1 | """Classes implementing general 2D triangular mesh with neighbour structure. |
---|
2 | |
---|
3 | This structure is purely geometrical. Anything relating to quantities |
---|
4 | or timestepping is implemented in subclass domain.py. |
---|
5 | |
---|
6 | Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou |
---|
7 | Geoscience Australia, 2004 |
---|
8 | """ |
---|
9 | |
---|
10 | from general_mesh import General_mesh |
---|
11 | from anuga.caching import cache |
---|
12 | import anuga.utilities.log as log |
---|
13 | |
---|
14 | from math import pi, sqrt |
---|
15 | |
---|
16 | import numpy as num |
---|
17 | |
---|
18 | |
---|
19 | class Mesh(General_mesh): |
---|
20 | """Collection of triangular elements (purely geometric) |
---|
21 | |
---|
22 | A triangular element is defined in terms of three vertex ids, |
---|
23 | ordered counter clock-wise, |
---|
24 | each corresponding to a given coordinate set. |
---|
25 | Vertices from different elements can point to the same |
---|
26 | coordinate set. |
---|
27 | |
---|
28 | Coordinate sets are implemented as an N x 2 numeric array containing |
---|
29 | x and y coordinates. |
---|
30 | |
---|
31 | |
---|
32 | To instantiate: |
---|
33 | Mesh(coordinates, triangles) |
---|
34 | |
---|
35 | where |
---|
36 | |
---|
37 | coordinates is either a list of 2-tuples or an Mx2 numeric array of |
---|
38 | floats representing all x, y coordinates in the mesh. |
---|
39 | |
---|
40 | triangles is either a list of 3-tuples or an Nx3 numeric array of |
---|
41 | integers representing indices of all vertices in the mesh. |
---|
42 | Each vertex is identified by its index i in [0, M-1]. |
---|
43 | |
---|
44 | |
---|
45 | Example: |
---|
46 | a = [0.0, 0.0] |
---|
47 | b = [0.0, 2.0] |
---|
48 | c = [2.0,0.0] |
---|
49 | e = [2.0, 2.0] |
---|
50 | |
---|
51 | points = [a, b, c, e] |
---|
52 | triangles = [ [1,0,2], [1,2,3] ] #bac, bce |
---|
53 | mesh = Mesh(points, triangles) |
---|
54 | |
---|
55 | #creates two triangles: bac and bce |
---|
56 | |
---|
57 | |
---|
58 | Mesh takes the optional third argument boundary which is a |
---|
59 | dictionary mapping from (element_id, edge_id) to boundary tag. |
---|
60 | The default value is None which will assign the default_boundary_tag |
---|
61 | as specified in config.py to all boundary edges. |
---|
62 | """ |
---|
63 | |
---|
64 | #FIXME: Maybe rename coordinates to points (as in a poly file) |
---|
65 | #But keep 'vertex_coordinates' |
---|
66 | |
---|
67 | #FIXME: Put in check for angles less than a set minimum |
---|
68 | |
---|
69 | |
---|
70 | def __init__(self, coordinates, triangles, |
---|
71 | boundary=None, |
---|
72 | tagged_elements=None, |
---|
73 | geo_reference=None, |
---|
74 | use_inscribed_circle=False, |
---|
75 | verbose=False): |
---|
76 | """ |
---|
77 | Build triangles from x,y coordinates (sequence of 2-tuples or |
---|
78 | Mx2 numeric array of floats) and triangles (sequence of 3-tuples |
---|
79 | or Nx3 numeric array of non-negative integers). |
---|
80 | """ |
---|
81 | |
---|
82 | |
---|
83 | |
---|
84 | |
---|
85 | General_mesh.__init__(self, coordinates, triangles, |
---|
86 | geo_reference=geo_reference, |
---|
87 | verbose=verbose) |
---|
88 | |
---|
89 | if verbose: log.critical('Initialising mesh') |
---|
90 | |
---|
91 | N = len(self) #Number_of_triangles |
---|
92 | |
---|
93 | self.use_inscribed_circle = use_inscribed_circle |
---|
94 | |
---|
95 | #Allocate space for geometric quantities |
---|
96 | self.centroid_coordinates = num.zeros((N, 2), num.float) |
---|
97 | |
---|
98 | self.radii = num.zeros(N, num.float) |
---|
99 | |
---|
100 | self.neighbours = num.zeros((N, 3), num.int) |
---|
101 | self.neighbour_edges = num.zeros((N, 3), num.int) |
---|
102 | self.number_of_boundaries = num.zeros(N, num.int) |
---|
103 | self.surrogate_neighbours = num.zeros((N, 3), num.int) |
---|
104 | |
---|
105 | #Get x,y coordinates for all triangles and store |
---|
106 | V = self.vertex_coordinates # Relative coordinates |
---|
107 | |
---|
108 | #Initialise each triangle |
---|
109 | if verbose: log.critical('Mesh: Computing centroids and radii') |
---|
110 | for i in range(N): |
---|
111 | if verbose and i % ((N+10)/10) == 0: log.critical('(%d/%d)' % (i, N)) |
---|
112 | |
---|
113 | x0, y0 = V[3*i, :] |
---|
114 | x1, y1 = V[3*i+1, :] |
---|
115 | x2, y2 = V[3*i+2, :] |
---|
116 | |
---|
117 | #x0 = V[i, 0]; y0 = V[i, 1] |
---|
118 | #x1 = V[i, 2]; y1 = V[i, 3] |
---|
119 | #x2 = V[i, 4]; y2 = V[i, 5] |
---|
120 | |
---|
121 | #Compute centroid |
---|
122 | centroid = num.array([(x0 + x1 + x2)/3, (y0 + y1 + y2)/3], num.float) |
---|
123 | self.centroid_coordinates[i] = centroid |
---|
124 | |
---|
125 | |
---|
126 | if self.use_inscribed_circle == False: |
---|
127 | #OLD code. Computed radii may exceed that of an |
---|
128 | #inscribed circle |
---|
129 | |
---|
130 | #Midpoints |
---|
131 | m0 = num.array([(x1 + x2)/2, (y1 + y2)/2], num.float) |
---|
132 | m1 = num.array([(x0 + x2)/2, (y0 + y2)/2], num.float) |
---|
133 | m2 = num.array([(x1 + x0)/2, (y1 + y0)/2], num.float) |
---|
134 | |
---|
135 | #The radius is the distance from the centroid of |
---|
136 | #a triangle to the midpoint of the side of the triangle |
---|
137 | #closest to the centroid |
---|
138 | d0 = num.sqrt(num.sum( (centroid-m0)**2 )) |
---|
139 | d1 = num.sqrt(num.sum( (centroid-m1)**2 )) |
---|
140 | d2 = num.sqrt(num.sum( (centroid-m2)**2 )) |
---|
141 | |
---|
142 | self.radii[i] = min(d0, d1, d2) |
---|
143 | |
---|
144 | else: |
---|
145 | #NEW code added by Peter Row. True radius |
---|
146 | #of inscribed circle is computed |
---|
147 | |
---|
148 | a = num.sqrt((x0-x1)**2+(y0-y1)**2) |
---|
149 | b = num.sqrt((x1-x2)**2+(y1-y2)**2) |
---|
150 | c = num.sqrt((x2-x0)**2+(y2-y0)**2) |
---|
151 | |
---|
152 | self.radii[i]=2.0*self.areas[i]/(a+b+c) |
---|
153 | |
---|
154 | |
---|
155 | #Initialise Neighbours (-1 means that it is a boundary neighbour) |
---|
156 | self.neighbours[i, :] = [-1, -1, -1] |
---|
157 | |
---|
158 | #Initialise edge ids of neighbours |
---|
159 | #In case of boundaries this slot is not used |
---|
160 | self.neighbour_edges[i, :] = [-1, -1, -1] |
---|
161 | |
---|
162 | |
---|
163 | #Build neighbour structure |
---|
164 | if verbose: log.critical('Mesh: Building neigbour structure') |
---|
165 | self.build_neighbour_structure() |
---|
166 | |
---|
167 | #Build surrogate neighbour structure |
---|
168 | if verbose: log.critical('Mesh: Building surrogate neigbour structure') |
---|
169 | self.build_surrogate_neighbour_structure() |
---|
170 | |
---|
171 | #Build boundary dictionary mapping (id, edge) to symbolic tags |
---|
172 | if verbose: log.critical('Mesh: Building boundary dictionary') |
---|
173 | self.build_boundary_dictionary(boundary) |
---|
174 | |
---|
175 | #Update boundary_enumeration |
---|
176 | self.build_boundary_neighbours() |
---|
177 | |
---|
178 | #Build tagged element dictionary mapping (tag) to array of elements |
---|
179 | if verbose: log.critical('Mesh: Building tagged elements dictionary') |
---|
180 | self.build_tagged_elements_dictionary(tagged_elements) |
---|
181 | |
---|
182 | # Build a list of vertices that are not connected to any triangles |
---|
183 | self.lone_vertices = [] |
---|
184 | #Check that all vertices have been registered |
---|
185 | for node, count in enumerate(self.number_of_triangles_per_node): |
---|
186 | #msg = 'Node %d does not belong to an element.' %node |
---|
187 | #assert count > 0, msg |
---|
188 | if count == 0: |
---|
189 | self.lone_vertices.append(node) |
---|
190 | |
---|
191 | #Update boundary indices FIXME: OBSOLETE |
---|
192 | #self.build_boundary_structure() |
---|
193 | |
---|
194 | #FIXME check integrity? |
---|
195 | if verbose: log.critical('Mesh: Done') |
---|
196 | |
---|
197 | def __repr__(self): |
---|
198 | return General_mesh.__repr__(self) + ', %d boundary segments'\ |
---|
199 | %(len(self.boundary)) |
---|
200 | |
---|
201 | |
---|
202 | def set_to_inscribed_circle(self,safety_factor = 1): |
---|
203 | #FIXME phase out eventually |
---|
204 | N = self.number_of_triangles |
---|
205 | V = self.vertex_coordinates |
---|
206 | |
---|
207 | #initialising min and max ratio |
---|
208 | i=0 |
---|
209 | old_rad = self.radii[i] |
---|
210 | x0 = V[i, 0]; y0 = V[i, 1] |
---|
211 | x1 = V[i, 2]; y1 = V[i, 3] |
---|
212 | x2 = V[i, 4]; y2 = V[i, 5] |
---|
213 | a = num.sqrt((x0-x1)**2+(y0-y1)**2) |
---|
214 | b = num.sqrt((x1-x2)**2+(y1-y2)**2) |
---|
215 | c = num.sqrt((x2-x0)**2+(y2-y0)**2) |
---|
216 | ratio = old_rad/self.radii[i] |
---|
217 | max_ratio = ratio |
---|
218 | min_ratio = ratio |
---|
219 | |
---|
220 | for i in range(N): |
---|
221 | old_rad = self.radii[i] |
---|
222 | x0 = V[i, 0]; y0 = V[i, 1] |
---|
223 | x1 = V[i, 2]; y1 = V[i, 3] |
---|
224 | x2 = V[i, 4]; y2 = V[i, 5] |
---|
225 | a = num.sqrt((x0-x1)**2+(y0-y1)**2) |
---|
226 | b = num.sqrt((x1-x2)**2+(y1-y2)**2) |
---|
227 | c = num.sqrt((x2-x0)**2+(y2-y0)**2) |
---|
228 | self.radii[i]=self.areas[i]/(2*(a+b+c))*safety_factor |
---|
229 | ratio = old_rad/self.radii[i] |
---|
230 | if ratio >= max_ratio: max_ratio = ratio |
---|
231 | if ratio <= min_ratio: min_ratio = ratio |
---|
232 | return max_ratio,min_ratio |
---|
233 | |
---|
234 | |
---|
235 | |
---|
236 | def build_neighbour_structure(self): |
---|
237 | """Update all registered triangles to point to their neighbours. |
---|
238 | |
---|
239 | Also, keep a tally of the number of boundaries for each triangle |
---|
240 | |
---|
241 | Postconditions: |
---|
242 | neighbours and neighbour_edges is populated |
---|
243 | number_of_boundaries integer array is defined. |
---|
244 | """ |
---|
245 | |
---|
246 | #Step 1: |
---|
247 | #Build dictionary mapping from segments (2-tuple of points) |
---|
248 | #to left hand side edge (facing neighbouring triangle) |
---|
249 | |
---|
250 | N = len(self) #Number_of_triangles |
---|
251 | neighbourdict = {} |
---|
252 | for i in range(N): |
---|
253 | |
---|
254 | #Register all segments as keys mapping to current triangle |
---|
255 | #and segment id |
---|
256 | a = self.triangles[i, 0] |
---|
257 | b = self.triangles[i, 1] |
---|
258 | c = self.triangles[i, 2] |
---|
259 | if neighbourdict.has_key((a,b)): |
---|
260 | msg = "Edge 2 of triangle %d is duplicating edge %d of triangle %d.\n" %(i,neighbourdict[a,b][1],neighbourdict[a,b][0]) |
---|
261 | raise Exception(msg) |
---|
262 | if neighbourdict.has_key((b,c)): |
---|
263 | msg = "Edge 0 of triangle %d is duplicating edge %d of triangle %d.\n" %(i,neighbourdict[b,c][1],neighbourdict[b,c][0]) |
---|
264 | raise Exception(msg) |
---|
265 | if neighbourdict.has_key((c,a)): |
---|
266 | msg = "Edge 1 of triangle %d is duplicating edge %d of triangle %d.\n" %(i,neighbourdict[c,a][1],neighbourdict[c,a][0]) |
---|
267 | raise Exception(msg) |
---|
268 | |
---|
269 | neighbourdict[a,b] = (i, 2) #(id, edge) |
---|
270 | neighbourdict[b,c] = (i, 0) #(id, edge) |
---|
271 | neighbourdict[c,a] = (i, 1) #(id, edge) |
---|
272 | |
---|
273 | |
---|
274 | #Step 2: |
---|
275 | #Go through triangles again, but this time |
---|
276 | #reverse direction of segments and lookup neighbours. |
---|
277 | for i in range(N): |
---|
278 | a = self.triangles[i, 0] |
---|
279 | b = self.triangles[i, 1] |
---|
280 | c = self.triangles[i, 2] |
---|
281 | |
---|
282 | self.number_of_boundaries[i] = 3 |
---|
283 | if neighbourdict.has_key((b,a)): |
---|
284 | self.neighbours[i, 2] = neighbourdict[b,a][0] |
---|
285 | self.neighbour_edges[i, 2] = neighbourdict[b,a][1] |
---|
286 | self.number_of_boundaries[i] -= 1 |
---|
287 | |
---|
288 | if neighbourdict.has_key((c,b)): |
---|
289 | self.neighbours[i, 0] = neighbourdict[c,b][0] |
---|
290 | self.neighbour_edges[i, 0] = neighbourdict[c,b][1] |
---|
291 | self.number_of_boundaries[i] -= 1 |
---|
292 | |
---|
293 | if neighbourdict.has_key((a,c)): |
---|
294 | self.neighbours[i, 1] = neighbourdict[a,c][0] |
---|
295 | self.neighbour_edges[i, 1] = neighbourdict[a,c][1] |
---|
296 | self.number_of_boundaries[i] -= 1 |
---|
297 | |
---|
298 | |
---|
299 | def build_surrogate_neighbour_structure(self): |
---|
300 | """Build structure where each triangle edge points to its neighbours |
---|
301 | if they exist. Otherwise point to the triangle itself. |
---|
302 | |
---|
303 | The surrogate neighbour structure is useful for computing gradients |
---|
304 | based on centroid values of neighbours. |
---|
305 | |
---|
306 | Precondition: Neighbour structure is defined |
---|
307 | Postcondition: |
---|
308 | Surrogate neighbour structure is defined: |
---|
309 | surrogate_neighbours: i0, i1, i2 where all i_k >= 0 point to |
---|
310 | triangles. |
---|
311 | |
---|
312 | """ |
---|
313 | |
---|
314 | N = len(self) #Number of triangles |
---|
315 | for i in range(N): |
---|
316 | #Find all neighbouring volumes that are not boundaries |
---|
317 | for k in range(3): |
---|
318 | if self.neighbours[i, k] < 0: |
---|
319 | self.surrogate_neighbours[i, k] = i #Point this triangle |
---|
320 | else: |
---|
321 | self.surrogate_neighbours[i, k] = self.neighbours[i, k] |
---|
322 | |
---|
323 | |
---|
324 | |
---|
325 | def build_boundary_dictionary(self, boundary = None): |
---|
326 | """Build or check the dictionary of boundary tags. |
---|
327 | self.boundary is a dictionary of tags, |
---|
328 | keyed by volume id and edge: |
---|
329 | { (id, edge): tag, ... } |
---|
330 | |
---|
331 | Postconditions: |
---|
332 | self.boundary is defined. |
---|
333 | """ |
---|
334 | |
---|
335 | from anuga.config import default_boundary_tag |
---|
336 | |
---|
337 | if boundary is None: |
---|
338 | boundary = {} |
---|
339 | for vol_id in range(len(self)): |
---|
340 | for edge_id in range(0, 3): |
---|
341 | if self.neighbours[vol_id, edge_id] < 0: |
---|
342 | boundary[(vol_id, edge_id)] = default_boundary_tag |
---|
343 | else: |
---|
344 | #Check that all keys in given boundary exist |
---|
345 | for vol_id, edge_id in boundary.keys(): |
---|
346 | msg = 'Segment (%d, %d) does not exist' %(vol_id, edge_id) |
---|
347 | a, b = self.neighbours.shape |
---|
348 | assert vol_id < a and edge_id < b, msg |
---|
349 | |
---|
350 | #FIXME: This assert violates internal boundaries (delete it) |
---|
351 | #msg = 'Segment (%d, %d) is not a boundary' %(vol_id, edge_id) |
---|
352 | #assert self.neighbours[vol_id, edge_id] < 0, msg |
---|
353 | |
---|
354 | #Check that all boundary segments are assigned a tag |
---|
355 | for vol_id in range(len(self)): |
---|
356 | for edge_id in range(0, 3): |
---|
357 | if self.neighbours[vol_id, edge_id] < 0: |
---|
358 | if not boundary.has_key( (vol_id, edge_id) ): |
---|
359 | msg = 'WARNING: Given boundary does not contain ' |
---|
360 | msg += 'tags for edge (%d, %d). '\ |
---|
361 | %(vol_id, edge_id) |
---|
362 | msg += 'Assigning default tag (%s).'\ |
---|
363 | %default_boundary_tag |
---|
364 | |
---|
365 | #FIXME: Print only as per verbosity |
---|
366 | |
---|
367 | #FIXME: Make this situation an error in the future |
---|
368 | #and make another function which will |
---|
369 | #enable default boundary-tags where |
---|
370 | #tags a not specified |
---|
371 | boundary[ (vol_id, edge_id) ] =\ |
---|
372 | default_boundary_tag |
---|
373 | |
---|
374 | |
---|
375 | |
---|
376 | self.boundary = boundary |
---|
377 | |
---|
378 | |
---|
379 | def build_tagged_elements_dictionary(self, tagged_elements = None): |
---|
380 | """Build the dictionary of element tags. |
---|
381 | self.tagged_elements is a dictionary of element arrays, |
---|
382 | keyed by tag: |
---|
383 | { (tag): [e1, e2, e3..] } |
---|
384 | |
---|
385 | Postconditions: |
---|
386 | self.element_tag is defined |
---|
387 | """ |
---|
388 | |
---|
389 | if tagged_elements is None: |
---|
390 | tagged_elements = {} |
---|
391 | else: |
---|
392 | #Check that all keys in given boundary exist |
---|
393 | for tag in tagged_elements.keys(): |
---|
394 | tagged_elements[tag] = num.array(tagged_elements[tag], num.int) |
---|
395 | |
---|
396 | msg = 'Not all elements exist. ' |
---|
397 | assert max(tagged_elements[tag]) < len(self), msg |
---|
398 | self.tagged_elements = tagged_elements |
---|
399 | |
---|
400 | def get_tagged_elements(self): |
---|
401 | return self.tagged_elements |
---|
402 | |
---|
403 | def build_boundary_structure(self): |
---|
404 | """Traverse boundary and |
---|
405 | enumerate neighbour indices from -1 and |
---|
406 | counting down. |
---|
407 | |
---|
408 | Precondition: |
---|
409 | self.boundary is defined. |
---|
410 | Post condition: |
---|
411 | neighbour array has unique negative indices for boundary |
---|
412 | boundary_segments array imposes an ordering on segments |
---|
413 | (not otherwise available from the dictionary) |
---|
414 | |
---|
415 | Note: If a segment is listed in the boundary dictionary |
---|
416 | it *will* become a boundary - even if there is a neighbouring triangle. |
---|
417 | This would be the case for internal boundaries |
---|
418 | """ |
---|
419 | |
---|
420 | #FIXME: Now Obsolete - maybe use some comments from here in |
---|
421 | #domain.set_boundary |
---|
422 | |
---|
423 | if self.boundary is None: |
---|
424 | msg = 'Boundary dictionary must be defined before ' |
---|
425 | msg += 'building boundary structure' |
---|
426 | raise Exception(msg) |
---|
427 | |
---|
428 | |
---|
429 | self.boundary_segments = self.boundary.keys() |
---|
430 | self.boundary_segments.sort() |
---|
431 | |
---|
432 | index = -1 |
---|
433 | for id, edge in self.boundary_segments: |
---|
434 | |
---|
435 | #FIXME: One would detect internal boundaries as follows |
---|
436 | #if self.neighbours[id, edge] > -1: |
---|
437 | # log.critical('Internal boundary') |
---|
438 | |
---|
439 | self.neighbours[id, edge] = index |
---|
440 | |
---|
441 | self.boundary_enumeration[id,edge] = index |
---|
442 | |
---|
443 | index -= 1 |
---|
444 | |
---|
445 | |
---|
446 | |
---|
447 | def build_boundary_neighbours(self): |
---|
448 | """Traverse boundary and |
---|
449 | enumerate neighbour indices from -1 and |
---|
450 | counting down. |
---|
451 | |
---|
452 | Precondition: |
---|
453 | self.boundary is defined. |
---|
454 | Post condition: |
---|
455 | neighbours array has unique negative indices for boundary |
---|
456 | boundary_segments array imposes an ordering on segments |
---|
457 | (not otherwise available from the dictionary) |
---|
458 | |
---|
459 | """ |
---|
460 | |
---|
461 | if self.boundary is None: |
---|
462 | msg = 'Boundary dictionary must be defined before ' |
---|
463 | msg += 'building boundary structure' |
---|
464 | raise Exception(msg) |
---|
465 | |
---|
466 | self.boundary_enumeration = {} |
---|
467 | |
---|
468 | X = self.boundary.keys() |
---|
469 | X.sort() |
---|
470 | |
---|
471 | index = -1 |
---|
472 | for id, edge in X: |
---|
473 | self.neighbours[id, edge] = index |
---|
474 | |
---|
475 | self.boundary_enumeration[id,edge] = -index -1 |
---|
476 | |
---|
477 | index -= 1 |
---|
478 | |
---|
479 | # Now we know number of boundaries |
---|
480 | M = len(self.boundary_enumeration) |
---|
481 | self.boundary_cells = num.zeros((M,),num.int) |
---|
482 | self.boundary_edges = num.zeros((M,),num.int) |
---|
483 | |
---|
484 | for id, edge in X: |
---|
485 | |
---|
486 | j = self.boundary_enumeration[id,edge] |
---|
487 | self.boundary_cells[j] = id |
---|
488 | self.boundary_edges[j] = edge |
---|
489 | |
---|
490 | |
---|
491 | def get_boundary_tags(self): |
---|
492 | """Return list of available boundary tags |
---|
493 | """ |
---|
494 | |
---|
495 | tags = {} |
---|
496 | for v in self.boundary.values(): |
---|
497 | tags[v] = 1 |
---|
498 | |
---|
499 | return tags.keys() |
---|
500 | |
---|
501 | |
---|
502 | def get_boundary_polygon(self, verbose=False): |
---|
503 | """Return bounding polygon for mesh (counter clockwise) |
---|
504 | |
---|
505 | Using the mesh boundary, derive a bounding polygon for this mesh. |
---|
506 | If multiple vertex values are present (vertices stored uniquely), |
---|
507 | the algorithm will select the path that contains the entire mesh. |
---|
508 | |
---|
509 | All points are in absolute UTM coordinates |
---|
510 | """ |
---|
511 | |
---|
512 | from anuga.utilities.numerical_tools import angle, ensure_numeric |
---|
513 | |
---|
514 | # Get mesh extent |
---|
515 | xmin, xmax, ymin, ymax = self.get_extent(absolute=True) |
---|
516 | pmin = ensure_numeric([xmin, ymin]) |
---|
517 | pmax = ensure_numeric([xmax, ymax]) |
---|
518 | |
---|
519 | # Assemble dictionary of boundary segments and choose starting point |
---|
520 | segments = {} |
---|
521 | inverse_segments = {} |
---|
522 | p0 = None |
---|
523 | |
---|
524 | # Start value across entire mesh |
---|
525 | mindist = num.sqrt(num.sum((pmax-pmin)**2)) |
---|
526 | for i, edge_id in self.boundary.keys(): |
---|
527 | # Find vertex ids for boundary segment |
---|
528 | if edge_id == 0: a = 1; b = 2 |
---|
529 | if edge_id == 1: a = 2; b = 0 |
---|
530 | if edge_id == 2: a = 0; b = 1 |
---|
531 | |
---|
532 | A = self.get_vertex_coordinate(i, a, absolute=True) # Start |
---|
533 | B = self.get_vertex_coordinate(i, b, absolute=True) # End |
---|
534 | |
---|
535 | # Take the point closest to pmin as starting point |
---|
536 | # Note: Could be arbitrary, but nice to have |
---|
537 | # a unique way of selecting |
---|
538 | dist_A = num.sqrt(num.sum((A-pmin)**2)) |
---|
539 | dist_B = num.sqrt(num.sum((B-pmin)**2)) |
---|
540 | |
---|
541 | # Find lower leftmost point |
---|
542 | if dist_A < mindist: |
---|
543 | mindist = dist_A |
---|
544 | p0 = A |
---|
545 | if dist_B < mindist: |
---|
546 | mindist = dist_B |
---|
547 | p0 = B |
---|
548 | |
---|
549 | # Sanity check |
---|
550 | if p0 is None: |
---|
551 | msg = 'Impossible: p0 is None!?' |
---|
552 | raise Exception(msg) |
---|
553 | |
---|
554 | # Register potential paths from A to B |
---|
555 | if not segments.has_key(tuple(A)): |
---|
556 | segments[tuple(A)] = [] # Empty list for candidate points |
---|
557 | |
---|
558 | segments[tuple(A)].append(B) |
---|
559 | |
---|
560 | # Start with smallest point and follow boundary (counter clock wise) |
---|
561 | polygon = [list(p0)]# Storage for final boundary polygon |
---|
562 | point_registry = {} # Keep track of storage to avoid multiple runs |
---|
563 | # around boundary. This will only be the case if |
---|
564 | # there are more than one candidate. |
---|
565 | # FIXME (Ole): Perhaps we can do away with polygon |
---|
566 | # and use only point_registry to save space. |
---|
567 | |
---|
568 | point_registry[tuple(p0)] = 0 |
---|
569 | |
---|
570 | while len(point_registry) < len(self.boundary): |
---|
571 | candidate_list = segments[tuple(p0)] |
---|
572 | if len(candidate_list) > 1: |
---|
573 | # Multiple points detected (this will be the case for meshes |
---|
574 | # with duplicate points as those used for discontinuous |
---|
575 | # triangles with vertices stored uniquely). |
---|
576 | # Take the candidate that is furthest to the clockwise |
---|
577 | # direction, as that will follow the boundary. |
---|
578 | # |
---|
579 | # This will also be the case for pathological triangles |
---|
580 | # that have no neighbours. |
---|
581 | |
---|
582 | if verbose: |
---|
583 | log.critical('Point %s has multiple candidates: %s' |
---|
584 | % (str(p0), candidate_list)) |
---|
585 | |
---|
586 | # Check that previous are not in candidate list |
---|
587 | #for p in candidate_list: |
---|
588 | # assert not allclose(p0, p) |
---|
589 | |
---|
590 | # Choose vector against which all angles will be measured |
---|
591 | if len(polygon) > 1: |
---|
592 | v_prev = p0 - polygon[-2] # Vector that leads to p0 |
---|
593 | # from previous point |
---|
594 | else: |
---|
595 | # FIXME (Ole): What do we do if the first point has |
---|
596 | # multiple candidates? |
---|
597 | # Being the lower left corner, perhaps we can use the |
---|
598 | # vector [1, 0], but I really don't know if this is |
---|
599 | # completely watertight. |
---|
600 | v_prev = [1.0, 0.0] |
---|
601 | |
---|
602 | # Choose candidate with minimum angle |
---|
603 | minimum_angle = 2*pi |
---|
604 | for pc in candidate_list: |
---|
605 | vc = pc-p0 # Candidate vector (from p0 to candidate pt) |
---|
606 | |
---|
607 | # Angle between each candidate and the previous vector |
---|
608 | # in [-pi, pi] |
---|
609 | ac = angle(vc, v_prev) |
---|
610 | if ac > pi: |
---|
611 | # Give preference to angles on the right hand side |
---|
612 | # of v_prev |
---|
613 | ac = ac-2*pi |
---|
614 | |
---|
615 | # Take the minimal angle corresponding to the |
---|
616 | # rightmost vector |
---|
617 | if ac < minimum_angle: |
---|
618 | minimum_angle = ac |
---|
619 | p1 = pc # Best candidate |
---|
620 | |
---|
621 | if verbose is True: |
---|
622 | log.critical(' Best candidate %s, angle %f' |
---|
623 | % (p1, minimum_angle*180/pi)) |
---|
624 | else: |
---|
625 | p1 = candidate_list[0] |
---|
626 | |
---|
627 | if point_registry.has_key(tuple(p1)): |
---|
628 | # We have reached a point already visited. |
---|
629 | if num.allclose(p1, polygon[0]): |
---|
630 | # If it is the initial point, the polygon is complete. |
---|
631 | if verbose is True: |
---|
632 | log.critical(' Stop criterion fulfilled at point %s' |
---|
633 | % str(p1)) |
---|
634 | log.critical(str(polygon)) |
---|
635 | |
---|
636 | # We have completed the boundary polygon - yeehaa |
---|
637 | break |
---|
638 | else: |
---|
639 | # The point already visited is not the initial point |
---|
640 | # This would be a pathological triangle, but the |
---|
641 | # algorithm must be able to deal with this |
---|
642 | pass |
---|
643 | |
---|
644 | else: |
---|
645 | # We are still finding new points on the boundary |
---|
646 | point_registry[tuple(p1)] = len(point_registry) |
---|
647 | |
---|
648 | polygon.append(list(p1)) # De-numeric each point :-) |
---|
649 | p0 = p1 |
---|
650 | |
---|
651 | return polygon |
---|
652 | |
---|
653 | def check_integrity(self): |
---|
654 | """Check that triangles are internally consistent e.g. |
---|
655 | that area corresponds to edgelengths, that vertices |
---|
656 | are arranged in a counter-clockwise order, etc etc |
---|
657 | Neighbour structure will be checked by class Mesh |
---|
658 | """ |
---|
659 | |
---|
660 | from anuga.config import epsilon |
---|
661 | from anuga.utilities.numerical_tools import anglediff |
---|
662 | |
---|
663 | N = len(self) |
---|
664 | |
---|
665 | # Get x,y coordinates for all vertices for all triangles |
---|
666 | V = self.get_vertex_coordinates() |
---|
667 | |
---|
668 | # Check each triangle |
---|
669 | for i in range(N): |
---|
670 | |
---|
671 | x0, y0 = V[3*i, :] |
---|
672 | x1, y1 = V[3*i+1, :] |
---|
673 | x2, y2 = V[3*i+2, :] |
---|
674 | |
---|
675 | # Check that area hasn't been compromised |
---|
676 | area = self.areas[i] |
---|
677 | ref = -((x1*y0-x0*y1)+(x2*y1-x1*y2)+(x0*y2-x2*y0))/2 |
---|
678 | msg = 'Triangle %i (%f,%f), (%f,%f), (%f, %f)' % (i, x0,y0,x1,y1,x2,y2) |
---|
679 | msg += 'Wrong area: %f %f'\ |
---|
680 | %(area, ref) |
---|
681 | assert abs((area - ref)/area) < epsilon, msg |
---|
682 | |
---|
683 | msg = 'Triangle %i (%f,%f), (%f,%f), (%f, %f)' % (i, x0,y0,x1,y1,x2,y2) |
---|
684 | msg += ' is degenerate: area == %f' % self.areas[i] |
---|
685 | assert area > 0.0, msg |
---|
686 | |
---|
687 | # Check that points are arranged in counter clock-wise order |
---|
688 | v0 = [x1-x0, y1-y0] |
---|
689 | v1 = [x2-x1, y2-y1] |
---|
690 | v2 = [x0-x2, y0-y2] |
---|
691 | a0 = anglediff(v1, v0) |
---|
692 | a1 = anglediff(v2, v1) |
---|
693 | a2 = anglediff(v0, v2) |
---|
694 | |
---|
695 | msg = '''Vertices (%s,%s), (%s,%s), (%s,%s) are not arranged |
---|
696 | in counter clockwise order''' %(x0, y0, x1, y1, x2, y2) |
---|
697 | assert a0 < pi and a1 < pi and a2 < pi, msg |
---|
698 | |
---|
699 | # Check that normals are orthogonal to edge vectors |
---|
700 | # Note that normal[k] lies opposite vertex k |
---|
701 | |
---|
702 | normal0 = self.normals[i, 0:2] |
---|
703 | normal1 = self.normals[i, 2:4] |
---|
704 | normal2 = self.normals[i, 4:6] |
---|
705 | |
---|
706 | for u, v in [ (v0, normal2), (v1, normal0), (v2, normal1) ]: |
---|
707 | |
---|
708 | # Normalise |
---|
709 | l_u = num.sqrt(u[0]*u[0] + u[1]*u[1]) |
---|
710 | l_v = num.sqrt(v[0]*v[0] + v[1]*v[1]) |
---|
711 | |
---|
712 | msg = 'Normal vector in triangle %d does not have unit length' %i |
---|
713 | assert num.allclose(l_v, 1), msg |
---|
714 | |
---|
715 | x = (u[0]*v[0] + u[1]*v[1])/l_u # Inner product |
---|
716 | |
---|
717 | msg = 'Normal vector (%f,%f) is not perpendicular to' %tuple(v) |
---|
718 | msg += ' edge (%f,%f) in triangle %d.' %(tuple(u) + (i,)) |
---|
719 | msg += ' Inner product is %e.' %x |
---|
720 | assert x < epsilon, msg |
---|
721 | |
---|
722 | |
---|
723 | |
---|
724 | |
---|
725 | # Check neighbour structure |
---|
726 | for i in range(N): |
---|
727 | # For each triangle |
---|
728 | |
---|
729 | for k, neighbour_id in enumerate(self.neighbours[i,:]): |
---|
730 | |
---|
731 | #Assert that my neighbour's neighbour is me |
---|
732 | #Boundaries need not fulfill this |
---|
733 | if neighbour_id >= 0: |
---|
734 | edge = self.neighbour_edges[i, k] |
---|
735 | msg = 'Triangle %d has neighbour %d but it does not point back. \n' %(i,neighbour_id) |
---|
736 | msg += 'Only points to (%s)' %(self.neighbours[neighbour_id,:]) |
---|
737 | assert self.neighbours[neighbour_id, edge] == i ,msg |
---|
738 | |
---|
739 | |
---|
740 | |
---|
741 | #Check that all boundaries have |
---|
742 | # unique, consecutive, negative indices |
---|
743 | |
---|
744 | #L = len(self.boundary) |
---|
745 | #for i in range(L): |
---|
746 | # id, edge = self.boundary_segments[i] |
---|
747 | # assert self.neighbours[id, edge] == -i-1 |
---|
748 | |
---|
749 | |
---|
750 | #NOTE: This assert doesn't hold true if there are internal boundaries |
---|
751 | #FIXME: Look into this further. |
---|
752 | #FIXME (Ole): In pyvolution mark 3 this is OK again |
---|
753 | #NOTE: No longer works because neighbour structure is modified by |
---|
754 | # domain set_boundary. |
---|
755 | #for id, edge in self.boundary: |
---|
756 | # assert self.neighbours[id,edge] < 0 |
---|
757 | # |
---|
758 | #NOTE (Ole): I reckon this was resolved late 2004? |
---|
759 | # |
---|
760 | #See domain.set_boundary |
---|
761 | |
---|
762 | |
---|
763 | |
---|
764 | #Check integrity of inverted triangle structure |
---|
765 | |
---|
766 | V = self.vertex_value_indices[:] #Take a copy |
---|
767 | V = num.sort(V) |
---|
768 | assert num.allclose(V, range(3*N)) |
---|
769 | |
---|
770 | assert num.sum(self.number_of_triangles_per_node) ==\ |
---|
771 | len(self.vertex_value_indices) |
---|
772 | |
---|
773 | # Check number of triangles per node |
---|
774 | count = [0]*self.number_of_nodes |
---|
775 | for triangle in self.triangles: |
---|
776 | for i in triangle: |
---|
777 | count[i] += 1 |
---|
778 | |
---|
779 | assert num.allclose(count, self.number_of_triangles_per_node) |
---|
780 | |
---|
781 | |
---|
782 | # Check integrity of vertex_value_indices |
---|
783 | current_node = 0 |
---|
784 | k = 0 # Track triangles touching on node |
---|
785 | for index in self.vertex_value_indices: |
---|
786 | |
---|
787 | if self.number_of_triangles_per_node[current_node] == 0: |
---|
788 | # Node is lone - i.e. not part of the mesh |
---|
789 | continue |
---|
790 | |
---|
791 | k += 1 |
---|
792 | |
---|
793 | volume_id = index / 3 |
---|
794 | vertex_id = index % 3 |
---|
795 | |
---|
796 | msg = 'Triangle %d, vertex %d points to %d. Should have been %d'\ |
---|
797 | %(volume_id, vertex_id, self.triangles[volume_id, vertex_id], current_node) |
---|
798 | assert self.triangles[volume_id, vertex_id] == current_node, msg |
---|
799 | |
---|
800 | if self.number_of_triangles_per_node[current_node] == k: |
---|
801 | # Move on to next node |
---|
802 | k = 0 |
---|
803 | current_node += 1 |
---|
804 | |
---|
805 | |
---|
806 | def get_lone_vertices(self): |
---|
807 | """Return a list of vertices that are not connected to any triangles. |
---|
808 | |
---|
809 | """ |
---|
810 | return self.lone_vertices |
---|
811 | |
---|
812 | def get_centroid_coordinates(self, absolute=False): |
---|
813 | """Return all centroid coordinates. |
---|
814 | Return all centroid coordinates for all triangles as an Nx2 array |
---|
815 | (ordered as x0, y0 for each triangle) |
---|
816 | |
---|
817 | Boolean keyword argument absolute determines whether coordinates |
---|
818 | are to be made absolute by taking georeference into account |
---|
819 | Default is False as many parts of ANUGA expects relative coordinates. |
---|
820 | """ |
---|
821 | |
---|
822 | V = self.centroid_coordinates |
---|
823 | if absolute is True: |
---|
824 | if not self.geo_reference.is_absolute(): |
---|
825 | V = self.geo_reference.get_absolute(V) |
---|
826 | |
---|
827 | return V |
---|
828 | |
---|
829 | |
---|
830 | def get_radii(self): |
---|
831 | """Return all radii. |
---|
832 | Return radius of inscribed cirle for all triangles |
---|
833 | """ |
---|
834 | return self.radii |
---|
835 | |
---|
836 | |
---|
837 | |
---|
838 | def statistics(self): |
---|
839 | """Output statistics about mesh |
---|
840 | """ |
---|
841 | |
---|
842 | from anuga.utilities.numerical_tools import histogram, create_bins |
---|
843 | |
---|
844 | vertex_coordinates = self.vertex_coordinates # Relative coordinates |
---|
845 | areas = self.areas |
---|
846 | x = vertex_coordinates[:,0] |
---|
847 | y = vertex_coordinates[:,1] |
---|
848 | |
---|
849 | |
---|
850 | #Setup 10 bins for area histogram |
---|
851 | bins = create_bins(areas, 10) |
---|
852 | #m = max(areas) |
---|
853 | #bins = arange(0., m, m/10) |
---|
854 | hist = histogram(areas, bins) |
---|
855 | |
---|
856 | str = '------------------------------------------------\n' |
---|
857 | str += 'Mesh statistics:\n' |
---|
858 | str += ' Number of triangles = %d\n' %len(self) |
---|
859 | str += ' Extent [m]:\n' |
---|
860 | str += ' x in [%f, %f]\n' %(min(x), max(x)) |
---|
861 | str += ' y in [%f, %f]\n' %(min(y), max(y)) |
---|
862 | str += ' Areas [m^2]:\n' |
---|
863 | str += ' A in [%f, %f]\n' %(min(areas), max(areas)) |
---|
864 | str += ' number of distinct areas: %d\n' %(len(areas)) |
---|
865 | str += ' Histogram:\n' |
---|
866 | |
---|
867 | hi = bins[0] |
---|
868 | for i, count in enumerate(hist): |
---|
869 | lo = hi |
---|
870 | if i+1 < len(bins): |
---|
871 | #Open upper interval |
---|
872 | hi = bins[i+1] |
---|
873 | str += ' [%f, %f[: %d\n' %(lo, hi, count) |
---|
874 | else: |
---|
875 | #Closed upper interval |
---|
876 | hi = max(areas) |
---|
877 | str += ' [%f, %f]: %d\n' %(lo, hi, count) |
---|
878 | |
---|
879 | N = len(areas) |
---|
880 | if N > 10: |
---|
881 | str += ' Percentiles (10%):\n' |
---|
882 | areas = areas.tolist() |
---|
883 | areas.sort() |
---|
884 | |
---|
885 | k = 0 |
---|
886 | lower = min(areas) |
---|
887 | for i, a in enumerate(areas): |
---|
888 | if i % (N/10) == 0 and i != 0: #For every 10% of the sorted areas |
---|
889 | str += ' %d triangles in [%f, %f]\n' %(i-k, lower, a) |
---|
890 | lower = a |
---|
891 | k = i |
---|
892 | |
---|
893 | str += ' %d triangles in [%f, %f]\n'\ |
---|
894 | %(N-k, lower, max(areas)) |
---|
895 | |
---|
896 | |
---|
897 | str += ' Boundary:\n' |
---|
898 | str += ' Number of boundary segments == %d\n' %(len(self.boundary)) |
---|
899 | str += ' Boundary tags == %s\n' %self.get_boundary_tags() |
---|
900 | str += '------------------------------------------------\n' |
---|
901 | |
---|
902 | |
---|
903 | return str |
---|
904 | |
---|
905 | |
---|
906 | def get_triangle_containing_point(self, point): |
---|
907 | """Return triangle id for triangle containing specified point (x,y) |
---|
908 | |
---|
909 | If point isn't within mesh, raise exception |
---|
910 | |
---|
911 | """ |
---|
912 | |
---|
913 | # FIXME(Ole): This function is currently brute force |
---|
914 | # because I needed it for diagnostics. |
---|
915 | # We should make it fast - probably based on the |
---|
916 | # quad tree structure. |
---|
917 | from anuga.geometry.polygon import is_outside_polygon,\ |
---|
918 | is_inside_polygon |
---|
919 | |
---|
920 | polygon = self.get_boundary_polygon() |
---|
921 | |
---|
922 | if is_outside_polygon(point, polygon): |
---|
923 | msg = 'Point %s is outside mesh' %str(point) |
---|
924 | raise Exception(msg) |
---|
925 | |
---|
926 | |
---|
927 | V = self.get_vertex_coordinates(absolute=True) |
---|
928 | |
---|
929 | # FIXME: Horrible brute force |
---|
930 | for i, triangle in enumerate(self.triangles): |
---|
931 | poly = V[3*i:3*i+3] |
---|
932 | |
---|
933 | if is_inside_polygon(point, poly, closed=True): |
---|
934 | return i |
---|
935 | |
---|
936 | msg = 'Point %s not found within a triangle' %str(point) |
---|
937 | raise Exception(msg) |
---|
938 | |
---|
939 | |
---|
940 | |
---|
941 | |
---|
942 | def get_intersecting_segments(self, polyline, |
---|
943 | use_cache=False, |
---|
944 | verbose=False): |
---|
945 | """Find edges intersected by polyline |
---|
946 | |
---|
947 | Input: |
---|
948 | polyline - list of points forming a segmented line |
---|
949 | use_cache |
---|
950 | verbose |
---|
951 | |
---|
952 | Output: |
---|
953 | list of instances of class Triangle_intersection |
---|
954 | |
---|
955 | The polyline may break inside any triangle causing multiple |
---|
956 | segments per triangle - consequently the same triangle may |
---|
957 | appear in several entries. |
---|
958 | |
---|
959 | If a polyline segment coincides with a triangle edge, |
---|
960 | the the entire shared segment will be used. |
---|
961 | Onle one of the triangles thus intersected will be used and that |
---|
962 | is the first one encountered. |
---|
963 | |
---|
964 | Intersections with single vertices are ignored. |
---|
965 | |
---|
966 | Resulting segments are unsorted |
---|
967 | """ |
---|
968 | |
---|
969 | V = self.get_vertex_coordinates() |
---|
970 | N = len(self) |
---|
971 | |
---|
972 | # Adjust polyline to mesh spatial origin |
---|
973 | polyline = self.geo_reference.get_relative(polyline) |
---|
974 | |
---|
975 | if use_cache is True: |
---|
976 | segments = cache(get_intersecting_segments, |
---|
977 | (V, N, polyline), |
---|
978 | {'verbose': verbose}, |
---|
979 | verbose=verbose) |
---|
980 | else: |
---|
981 | segments = get_intersecting_segments(V, N, polyline, |
---|
982 | verbose=verbose) |
---|
983 | |
---|
984 | |
---|
985 | return segments |
---|
986 | |
---|
987 | |
---|
988 | |
---|
989 | def get_triangle_neighbours(self, tri_id): |
---|
990 | """ Given a triangle id, Return an array of the |
---|
991 | 3 neighbour triangle id's. |
---|
992 | |
---|
993 | Negative returned triangle id's represent a boundary as a neighbour. |
---|
994 | |
---|
995 | If the given triangle id is bad, return an empty list. |
---|
996 | """ |
---|
997 | |
---|
998 | try: |
---|
999 | return self.neighbours[tri_id,:] |
---|
1000 | except IndexError: |
---|
1001 | return [] |
---|
1002 | |
---|
1003 | |
---|
1004 | def get_interpolation_object(self): |
---|
1005 | """Get object I that will allow linear interpolation using this mesh |
---|
1006 | |
---|
1007 | This is a time consuming process but it needs only to be |
---|
1008 | once for the mesh. |
---|
1009 | |
---|
1010 | Interpolation can then be done using |
---|
1011 | |
---|
1012 | result = I.interpolate_block(vertex_values, interpolation_points) |
---|
1013 | |
---|
1014 | where vertex values have been obtained from a quantity using |
---|
1015 | vertex_values, triangles = self.get_vertex_values() |
---|
1016 | """ |
---|
1017 | |
---|
1018 | if hasattr(self, 'interpolation_object'): |
---|
1019 | I = self.interpolation_object |
---|
1020 | else: |
---|
1021 | from anuga.fit_interpolate.interpolate import Interpolate |
---|
1022 | |
---|
1023 | # Get discontinuous mesh - this will match internal |
---|
1024 | # representation of vertex values |
---|
1025 | triangles = self.get_disconnected_triangles() |
---|
1026 | vertex_coordinates = self.get_vertex_coordinates() |
---|
1027 | |
---|
1028 | I = Interpolate(vertex_coordinates, triangles) |
---|
1029 | self.interpolation_object = I |
---|
1030 | |
---|
1031 | return I |
---|
1032 | |
---|
1033 | |
---|
1034 | class Triangle_intersection: |
---|
1035 | """Store information about line segments intersecting a triangle |
---|
1036 | |
---|
1037 | Attributes are |
---|
1038 | |
---|
1039 | segment: Line segment intersecting triangle [[x0,y0], [x1, y1]] |
---|
1040 | normal: [a,b] right hand normal to segment |
---|
1041 | length: Length of intersecting segment |
---|
1042 | triangle_id: id (in mesh) of triangle being intersected |
---|
1043 | |
---|
1044 | """ |
---|
1045 | |
---|
1046 | |
---|
1047 | def __init__(self, |
---|
1048 | segment=None, |
---|
1049 | normal=None, |
---|
1050 | length=None, |
---|
1051 | triangle_id=None): |
---|
1052 | self.segment = segment |
---|
1053 | self.normal = normal |
---|
1054 | self.length = length |
---|
1055 | self.triangle_id = triangle_id |
---|
1056 | |
---|
1057 | |
---|
1058 | def __repr__(self): |
---|
1059 | s = 'Triangle_intersection(' |
---|
1060 | s += 'segment=%s, normal=%s, length=%s, triangle_id=%s)'\ |
---|
1061 | %(self.segment, |
---|
1062 | self.normal, |
---|
1063 | self.length, |
---|
1064 | self.triangle_id) |
---|
1065 | |
---|
1066 | return s |
---|
1067 | |
---|
1068 | |
---|
1069 | |
---|
1070 | def _get_intersecting_segments(V, N, line, |
---|
1071 | verbose=False): |
---|
1072 | """Find edges intersected by line |
---|
1073 | |
---|
1074 | Input: |
---|
1075 | V: Vertex coordinates as obtained by mesh.get_vertex_coordinates() |
---|
1076 | N: Number of triangles in mesh |
---|
1077 | line - list of two points forming a segmented line |
---|
1078 | verbose |
---|
1079 | Output: |
---|
1080 | list of instances of class Triangle_intersection |
---|
1081 | |
---|
1082 | This method is used by the public method |
---|
1083 | get_intersecting_segments(self, polyline) which also contains |
---|
1084 | more documentation. |
---|
1085 | """ |
---|
1086 | |
---|
1087 | from anuga.geometry.polygon import intersection |
---|
1088 | from anuga.geometry.polygon import is_inside_polygon |
---|
1089 | |
---|
1090 | msg = 'Line segment must contain exactly two points' |
---|
1091 | assert len(line) == 2, msg |
---|
1092 | |
---|
1093 | # Origin of intersecting line to be used for |
---|
1094 | # establishing direction |
---|
1095 | xi0 = line[0][0] |
---|
1096 | eta0 = line[0][1] |
---|
1097 | |
---|
1098 | |
---|
1099 | # Check intersection with edge segments for all triangles |
---|
1100 | # FIXME (Ole): This should be implemented in C |
---|
1101 | triangle_intersections={} # Keep track of segments already done |
---|
1102 | for i in range(N): |
---|
1103 | # Get nodes and edge segments for each triangle |
---|
1104 | x0, y0 = V[3*i, :] |
---|
1105 | x1, y1 = V[3*i+1, :] |
---|
1106 | x2, y2 = V[3*i+2, :] |
---|
1107 | |
---|
1108 | |
---|
1109 | edge_segments = [[[x0,y0], [x1, y1]], |
---|
1110 | [[x1,y1], [x2, y2]], |
---|
1111 | [[x2,y2], [x0, y0]]] |
---|
1112 | |
---|
1113 | # Find segments that are intersected by line |
---|
1114 | |
---|
1115 | intersections = {} # Use dictionary to record points only once |
---|
1116 | for edge in edge_segments: |
---|
1117 | |
---|
1118 | status, value = intersection(line, edge) |
---|
1119 | #if value is not None: log.critical('Triangle %d, status=%s, ' |
---|
1120 | # 'value=%s' |
---|
1121 | # % (i, str(status), str(value))) |
---|
1122 | |
---|
1123 | if status == 1: |
---|
1124 | # Normal intersection of one edge or vertex |
---|
1125 | intersections[tuple(value)] = i |
---|
1126 | |
---|
1127 | # Exclude singular intersections with vertices |
---|
1128 | #if not(allclose(value, edge[0]) or\ |
---|
1129 | # allclose(value, edge[1])): |
---|
1130 | # intersections.append(value) |
---|
1131 | |
---|
1132 | if status == 2: |
---|
1133 | # Edge is sharing a segment with line |
---|
1134 | |
---|
1135 | # This is usually covered by the two |
---|
1136 | # vertices that would have been picked up |
---|
1137 | # under status == 1. |
---|
1138 | # However, if coinciding line stops partway |
---|
1139 | # along this edge, it will be recorded here. |
---|
1140 | intersections[tuple(value[0,:])] = i |
---|
1141 | intersections[tuple(value[1,:])] = i |
---|
1142 | |
---|
1143 | |
---|
1144 | if len(intersections) == 1: |
---|
1145 | # Check if either line end point lies fully within this triangle |
---|
1146 | # If this is the case accept that as one end of the intersecting |
---|
1147 | # segment |
---|
1148 | |
---|
1149 | poly = V[3*i:3*i+3] |
---|
1150 | if is_inside_polygon(line[1], poly, closed=False): |
---|
1151 | intersections[tuple(line[1])] = i |
---|
1152 | elif is_inside_polygon(line[0], poly, closed=False): |
---|
1153 | intersections[tuple(line[0])] = i |
---|
1154 | else: |
---|
1155 | # Ignore situations where one vertex is touch, for instance |
---|
1156 | continue |
---|
1157 | |
---|
1158 | |
---|
1159 | msg = 'There can be only two or no intersections' |
---|
1160 | assert len(intersections) in [0,2], msg |
---|
1161 | |
---|
1162 | |
---|
1163 | if len(intersections) == 2: |
---|
1164 | |
---|
1165 | # Calculate attributes for this segment |
---|
1166 | |
---|
1167 | |
---|
1168 | # End points of intersecting segment |
---|
1169 | points = intersections.keys() |
---|
1170 | x0, y0 = points[0] |
---|
1171 | x1, y1 = points[1] |
---|
1172 | |
---|
1173 | |
---|
1174 | # Determine which end point is closer to the origin of the line |
---|
1175 | # This is necessary for determining the direction of |
---|
1176 | # the line and the normals |
---|
1177 | |
---|
1178 | # Distances from line origin to the two intersections |
---|
1179 | z0 = num.array([x0 - xi0, y0 - eta0], num.float) |
---|
1180 | z1 = num.array([x1 - xi0, y1 - eta0], num.float) |
---|
1181 | d0 = num.sqrt(num.sum(z0**2)) |
---|
1182 | d1 = num.sqrt(num.sum(z1**2)) |
---|
1183 | |
---|
1184 | if d1 < d0: |
---|
1185 | # Swap |
---|
1186 | xi, eta = x0, y0 |
---|
1187 | x0, y0 = x1, y1 |
---|
1188 | x1, y1 = xi, eta |
---|
1189 | |
---|
1190 | # (x0,y0) is now the origin of the intersecting segment |
---|
1191 | |
---|
1192 | |
---|
1193 | # Normal direction: |
---|
1194 | # Right hand side relative to line direction |
---|
1195 | vector = num.array([x1 - x0, y1 - y0], num.float) # Segment vector |
---|
1196 | length = num.sqrt(num.sum(vector**2)) # Segment length |
---|
1197 | normal = num.array([vector[1], -vector[0]], num.float)/length |
---|
1198 | |
---|
1199 | |
---|
1200 | segment = ((x0,y0), (x1, y1)) |
---|
1201 | T = Triangle_intersection(segment=segment, |
---|
1202 | normal=normal, |
---|
1203 | length=length, |
---|
1204 | triangle_id=i) |
---|
1205 | |
---|
1206 | |
---|
1207 | # Add segment unless it was done earlier |
---|
1208 | if not triangle_intersections.has_key(segment): |
---|
1209 | triangle_intersections[segment] = T |
---|
1210 | |
---|
1211 | |
---|
1212 | # Return segments as a list |
---|
1213 | return triangle_intersections.values() |
---|
1214 | |
---|
1215 | |
---|
1216 | def get_intersecting_segments(V, N, polyline, |
---|
1217 | verbose=False): |
---|
1218 | """Internal function to find edges intersected by Polyline |
---|
1219 | |
---|
1220 | Input: |
---|
1221 | V: Vertex coordinates as obtained by mesh.get_vertex_coordinates() |
---|
1222 | N: Number of triangles in mesh |
---|
1223 | polyline - list of points forming a segmented line |
---|
1224 | verbose |
---|
1225 | Output: |
---|
1226 | list of instances of class Triangle_intersection |
---|
1227 | |
---|
1228 | This method is used by the public method |
---|
1229 | get_intersecting_segments(self, polyline) which also contains |
---|
1230 | more documentation. |
---|
1231 | """ |
---|
1232 | |
---|
1233 | msg = 'Polyline must contain at least two points' |
---|
1234 | assert len(polyline) >= 2, msg |
---|
1235 | |
---|
1236 | |
---|
1237 | # For all segments in polyline |
---|
1238 | triangle_intersections = [] |
---|
1239 | for i, point0 in enumerate(polyline[:-1]): |
---|
1240 | |
---|
1241 | point1 = polyline[i+1] |
---|
1242 | if verbose: |
---|
1243 | log.critical('Extracting mesh intersections from line:') |
---|
1244 | log.critical('(%.2f, %.2f) - (%.2f, %.2f)' |
---|
1245 | % (point0[0], point0[1], point1[0], point1[1])) |
---|
1246 | |
---|
1247 | line = [point0, point1] |
---|
1248 | triangle_intersections += _get_intersecting_segments(V, N, line, |
---|
1249 | verbose=verbose) |
---|
1250 | |
---|
1251 | |
---|
1252 | msg = 'No segments found' |
---|
1253 | assert len(triangle_intersections) > 0, msg |
---|
1254 | |
---|
1255 | |
---|
1256 | return triangle_intersections |
---|
1257 | |
---|
1258 | |
---|
1259 | |
---|
1260 | |
---|
1261 | |
---|
1262 | def segment_midpoints(segments): |
---|
1263 | """Calculate midpoints of all segments |
---|
1264 | |
---|
1265 | Inputs: |
---|
1266 | segments: List of instances of class Segment |
---|
1267 | |
---|
1268 | Ouputs: |
---|
1269 | midpoints: List of points |
---|
1270 | """ |
---|
1271 | |
---|
1272 | midpoints = [] |
---|
1273 | msg = 'Elements of input list to segment_midpoints must be of class Triangle_intersection' |
---|
1274 | for segment in segments: |
---|
1275 | assert isinstance(segment, Triangle_intersection), msg |
---|
1276 | |
---|
1277 | midpoint = num.sum(num.array(segment.segment, num.float), axis=0)/2 |
---|
1278 | midpoints.append(midpoint) |
---|
1279 | |
---|
1280 | return midpoints |
---|
1281 | |
---|
1282 | |
---|
1283 | |
---|