
---|
| 1146 | Tag 'wall': |
---|
| 1147 | stage in [2, 5.5] |
---|
| 1148 | xmomentum in [] |
---|
| 1149 | ymomentum in [] |
---|
| 1150 | Tag 'ocean' |
---|
| 1151 | |
---|
| 1152 | If quantities are specified only report on those. Otherwise take all |
---|
| 1153 | conserved quantities. |
---|
| 1154 | If tags are specified only report on those, otherwise take all tags. |
---|
| 1155 | """ |
---|
| 1156 | |
---|
| 1157 | import types, string |
---|
| 1158 | |
---|
[6181] | 1159 | # Input checks |
---|
[5897] | 1160 | if quantities is None: |
---|
[7562] | 1161 | quantities = self.evolved_quantities |
---|
[5897] | 1162 | elif type(quantities) == types.StringType: |
---|
| 1163 | quantities = [quantities] #Turn it into a list |
---|
| 1164 | |
---|
[6181] | 1165 | msg = ('Keyword argument quantities must be either None, ' |
---|
| 1166 | 'string or list. I got %s') % str(quantities) |
---|
[5897] | 1167 | assert type(quantities) == types.ListType, msg |
---|
| 1168 | |
---|
| 1169 | if tags is None: |
---|
| 1170 | tags = self.get_boundary_tags() |
---|
| 1171 | elif type(tags) == types.StringType: |
---|
| 1172 | tags = [tags] #Turn it into a list |
---|
| 1173 | |
---|
[6181] | 1174 | msg = ('Keyword argument tags must be either None, ' |
---|
| 1175 | 'string or list. I got %s') % str(tags) |
---|
[5897] | 1176 | assert type(tags) == types.ListType, msg |
---|
| 1177 | |
---|
| 1178 | # Determine width of longest quantity name (for cosmetic purposes) |
---|
| 1179 | maxwidth = 0 |
---|
| 1180 | for name in quantities: |
---|
| 1181 | w = len(name) |
---|
| 1182 | if w > maxwidth: |
---|
| 1183 | maxwidth = w |
---|
| 1184 | |
---|
| 1185 | # Output statistics |
---|
[6181] | 1186 | msg = 'Boundary values at time %.4f:\n' % self.get_time() |
---|
[5897] | 1187 | for tag in tags: |
---|
[6181] | 1188 | msg += ' %s:\n' % tag |
---|
[5897] | 1189 | |
---|
| 1190 | for name in quantities: |
---|
| 1191 | q = self.quantities[name] |
---|
| 1192 | |
---|
| 1193 | # Find range of boundary values for tag and q |
---|
| 1194 | maxval = minval = None |
---|
[6181] | 1195 | for i, ((vol_id,edge_id),B) in enumerate(self.boundary_objects): |
---|
[5897] | 1196 | if self.boundary[(vol_id, edge_id)] == tag: |
---|
| 1197 | v = q.boundary_values[i] |
---|
| 1198 | if minval is None or v < minval: minval = v |
---|
| 1199 | if maxval is None or v > maxval: maxval = v |
---|
| 1200 | |
---|
| 1201 | if minval is None or maxval is None: |
---|
[6181] | 1202 | msg += (' Sorry no information available about' |
---|
| 1203 | ' tag %s and quantity %s\n') % (tag, name) |
---|
[5897] | 1204 | else: |
---|
[6181] | 1205 | msg += ' %s in [%12.8f, %12.8f]\n' \ |
---|
| 1206 | % (string.ljust(name, maxwidth), minval, maxval) |
---|
[5897] | 1207 | |
---|
| 1208 | return msg |
---|
| 1209 | |
---|
[6181] | 1210 | ## |
---|
| 1211 | # @brief Update extrema if requested by set_quantities_to_be_monitored. |
---|
[5897] | 1212 | def update_extrema(self): |
---|
| 1213 | """Update extrema if requested by set_quantities_to_be_monitored. |
---|
| 1214 | This data is used for reporting e.g. by running |
---|
| 1215 | print domain.quantity_statistics() |
---|
| 1216 | and may also stored in output files (see data_manager in shallow_water) |
---|
| 1217 | """ |
---|
| 1218 | |
---|
| 1219 | # Define a tolerance for extremum computations |
---|
[5961] | 1220 | from anuga.config import single_precision as epsilon |
---|
[6181] | 1221 | |
---|
[5897] | 1222 | if self.quantities_to_be_monitored is None: |
---|
| 1223 | return |
---|
| 1224 | |
---|
| 1225 | # Observe time interval restriction if any |
---|
| 1226 | if self.monitor_time_interval is not None and\ |
---|
[8065] | 1227 | (self.time < self.monitor_time_interval[0] or\ |
---|
| 1228 | self.time > self.monitor_time_interval[1]): |
---|
[5897] | 1229 | return |
---|
| 1230 | |
---|
| 1231 | # Update extrema for each specified quantity subject to |
---|
| 1232 | # polygon restriction (via monitor_indices). |
---|
| 1233 | for quantity_name in self.quantities_to_be_monitored: |
---|
| 1234 | |
---|
| 1235 | if quantity_name in self.quantities: |
---|
| 1236 | Q = self.get_quantity(quantity_name) |
---|
| 1237 | else: |
---|
| 1238 | Q = self.create_quantity_from_expression(quantity_name) |
---|
| 1239 | |
---|
| 1240 | info_block = self.quantities_to_be_monitored[quantity_name] |
---|
| 1241 | |
---|
| 1242 | # Update maximum |
---|
| 1243 | # (n > None is always True, but we check explicitly because |
---|
| 1244 | # of the epsilon) |
---|
| 1245 | maxval = Q.get_maximum_value(self.monitor_indices) |
---|
[6181] | 1246 | if info_block['max'] is None or \ |
---|
[5897] | 1247 | maxval > info_block['max'] + epsilon: |
---|
| 1248 | info_block['max'] = maxval |
---|
| 1249 | maxloc = Q.get_maximum_location() |
---|
| 1250 | info_block['max_location'] = maxloc |
---|
[8065] | 1251 | info_block['max_time'] = self.time |
---|
[5897] | 1252 | |
---|
| 1253 | # Update minimum |
---|
| 1254 | minval = Q.get_minimum_value(self.monitor_indices) |
---|
[6181] | 1255 | if info_block['min'] is None or \ |
---|
[5897] | 1256 | minval < info_block['min'] - epsilon: |
---|
[6181] | 1257 | info_block['min'] = minval |
---|
[5897] | 1258 | minloc = Q.get_minimum_location() |
---|
| 1259 | info_block['min_location'] = minloc |
---|
[8065] | 1260 | info_block['min_time'] = self.time |
---|
[5897] | 1261 | |
---|
[6181] | 1262 | ## |
---|
| 1263 | # @brief Return string with statistics about quantities |
---|
| 1264 | # @param precision A format string to use for float values. |
---|
| 1265 | # @return The stats string. |
---|
| 1266 | def quantity_statistics(self, precision='%.4f'): |
---|
[5897] | 1267 | """Return string with statistics about quantities for |
---|
| 1268 | printing or logging |
---|
| 1269 | |
---|
| 1270 | Quantities reported are specified through method |
---|
| 1271 | |
---|
| 1272 | set_quantities_to_be_monitored |
---|
| 1273 | """ |
---|
| 1274 | |
---|
| 1275 | maxlen = 128 # Max length of polygon string representation |
---|
| 1276 | |
---|
| 1277 | # Output statistics |
---|
[6181] | 1278 | msg = 'Monitored quantities at time %.4f:\n' % self.get_time() |
---|
[5897] | 1279 | if self.monitor_polygon is not None: |
---|
| 1280 | p_str = str(self.monitor_polygon) |
---|
[6181] | 1281 | msg += '- Restricted by polygon: %s' % p_str[:maxlen] |
---|
[5897] | 1282 | if len(p_str) >= maxlen: |
---|
| 1283 | msg += '...\n' |
---|
| 1284 | else: |
---|
| 1285 | msg += '\n' |
---|
| 1286 | |
---|
| 1287 | if self.monitor_time_interval is not None: |
---|
[6181] | 1288 | msg += '- Restricted by time interval: %s\n' \ |
---|
| 1289 | % str(self.monitor_time_interval) |
---|
[5897] | 1290 | time_interval_start = self.monitor_time_interval[0] |
---|
| 1291 | else: |
---|
| 1292 | time_interval_start = 0.0 |
---|
| 1293 | |
---|
| 1294 | for quantity_name, info in self.quantities_to_be_monitored.items(): |
---|
[6181] | 1295 | msg += ' %s:\n' % quantity_name |
---|
[5897] | 1296 | |
---|
[6181] | 1297 | msg += ' values since time = %.2f in [%s, %s]\n' \ |
---|
| 1298 | % (time_interval_start, |
---|
| 1299 | get_textual_float(info['min'], precision), |
---|
| 1300 | get_textual_float(info['max'], precision)) |
---|
[5897] | 1301 | |
---|
[6181] | 1302 | msg += ' minimum attained at time = %s, location = %s\n' \ |
---|
| 1303 | % (get_textual_float(info['min_time'], precision), |
---|
| 1304 | get_textual_float(info['min_location'], precision)) |
---|
[5897] | 1305 | |
---|
[6181] | 1306 | msg += ' maximum attained at time = %s, location = %s\n' \ |
---|
| 1307 | % (get_textual_float(info['max_time'], precision), |
---|
| 1308 | get_textual_float(info['max_location'], precision)) |
---|
[5897] | 1309 | |
---|
| 1310 | return msg |
---|
| 1311 | |
---|
[6181] | 1312 | ## |
---|
| 1313 | # @brief Get the timestep method. |
---|
[7573] | 1314 | # @return The timestep method. One of 'euler', 'rk2' or 'rk3' or 1, 2, 3. |
---|
[5897] | 1315 | def get_timestepping_method(self): |
---|
| 1316 | return self.timestepping_method |
---|
| 1317 | |
---|
[6181] | 1318 | ## |
---|
| 1319 | # @brief Set the tmestep method to be used. |
---|
| 1320 | # @param timestepping_method One of 'euler', 'rk2' or 'rk3'. |
---|
| 1321 | # @note Raises exception of method not known. |
---|
| 1322 | def set_timestepping_method(self, timestepping_method): |
---|
[7573] | 1323 | methods = ['euler', 'rk2', 'rk3'] |
---|
| 1324 | if timestepping_method in methods: |
---|
[5897] | 1325 | self.timestepping_method = timestepping_method |
---|
| 1326 | return |
---|
[7573] | 1327 | if timestepping_method in [1,2,3]: |
---|
| 1328 | self.timetepping_method = methods[timestepping_method-1] |
---|
| 1329 | return |
---|
[5897] | 1330 | |
---|
[6181] | 1331 | msg = '%s is an incorrect timestepping type' % timestepping_method |
---|
[5897] | 1332 | raise Exception, msg |
---|
| 1333 | |
---|
[6181] | 1334 | ## |
---|
| 1335 | # @brief Get the Domain simulation name. |
---|
| 1336 | # @return The simulation name string. |
---|
[5897] | 1337 | def get_name(self): |
---|
| 1338 | return self.simulation_name |
---|
| 1339 | |
---|
[6181] | 1340 | ## |
---|
| 1341 | # @brief Set the simulation name. |
---|
| 1342 | # @param name The name of the simulation. |
---|
| 1343 | # @note The simulation name is also used for the output .sww file. |
---|
[5897] | 1344 | def set_name(self, name): |
---|
| 1345 | """Assign a name to this simulation. |
---|
| 1346 | This will be used to identify the output sww file. |
---|
[6181] | 1347 | """ |
---|
[5897] | 1348 | |
---|
[6181] | 1349 | # remove any '.sww' end |
---|
[5897] | 1350 | if name.endswith('.sww'): |
---|
| 1351 | name = name[:-4] |
---|
[6181] | 1352 | |
---|
[5897] | 1353 | self.simulation_name = name |
---|
| 1354 | |
---|
[6181] | 1355 | ## |
---|
| 1356 | # @brief Get data directory path. |
---|
| 1357 | # @return The data directory path string. |
---|
[5897] | 1358 | def get_datadir(self): |
---|
| 1359 | return self.datadir |
---|
| 1360 | |
---|
[6181] | 1361 | ## |
---|
| 1362 | # @brief Set data directory path. |
---|
| 1363 | # @param name The data directory path string. |
---|
[5897] | 1364 | def set_datadir(self, name): |
---|
| 1365 | self.datadir = name |
---|
| 1366 | |
---|
[6181] | 1367 | ## |
---|
| 1368 | # @brief Get the start time value. |
---|
| 1369 | # @return The start time value (float). |
---|
[5897] | 1370 | def get_starttime(self): |
---|
| 1371 | return self.starttime |
---|
| 1372 | |
---|
[6181] | 1373 | ## |
---|
| 1374 | # @brief Set the start time value. |
---|
| 1375 | # @param time The start time value. |
---|
[5897] | 1376 | def set_starttime(self, time): |
---|
[6181] | 1377 | self.starttime = float(time) |
---|
[5897] | 1378 | |
---|
[6226] | 1379 | ################################################################################ |
---|
[6181] | 1380 | # Main components of evolve |
---|
[6226] | 1381 | ################################################################################ |
---|
[5897] | 1382 | |
---|
[6181] | 1383 | ## |
---|
| 1384 | # @brief Evolve the model through time. |
---|
| 1385 | # @param yieldstep Interval between yields where results are stored, etc. |
---|
| 1386 | # @param finaltime Time where simulation should end. |
---|
| 1387 | # @param duration Duration of simulation. |
---|
| 1388 | # @param skip_initial_step If True, skip the first yield step. |
---|
| 1389 | def evolve(self, yieldstep=None, |
---|
| 1390 | finaltime=None, |
---|
| 1391 | duration=None, |
---|
| 1392 | skip_initial_step=False): |
---|
[5897] | 1393 | """Evolve model through time starting from self.starttime. |
---|
| 1394 | |
---|
| 1395 | yieldstep: Interval between yields where results are stored, |
---|
| 1396 | statistics written and domain inspected or |
---|
| 1397 | possibly modified. If omitted the internal predefined |
---|
| 1398 | max timestep is used. |
---|
| 1399 | Internally, smaller timesteps may be taken. |
---|
| 1400 | |
---|
| 1401 | duration: Duration of simulation |
---|
| 1402 | |
---|
| 1403 | finaltime: Time where simulation should end. This is currently |
---|
| 1404 | relative time. So it's the same as duration. |
---|
| 1405 | |
---|
| 1406 | If both duration and finaltime are given an exception is thrown. |
---|
| 1407 | |
---|
| 1408 | skip_initial_step: Boolean flag that decides whether the first |
---|
| 1409 | yield step is skipped or not. This is useful for example to avoid |
---|
| 1410 | duplicate steps when multiple evolve processes are dove tailed. |
---|
| 1411 | |
---|
| 1412 | Evolve is implemented as a generator and is to be called as such, e.g. |
---|
| 1413 | |
---|
| 1414 | for t in domain.evolve(yieldstep, finaltime): |
---|
| 1415 | <Do something with domain and t> |
---|
| 1416 | |
---|
| 1417 | All times are given in seconds |
---|
| 1418 | """ |
---|
| 1419 | |
---|
[7492] | 1420 | from anuga.config import epsilon |
---|
[5897] | 1421 | |
---|
| 1422 | # FIXME: Maybe lump into a larger check prior to evolving |
---|
[6181] | 1423 | msg = ('Boundary tags must be bound to boundary objects before ' |
---|
| 1424 | 'evolving system, ' |
---|
| 1425 | 'e.g. using the method set_boundary.\n' |
---|
[6226] | 1426 | 'This system has the boundary tags %s ' |
---|
| 1427 | % self.get_boundary_tags()) |
---|
[5897] | 1428 | assert hasattr(self, 'boundary_objects'), msg |
---|
| 1429 | |
---|
| 1430 | if yieldstep is None: |
---|
[7492] | 1431 | yieldstep = self.evolve_max_timestep |
---|
[5897] | 1432 | else: |
---|
| 1433 | yieldstep = float(yieldstep) |
---|
| 1434 | |
---|
| 1435 | self._order_ = self.default_order |
---|
| 1436 | |
---|
| 1437 | if finaltime is not None and duration is not None: |
---|
| 1438 | msg = 'Only one of finaltime and duration may be specified' |
---|
[6181] | 1439 | raise Exception, msg |
---|
[5897] | 1440 | else: |
---|
| 1441 | if finaltime is not None: |
---|
| 1442 | self.finaltime = float(finaltime) |
---|
| 1443 | if duration is not None: |
---|
| 1444 | self.finaltime = self.starttime + float(duration) |
---|
| 1445 | |
---|
[6246] | 1446 | N = len(self) # Number of triangles |
---|
[8065] | 1447 | self.yieldtime = self.time + yieldstep # set next yield time |
---|
[5897] | 1448 | |
---|
| 1449 | # Initialise interval of timestep sizes (for reporting only) |
---|
[7928] | 1450 | # Note that we set recorded_min_timestep to be large so that it comes |
---|
| 1451 | # down through the evolution, similarly recorded_max_timestep |
---|
[7492] | 1452 | self.recorded_min_timestep = self.evolve_max_timestep |
---|
| 1453 | self.recorded_max_timestep = self.evolve_min_timestep |
---|
[5897] | 1454 | self.number_of_steps = 0 |
---|
| 1455 | self.number_of_first_order_steps = 0 |
---|
| 1456 | |
---|
| 1457 | # Update ghosts |
---|
| 1458 | self.update_ghosts() |
---|
| 1459 | |
---|
| 1460 | # Initial update of vertex and edge values |
---|
| 1461 | self.distribute_to_vertices_and_edges() |
---|
| 1462 | |
---|
[7938] | 1463 | # Initial update boundary values |
---|
| 1464 | self.update_boundary() |
---|
| 1465 | |
---|
[5897] | 1466 | # Update extrema if necessary (for reporting) |
---|
| 1467 | self.update_extrema() |
---|
[6181] | 1468 | |
---|
[8065] | 1469 | |
---|
| 1470 | |
---|
[5897] | 1471 | # Or maybe restore from latest checkpoint |
---|
| 1472 | if self.checkpoint is True: |
---|
| 1473 | self.goto_latest_checkpoint() |
---|
| 1474 | |
---|
| 1475 | if skip_initial_step is False: |
---|
[8065] | 1476 | yield(self.time) # Yield initial values |
---|
[5897] | 1477 | |
---|
| 1478 | while True: |
---|
[7938] | 1479 | |
---|
[8065] | 1480 | initial_time = self.time |
---|
[7938] | 1481 | |
---|
| 1482 | #========================================== |
---|
| 1483 | # Apply fluid flow fractional step |
---|
| 1484 | #========================================== |
---|
[5897] | 1485 | if self.get_timestepping_method() == 'euler': |
---|
[8065] | 1486 | self.evolve_one_euler_step(yieldstep, finaltime) |
---|
[6181] | 1487 | |
---|
[5897] | 1488 | elif self.get_timestepping_method() == 'rk2': |
---|
[8065] | 1489 | self.evolve_one_rk2_step(yieldstep, finaltime) |
---|
[5897] | 1490 | |
---|
| 1491 | elif self.get_timestepping_method() == 'rk3': |
---|
[8065] | 1492 | self.evolve_one_rk3_step(yieldstep, finaltime) |
---|
[6181] | 1493 | |
---|
[7938] | 1494 | #========================================== |
---|
| 1495 | # Apply other fractional steps |
---|
| 1496 | #========================================== |
---|
[7939] | 1497 | self.apply_fractional_steps() |
---|
[7938] | 1498 | |
---|
| 1499 | #========================================== |
---|
| 1500 | # Centroid Values of variables should be ok, |
---|
| 1501 | # so now setup quantites etc for output |
---|
| 1502 | #========================================== |
---|
| 1503 | |
---|
| 1504 | # Update time |
---|
[8065] | 1505 | self.time = initial_time + self.timestep |
---|
[7938] | 1506 | |
---|
| 1507 | # Update vertex and edge values |
---|
| 1508 | self.distribute_to_vertices_and_edges() |
---|
| 1509 | |
---|
| 1510 | # Update boundary values |
---|
| 1511 | self.update_boundary() |
---|
| 1512 | |
---|
[5897] | 1513 | # Update extrema if necessary (for reporting) |
---|
[6246] | 1514 | self.update_extrema() |
---|
[5897] | 1515 | |
---|
| 1516 | self.number_of_steps += 1 |
---|
| 1517 | if self._order_ == 1: |
---|
| 1518 | self.number_of_first_order_steps += 1 |
---|
| 1519 | |
---|
| 1520 | # Yield results |
---|
[8065] | 1521 | if finaltime is not None and self.time >= finaltime-epsilon: |
---|
| 1522 | if self.time > finaltime: |
---|
[5897] | 1523 | # FIXME (Ole, 30 April 2006): Do we need this check? |
---|
[6226] | 1524 | # Probably not (Ole, 18 September 2008). |
---|
| 1525 | # Now changed to Exception. |
---|
[8065] | 1526 | msg = ('WARNING (domain.py): time overshot finaltime. ' |
---|
| 1527 | 'Contact Ole.Nielsen@ga.gov.au') |
---|
[5897] | 1528 | raise Exception, msg |
---|
| 1529 | |
---|
[8018] | 1530 | # Log and then Yield final time and stop |
---|
[8065] | 1531 | self.time = finaltime |
---|
[8018] | 1532 | self.log_operator_timestepping_statistics() |
---|
[8065] | 1533 | yield(self.time) |
---|
[5897] | 1534 | break |
---|
| 1535 | |
---|
[6246] | 1536 | # if we are at the next yield point |
---|
[8065] | 1537 | if self.time >= self.yieldtime: |
---|
[5897] | 1538 | # Yield (intermediate) time and allow inspection of domain |
---|
| 1539 | if self.checkpoint is True: |
---|
| 1540 | self.store_checkpoint() |
---|
| 1541 | self.delete_old_checkpoints() |
---|
| 1542 | |
---|
[8018] | 1543 | # Log and then Pass control on to outer loop for more specific actions |
---|
| 1544 | self.log_operator_timestepping_statistics() |
---|
[8065] | 1545 | yield(self.time) |
---|
[5897] | 1546 | |
---|
| 1547 | # Reinitialise |
---|
[6246] | 1548 | self.yieldtime += yieldstep # move to next yield |
---|
[7492] | 1549 | self.recorded_min_timestep = self.evolve_max_timestep |
---|
| 1550 | self.recorded_max_timestep = self.evolve_min_timestep |
---|
[5897] | 1551 | self.number_of_steps = 0 |
---|
| 1552 | self.number_of_first_order_steps = 0 |
---|
[7276] | 1553 | self.max_speed = num.zeros(N, num.float) |
---|
[5897] | 1554 | |
---|
[6181] | 1555 | ## |
---|
| 1556 | # @brief 'Euler' time step method. |
---|
| 1557 | # @param yieldstep The reporting time step. |
---|
| 1558 | # @param finaltime The simulation final time. |
---|
[5897] | 1559 | def evolve_one_euler_step(self, yieldstep, finaltime): |
---|
[6181] | 1560 | """One Euler Time Step |
---|
[5897] | 1561 | Q^{n+1} = E(h) Q^n |
---|
[7492] | 1562 | |
---|
| 1563 | Assumes that centroid values have been extrapolated to vertices and edges |
---|
[5897] | 1564 | """ |
---|
| 1565 | |
---|
| 1566 | # Compute fluxes across each element edge |
---|
| 1567 | self.compute_fluxes() |
---|
| 1568 | |
---|
[7492] | 1569 | # Compute forcing terms |
---|
| 1570 | self.compute_forcing_terms() |
---|
| 1571 | |
---|
[5897] | 1572 | # Update timestep to fit yieldstep and finaltime |
---|
| 1573 | self.update_timestep(yieldstep, finaltime) |
---|
| 1574 | |
---|
| 1575 | # Update conserved quantities |
---|
| 1576 | self.update_conserved_quantities() |
---|
| 1577 | |
---|
| 1578 | # Update ghosts |
---|
| 1579 | self.update_ghosts() |
---|
| 1580 | |
---|
| 1581 | |
---|
| 1582 | |
---|
| 1583 | |
---|
[6181] | 1584 | ## |
---|
| 1585 | # @brief 'rk2' time step method. |
---|
| 1586 | # @param yieldstep The reporting time step. |
---|
| 1587 | # @param finaltime The simulation final time. |
---|
[5897] | 1588 | def evolve_one_rk2_step(self, yieldstep, finaltime): |
---|
[6181] | 1589 | """One 2nd order RK timestep |
---|
[5897] | 1590 | Q^{n+1} = 0.5 Q^n + 0.5 E(h)^2 Q^n |
---|
| 1591 | """ |
---|
| 1592 | |
---|
| 1593 | # Save initial initial conserved quantities values |
---|
[6181] | 1594 | self.backup_conserved_quantities() |
---|
[5897] | 1595 | |
---|
[6226] | 1596 | ###### |
---|
[5897] | 1597 | # First euler step |
---|
[6226] | 1598 | ###### |
---|
[5897] | 1599 | |
---|
| 1600 | # Compute fluxes across each element edge |
---|
| 1601 | self.compute_fluxes() |
---|
| 1602 | |
---|
[7492] | 1603 | # Compute forcing terms |
---|
| 1604 | self.compute_forcing_terms() |
---|
| 1605 | |
---|
[5897] | 1606 | # Update timestep to fit yieldstep and finaltime |
---|
| 1607 | self.update_timestep(yieldstep, finaltime) |
---|
| 1608 | |
---|
| 1609 | # Update conserved quantities |
---|
| 1610 | self.update_conserved_quantities() |
---|
| 1611 | |
---|
| 1612 | # Update ghosts |
---|
| 1613 | self.update_ghosts() |
---|
| 1614 | |
---|
| 1615 | # Update time |
---|
[8065] | 1616 | self.time += self.timestep |
---|
[5897] | 1617 | |
---|
| 1618 | # Update vertex and edge values |
---|
| 1619 | self.distribute_to_vertices_and_edges() |
---|
| 1620 | |
---|
| 1621 | # Update boundary values |
---|
| 1622 | self.update_boundary() |
---|
| 1623 | |
---|
[6226] | 1624 | ###### |
---|
[7492] | 1625 | # Second Euler step using the same timestep |
---|
| 1626 | # calculated in the first step. Might lead to |
---|
| 1627 | # stability problems but we have not seen any |
---|
| 1628 | # example. |
---|
[6226] | 1629 | ###### |
---|
[6181] | 1630 | |
---|
[5897] | 1631 | # Compute fluxes across each element edge |
---|
| 1632 | self.compute_fluxes() |
---|
| 1633 | |
---|
[7492] | 1634 | # Compute forcing terms |
---|
| 1635 | self.compute_forcing_terms() |
---|
| 1636 | |
---|
[5897] | 1637 | # Update conserved quantities |
---|
| 1638 | self.update_conserved_quantities() |
---|
| 1639 | |
---|
[6226] | 1640 | ###### |
---|
[5897] | 1641 | # Combine initial and final values |
---|
| 1642 | # of conserved quantities and cleanup |
---|
[6226] | 1643 | ###### |
---|
[6181] | 1644 | |
---|
[5897] | 1645 | # Combine steps |
---|
| 1646 | self.saxpy_conserved_quantities(0.5, 0.5) |
---|
[6181] | 1647 | |
---|
[5897] | 1648 | # Update ghosts |
---|
| 1649 | self.update_ghosts() |
---|
| 1650 | |
---|
| 1651 | |
---|
[6181] | 1652 | ## |
---|
| 1653 | # @brief 'rk3' time step method. |
---|
| 1654 | # @param yieldstep The reporting time step. |
---|
| 1655 | # @param finaltime The simulation final time. |
---|
[5897] | 1656 | def evolve_one_rk3_step(self, yieldstep, finaltime): |
---|
[6181] | 1657 | """One 3rd order RK timestep |
---|
[5897] | 1658 | Q^(1) = 3/4 Q^n + 1/4 E(h)^2 Q^n (at time t^n + h/2) |
---|
| 1659 | Q^{n+1} = 1/3 Q^n + 2/3 E(h) Q^(1) (at time t^{n+1}) |
---|
| 1660 | """ |
---|
| 1661 | |
---|
| 1662 | # Save initial initial conserved quantities values |
---|
[6181] | 1663 | self.backup_conserved_quantities() |
---|
[5897] | 1664 | |
---|
[8065] | 1665 | initial_time = self.time |
---|
[6181] | 1666 | |
---|
[6226] | 1667 | ###### |
---|
[5897] | 1668 | # First euler step |
---|
[6226] | 1669 | ###### |
---|
[5897] | 1670 | |
---|
| 1671 | # Compute fluxes across each element edge |
---|
| 1672 | self.compute_fluxes() |
---|
| 1673 | |
---|
[7492] | 1674 | # Compute forcing terms |
---|
| 1675 | self.compute_forcing_terms() |
---|
| 1676 | |
---|
[5897] | 1677 | # Update timestep to fit yieldstep and finaltime |
---|
| 1678 | self.update_timestep(yieldstep, finaltime) |
---|
| 1679 | |
---|
| 1680 | # Update conserved quantities |
---|
| 1681 | self.update_conserved_quantities() |
---|
| 1682 | |
---|
| 1683 | # Update ghosts |
---|
| 1684 | self.update_ghosts() |
---|
| 1685 | |
---|
| 1686 | # Update time |
---|
[8065] | 1687 | self.time += self.timestep |
---|
[5897] | 1688 | |
---|
| 1689 | # Update vertex and edge values |
---|
| 1690 | self.distribute_to_vertices_and_edges() |
---|
| 1691 | |
---|
| 1692 | # Update boundary values |
---|
| 1693 | self.update_boundary() |
---|
| 1694 | |
---|
[6226] | 1695 | ###### |
---|
[7492] | 1696 | # Second Euler step using the same timestep |
---|
| 1697 | # calculated in the first step. Might lead to |
---|
| 1698 | # stability problems but we have not seen any |
---|
| 1699 | # example. |
---|
[6226] | 1700 | ###### |
---|
[6181] | 1701 | |
---|
[5897] | 1702 | # Compute fluxes across each element edge |
---|
| 1703 | self.compute_fluxes() |
---|
| 1704 | |
---|
[7492] | 1705 | # Compute forcing terms |
---|
| 1706 | self.compute_forcing_terms() |
---|
| 1707 | |
---|
[5897] | 1708 | # Update conserved quantities |
---|
| 1709 | self.update_conserved_quantities() |
---|
| 1710 | |
---|
[6226] | 1711 | ###### |
---|
| 1712 | # Combine steps to obtain intermediate |
---|
| 1713 | # solution at time t^n + 0.5 h |
---|
| 1714 | ###### |
---|
[5897] | 1715 | |
---|
| 1716 | # Combine steps |
---|
| 1717 | self.saxpy_conserved_quantities(0.25, 0.75) |
---|
[6181] | 1718 | |
---|
[5897] | 1719 | # Update ghosts |
---|
| 1720 | self.update_ghosts() |
---|
| 1721 | |
---|
| 1722 | # Set substep time |
---|
[8065] | 1723 | self.time = initial_time + self.timestep*0.5 |
---|
[5897] | 1724 | |
---|
| 1725 | # Update vertex and edge values |
---|
| 1726 | self.distribute_to_vertices_and_edges() |
---|
| 1727 | |
---|
| 1728 | # Update boundary values |
---|
| 1729 | self.update_boundary() |
---|
| 1730 | |
---|
[6226] | 1731 | ###### |
---|
[5897] | 1732 | # Third Euler step |
---|
[6226] | 1733 | ###### |
---|
[6181] | 1734 | |
---|
[5897] | 1735 | # Compute fluxes across each element edge |
---|
| 1736 | self.compute_fluxes() |
---|
| 1737 | |
---|
[7492] | 1738 | # Compute forcing terms |
---|
| 1739 | self.compute_forcing_terms() |
---|
| 1740 | |
---|
[5897] | 1741 | # Update conserved quantities |
---|
| 1742 | self.update_conserved_quantities() |
---|
| 1743 | |
---|
[6226] | 1744 | ###### |
---|
[5897] | 1745 | # Combine final and initial values |
---|
| 1746 | # and cleanup |
---|
[6226] | 1747 | ###### |
---|
[6181] | 1748 | |
---|
[5897] | 1749 | # Combine steps |
---|
| 1750 | self.saxpy_conserved_quantities(2.0/3.0, 1.0/3.0) |
---|
[6181] | 1751 | |
---|
[5897] | 1752 | # Update ghosts |
---|
| 1753 | self.update_ghosts() |
---|
| 1754 | |
---|
| 1755 | # Set new time |
---|
[8065] | 1756 | self.time = initial_time + self.timestep |
---|
[5897] | 1757 | |
---|
| 1758 | |
---|
[6181] | 1759 | ## |
---|
| 1760 | # @brief Evolve simulation to a final time. |
---|
| 1761 | # @param finaltime Sinulation final time. |
---|
| 1762 | def evolve_to_end(self, finaltime=1.0): |
---|
| 1763 | """Iterate evolve all the way to the end.""" |
---|
[5897] | 1764 | |
---|
| 1765 | for _ in self.evolve(yieldstep=None, finaltime=finaltime): |
---|
| 1766 | pass |
---|
| 1767 | |
---|
[6181] | 1768 | ## |
---|
[7519] | 1769 | # @brief Backup conserved quantities |
---|
[5897] | 1770 | def backup_conserved_quantities(self): |
---|
| 1771 | |
---|
| 1772 | # Backup conserved_quantities centroid values |
---|
| 1773 | for name in self.conserved_quantities: |
---|
| 1774 | Q = self.quantities[name] |
---|
[6181] | 1775 | Q.backup_centroid_values() |
---|
[5897] | 1776 | |
---|
[6181] | 1777 | ## |
---|
[7519] | 1778 | # @brief Combines current C and saved centroid values S as C = aC + bS |
---|
| 1779 | # @param a factor in combination |
---|
| 1780 | # @param b factor in combination |
---|
[6181] | 1781 | def saxpy_conserved_quantities(self, a, b): |
---|
[5897] | 1782 | |
---|
| 1783 | # Backup conserved_quantities centroid values |
---|
| 1784 | for name in self.conserved_quantities: |
---|
| 1785 | Q = self.quantities[name] |
---|
[6181] | 1786 | Q.saxpy_centroid_values(a, b) |
---|
[5897] | 1787 | |
---|
[7519] | 1788 | |
---|
| 1789 | |
---|
| 1790 | |
---|
[6181] | 1791 | ## |
---|
[7519] | 1792 | # @brief Mapping between conserved quantites and evolved quantities |
---|
[7562] | 1793 | # @param Input: q_cons array of conserved quantity values |
---|
| 1794 | # @param Input: q_evol array of current evolved quantity values |
---|
| 1795 | # @note Output: Updated q_evol array |
---|
| 1796 | def conserved_values_to_evolved_values(self, q_cons, q_evol): |
---|
[7519] | 1797 | """Needs to be overridden by Domain subclass |
---|
| 1798 | """ |
---|
| 1799 | |
---|
[7562] | 1800 | if len(q_cons) == len(q_evol): |
---|
| 1801 | q_evol[:] = q_cons |
---|
[7519] | 1802 | else: |
---|
[7810] | 1803 | msg = 'Method conserved_values_to_evolved_values must be overridden' |
---|
| 1804 | msg += ' by Domain subclass' |
---|
[7519] | 1805 | raise Exception, msg |
---|
[7562] | 1806 | |
---|
| 1807 | return q_evol |
---|
[7519] | 1808 | |
---|
| 1809 | ## |
---|
[6181] | 1810 | # @brief Update boundary values for all conserved quantities. |
---|
[5897] | 1811 | def update_boundary(self): |
---|
| 1812 | """Go through list of boundary objects and update boundary values |
---|
| 1813 | for all conserved quantities on boundary. |
---|
[6181] | 1814 | It is assumed that the ordering of conserved quantities is |
---|
| 1815 | consistent between the domain and the boundary object, i.e. |
---|
[5897] | 1816 | the jth element of vector q must correspond to the jth conserved |
---|
| 1817 | quantity in domain. |
---|
| 1818 | """ |
---|
| 1819 | |
---|
| 1820 | # FIXME: Update only those that change (if that can be worked out) |
---|
| 1821 | # FIXME: Boundary objects should not include ghost nodes. |
---|
| 1822 | for i, ((vol_id, edge_id), B) in enumerate(self.boundary_objects): |
---|
| 1823 | if B is None: |
---|
[7317] | 1824 | log.critical('WARNING: Ignored boundary segment (None)') |
---|
[5897] | 1825 | else: |
---|
[7562] | 1826 | q_bdry = B.evaluate(vol_id, edge_id) |
---|
[5897] | 1827 | |
---|
[7562] | 1828 | if len(q_bdry) == len(self.evolved_quantities): |
---|
[7519] | 1829 | # conserved and evolved quantities are the same |
---|
[7562] | 1830 | q_evol = q_bdry |
---|
| 1831 | elif len(q_bdry) == len(self.conserved_quantities): |
---|
[7519] | 1832 | # boundary just returns conserved quantities |
---|
| 1833 | # Need to calculate all the evolved quantities |
---|
| 1834 | # Use default conversion |
---|
| 1835 | |
---|
| 1836 | q_evol = self.get_evolved_quantities(vol_id, edge = edge_id) |
---|
| 1837 | |
---|
[7810] | 1838 | q_evol = self.conserved_values_to_evolved_values \ |
---|
| 1839 | (q_bdry, q_evol) |
---|
[7519] | 1840 | else: |
---|
[7810] | 1841 | msg = 'Boundary must return array of either conserved' |
---|
| 1842 | msg += ' or evolved quantities' |
---|
[7519] | 1843 | raise Exception, msg |
---|
| 1844 | |
---|
| 1845 | for j, name in enumerate(self.evolved_quantities): |
---|
[5897] | 1846 | Q = self.quantities[name] |
---|
[7519] | 1847 | Q.boundary_values[i] = q_evol[j] |
---|
[5897] | 1848 | |
---|
[6181] | 1849 | ## |
---|
| 1850 | # @brief Compute fluxes. |
---|
| 1851 | # @note MUST BE OVERRIDEN IN SUBCLASS! |
---|
[5897] | 1852 | def compute_fluxes(self): |
---|
| 1853 | msg = 'Method compute_fluxes must be overridden by Domain subclass' |
---|
[6181] | 1854 | raise Exception, msg |
---|
[5897] | 1855 | |
---|
[7939] | 1856 | |
---|
[6181] | 1857 | ## |
---|
[7967] | 1858 | # @brief apply_fractional_steps. |
---|
| 1859 | # Goes through all fractional step operators and updates centroid values of |
---|
| 1860 | # conserved quantities over a timestep |
---|
[7939] | 1861 | def apply_fractional_steps(self): |
---|
[7967] | 1862 | for operator in self.fractional_step_operators: |
---|
| 1863 | operator() |
---|
[7939] | 1864 | |
---|
[8018] | 1865 | |
---|
| 1866 | |
---|
[7939] | 1867 | ## |
---|
[8023] | 1868 | # @brief log_operator_timestepping_statistics. |
---|
[8018] | 1869 | # Goes through all fractional step operators and logs timestepping statistics |
---|
| 1870 | def log_operator_timestepping_statistics(self): |
---|
| 1871 | for operator in self.fractional_step_operators: |
---|
| 1872 | operator.log_timestepping_statistics() |
---|
| 1873 | |
---|
| 1874 | ## |
---|
[8023] | 1875 | # @brief print_operator_timestepping_statistics. |
---|
[8021] | 1876 | # Goes through all fractional step operators and prints timestepping statistics |
---|
[8018] | 1877 | def print_operator_timestepping_statistics(self): |
---|
| 1878 | for operator in self.fractional_step_operators: |
---|
| 1879 | operator.print_timestepping_statistics() |
---|
| 1880 | |
---|
[8021] | 1881 | ## |
---|
| 1882 | # @brief print_operator_statistics. |
---|
| 1883 | # Goes through all fractional step operators and prints operator statistics |
---|
| 1884 | def print_operator_statistics(self): |
---|
| 1885 | for operator in self.fractional_step_operators: |
---|
| 1886 | operator.print_statistics() |
---|
[8018] | 1887 | |
---|
[8021] | 1888 | |
---|
[8018] | 1889 | ## |
---|
[7967] | 1890 | # @brief set_fractional_step_operator. |
---|
| 1891 | # Add a fractional step operator to list of operators |
---|
| 1892 | def set_fractional_step_operator(self,operator): |
---|
| 1893 | |
---|
| 1894 | self.fractional_step_operators.append(operator) |
---|
| 1895 | |
---|
| 1896 | ## |
---|
[6226] | 1897 | # @brief |
---|
| 1898 | # @param yieldstep |
---|
| 1899 | # @param finaltime |
---|
[5897] | 1900 | def update_timestep(self, yieldstep, finaltime): |
---|
| 1901 | |
---|
| 1902 | # Protect against degenerate timesteps arising from isolated |
---|
| 1903 | # triangles |
---|
[7704] | 1904 | self.apply_protection_against_isolated_degenerate_timesteps() |
---|
| 1905 | |
---|
[5897] | 1906 | # self.timestep is calculated from speed of characteristics |
---|
| 1907 | # Apply CFL condition here |
---|
[7492] | 1908 | timestep = min(self.CFL*self.flux_timestep, self.evolve_max_timestep) |
---|
[5897] | 1909 | |
---|
| 1910 | # Record maximal and minimal values of timestep for reporting |
---|
[7492] | 1911 | self.recorded_max_timestep = max(timestep, self.recorded_max_timestep) |
---|
| 1912 | self.recorded_min_timestep = min(timestep, self.recorded_min_timestep) |
---|
[5897] | 1913 | |
---|
| 1914 | # Protect against degenerate time steps |
---|
[7492] | 1915 | if timestep < self.evolve_min_timestep: |
---|
[5897] | 1916 | # Number of consecutive small steps taken b4 taking action |
---|
| 1917 | self.smallsteps += 1 |
---|
| 1918 | |
---|
| 1919 | if self.smallsteps > self.max_smallsteps: |
---|
| 1920 | self.smallsteps = 0 # Reset |
---|
| 1921 | |
---|
| 1922 | if self._order_ == 1: |
---|
[6181] | 1923 | msg = 'WARNING: Too small timestep %.16f reached ' \ |
---|
| 1924 | % timestep |
---|
| 1925 | msg += 'even after %d steps of 1 order scheme' \ |
---|
| 1926 | % self.max_smallsteps |
---|
[7317] | 1927 | log.critical(msg) |
---|
[7810] | 1928 | timestep = self.evolve_min_timestep # Try enforce min_step |
---|
[5897] | 1929 | |
---|
[7810] | 1930 | stats = self.timestepping_statistics(track_speeds=True) |
---|
| 1931 | log.critical(stats) |
---|
[5897] | 1932 | |
---|
| 1933 | raise Exception, msg |
---|
| 1934 | else: |
---|
| 1935 | # Try to overcome situation by switching to 1 order |
---|
| 1936 | self._order_ = 1 |
---|
| 1937 | else: |
---|
| 1938 | self.smallsteps = 0 |
---|
| 1939 | if self._order_ == 1 and self.default_order == 2: |
---|
| 1940 | self._order_ = 2 |
---|
| 1941 | |
---|
| 1942 | # Ensure that final time is not exceeded |
---|
[8065] | 1943 | if finaltime is not None and self.time + timestep > finaltime : |
---|
| 1944 | timestep = finaltime-self.time |
---|
[5897] | 1945 | |
---|
| 1946 | # Ensure that model time is aligned with yieldsteps |
---|
[8065] | 1947 | if self.time + timestep > self.yieldtime: |
---|
| 1948 | timestep = self.yieldtime - self.time |
---|
[5897] | 1949 | |
---|
| 1950 | self.timestep = timestep |
---|
| 1951 | |
---|
[6181] | 1952 | ## |
---|
| 1953 | # @brief Compute forcing terms, if any. |
---|
[5897] | 1954 | def compute_forcing_terms(self): |
---|
| 1955 | """If there are any forcing functions driving the system |
---|
| 1956 | they should be defined in Domain subclass and appended to |
---|
| 1957 | the list self.forcing_terms |
---|
| 1958 | """ |
---|
| 1959 | |
---|
[7492] | 1960 | # The parameter self.flux_timestep should be updated |
---|
| 1961 | # by the forcing_terms to ensure stability |
---|
| 1962 | |
---|
[5897] | 1963 | for f in self.forcing_terms: |
---|
| 1964 | f(self) |
---|
| 1965 | |
---|
[7492] | 1966 | |
---|
[6181] | 1967 | ## |
---|
| 1968 | # @brief Update vectors of conserved quantities. |
---|
[5897] | 1969 | def update_conserved_quantities(self): |
---|
| 1970 | """Update vectors of conserved quantities using previously |
---|
[7492] | 1971 | computed fluxes and specified forcing functions. |
---|
[5897] | 1972 | """ |
---|
| 1973 | |
---|
| 1974 | N = len(self) # Number_of_triangles |
---|
| 1975 | d = len(self.conserved_quantities) |
---|
| 1976 | |
---|
| 1977 | timestep = self.timestep |
---|
| 1978 | |
---|
| 1979 | |
---|
| 1980 | # Update conserved_quantities |
---|
| 1981 | for name in self.conserved_quantities: |
---|
| 1982 | Q = self.quantities[name] |
---|
| 1983 | Q.update(timestep) |
---|
| 1984 | |
---|
| 1985 | # Note that Q.explicit_update is reset by compute_fluxes |
---|
[6181] | 1986 | # Where is Q.semi_implicit_update reset? |
---|
[6051] | 1987 | # It is reset in quantity_ext.c |
---|
[5897] | 1988 | |
---|
[6181] | 1989 | ## |
---|
[6717] | 1990 | # @brief Sequential update of ghost cells |
---|
[5897] | 1991 | def update_ghosts(self): |
---|
[6717] | 1992 | # We must send the information from the full cells and |
---|
| 1993 | # receive the information for the ghost cells |
---|
| 1994 | # We have a list with ghosts expecting updates |
---|
[5897] | 1995 | |
---|
[6717] | 1996 | #Update of ghost cells |
---|
| 1997 | iproc = self.processor |
---|
| 1998 | if self.full_send_dict.has_key(iproc): |
---|
| 1999 | |
---|
| 2000 | # now store full as local id, global id, value |
---|
| 2001 | Idf = self.full_send_dict[iproc][0] |
---|
| 2002 | |
---|
| 2003 | # now store ghost as local id, global id, value |
---|
| 2004 | Idg = self.ghost_recv_dict[iproc][0] |
---|
| 2005 | |
---|
| 2006 | for i, q in enumerate(self.conserved_quantities): |
---|
| 2007 | Q_cv = self.quantities[q].centroid_values |
---|
[7276] | 2008 | num.put(Q_cv, Idg, num.take(Q_cv, Idf, axis=0)) |
---|
[6717] | 2009 | |
---|
| 2010 | |
---|
[6181] | 2011 | ## |
---|
| 2012 | # @brief Extrapolate conserved quantities from centroid to vertices |
---|
| 2013 | # and edge-midpoints for each volume. |
---|
[5897] | 2014 | def distribute_to_vertices_and_edges(self): |
---|
| 2015 | """Extrapolate conserved quantities from centroid to |
---|
| 2016 | vertices and edge-midpoints for each volume |
---|
| 2017 | |
---|
| 2018 | Default implementation is straight first order, |
---|
| 2019 | i.e. constant values throughout each element and |
---|
| 2020 | no reference to non-conserved quantities. |
---|
| 2021 | """ |
---|
| 2022 | |
---|
| 2023 | for name in self.conserved_quantities: |
---|
| 2024 | Q = self.quantities[name] |
---|
| 2025 | if self._order_ == 1: |
---|
| 2026 | Q.extrapolate_first_order() |
---|
| 2027 | elif self._order_ == 2: |
---|
| 2028 | Q.extrapolate_second_order() |
---|
| 2029 | else: |
---|
[6181] | 2030 | raise Exception, 'Unknown order' |
---|
[5897] | 2031 | |
---|
[6181] | 2032 | ## |
---|
| 2033 | # @brief Calculate the norm of the centroid values of a specific quantity, |
---|
| 2034 | # using normfunc. |
---|
[6226] | 2035 | # @param quantity |
---|
| 2036 | # @param normfunc |
---|
[5897] | 2037 | def centroid_norm(self, quantity, normfunc): |
---|
[6226] | 2038 | """Calculate the norm of the centroid values of a specific quantity, |
---|
| 2039 | using normfunc. |
---|
[5897] | 2040 | |
---|
| 2041 | normfunc should take a list to a float. |
---|
| 2042 | |
---|
| 2043 | common normfuncs are provided in the module utilities.norms |
---|
| 2044 | """ |
---|
[6181] | 2045 | |
---|
[5897] | 2046 | return normfunc(self.quantities[quantity].centroid_values) |
---|
| 2047 | |
---|
| 2048 | |
---|
[7704] | 2049 | |
---|
| 2050 | def apply_protection_against_isolated_degenerate_timesteps(self): |
---|
| 2051 | |
---|
| 2052 | # FIXME (Steve): This should be in shallow_water as it assumes x and y |
---|
| 2053 | # momentum |
---|
| 2054 | if self.protect_against_isolated_degenerate_timesteps is False: |
---|
| 2055 | return |
---|
| 2056 | |
---|
| 2057 | # FIXME (Ole): Make this configurable |
---|
| 2058 | if num.max(self.max_speed) < 10.0: |
---|
| 2059 | return |
---|
| 2060 | |
---|
| 2061 | # Setup 10 bins for speed histogram |
---|
| 2062 | from anuga.utilities.numerical_tools import histogram, create_bins |
---|
| 2063 | |
---|
| 2064 | bins = create_bins(self.max_speed, 10) |
---|
| 2065 | hist = histogram(self.max_speed, bins) |
---|
| 2066 | |
---|
| 2067 | # Look for characteristic signature |
---|
| 2068 | if len(hist) > 1 and hist[-1] > 0 and \ |
---|
| 2069 | hist[4] == hist[5] == hist[6] == hist[7] == hist[8] == 0: |
---|
| 2070 | # Danger of isolated degenerate triangles |
---|
| 2071 | |
---|
| 2072 | # Find triangles in last bin |
---|
| 2073 | # FIXME - speed up using numeric package |
---|
| 2074 | d = 0 |
---|
| 2075 | for i in range(self.number_of_full_triangles): |
---|
| 2076 | if self.max_speed[i] > bins[-1]: |
---|
[8065] | 2077 | msg = 'Time=%f: Ignoring isolated high ' % self.time |
---|
[7704] | 2078 | msg += 'speed triangle ' |
---|
| 2079 | msg += '#%d of %d with max speed=%f' \ |
---|
| 2080 | % (i, self.number_of_full_triangles, self.max_speed[i]) |
---|
| 2081 | |
---|
| 2082 | self.get_quantity('xmomentum').\ |
---|
| 2083 | set_values(0.0, indices=[i]) |
---|
| 2084 | self.get_quantity('ymomentum').\ |
---|
| 2085 | set_values(0.0, indices=[i]) |
---|
| 2086 | self.max_speed[i]=0.0 |
---|
| 2087 | d += 1 |
---|
| 2088 | |
---|
| 2089 | |
---|
[6226] | 2090 | ###### |
---|
[5897] | 2091 | # Initialise module |
---|
[6226] | 2092 | ###### |
---|
[5897] | 2093 | |
---|
| 2094 | # Optimisation with psyco |
---|
[7810] | 2095 | #from anuga.config import use_psyco |
---|
[6226] | 2096 | |
---|
[7810] | 2097 | #if use_psyco: |
---|
| 2098 | #try: |
---|
| 2099 | #import psyco |
---|
| 2100 | #except: |
---|
| 2101 | #import os |
---|
| 2102 | #if os.name == 'posix' and os.uname()[4] in ['x86_64', 'ia64']: |
---|
| 2103 | #pass |
---|
| 2104 | ## Psyco isn't supported on 64 bit systems, but it doesn't matter |
---|
| 2105 | #else: |
---|
| 2106 | #log.critical('WARNING: psyco (speedup) could not be imported, ' |
---|
| 2107 | #'you may want to consider installing it') |
---|
| 2108 | #else: |
---|
| 2109 | #psyco.bind(Generic_Domain.update_boundary) |
---|
| 2110 | ##psyco.bind(Domain.update_timestep) # Not worth it |
---|
| 2111 | #psyco.bind(Generic_Domain.update_conserved_quantities) |
---|
| 2112 | #psyco.bind(Generic_Domain.distribute_to_vertices_and_edges) |
---|
[5897] | 2113 | |
---|
| 2114 | |
---|
| 2115 | if __name__ == "__main__": |
---|
| 2116 | pass |
---|