1 | """Module where global ANUGA model parameters and default values are set |
---|
2 | """ |
---|
3 | |
---|
4 | import os |
---|
5 | import sys |
---|
6 | |
---|
7 | |
---|
8 | ################################################################################ |
---|
9 | # Numerical constants |
---|
10 | ################################################################################ |
---|
11 | |
---|
12 | epsilon = 1.0e-12 # Smallest number - used for safe division |
---|
13 | max_float = 1.0e36 # Largest number - used to initialise |
---|
14 | # (max, min) ranges |
---|
15 | default_smoothing_parameter = 0.001 # Default alpha for penalised |
---|
16 | # least squares fitting |
---|
17 | single_precision = 1.0e-6 # Smallest single precision number |
---|
18 | velocity_protection = 1.0e-6 # Used to compute velocity from momentum |
---|
19 | # See section 7.4 on Flux limiting |
---|
20 | # in the user manual |
---|
21 | |
---|
22 | |
---|
23 | ################################################################################ |
---|
24 | # Standard filenames, directories and system parameters used by ANUGA |
---|
25 | ################################################################################ |
---|
26 | |
---|
27 | pmesh_filename = '.\\pmesh' |
---|
28 | version_filename = 'stored_version_info.py' |
---|
29 | default_datadir = '.' |
---|
30 | time_format = '%d/%m/%y %H:%M:%S' # Used with timefile2netcdf |
---|
31 | umask = 002 # Controls file and directory permission created by anuga (UNIX) |
---|
32 | default_boundary_tag = 'exterior' |
---|
33 | |
---|
34 | # Major revision number for use with create_distribution |
---|
35 | # and update_anuga_user_guide |
---|
36 | major_revision = '1.3.1' |
---|
37 | |
---|
38 | ################################################################################ |
---|
39 | # Physical constants |
---|
40 | ################################################################################ |
---|
41 | |
---|
42 | manning = 0.03 # Manning's friction coefficient |
---|
43 | #g = 9.80665 # Gravity - FIXME reinstate this and fix unit tests. |
---|
44 | g = 9.8 |
---|
45 | #g(phi) = 9780313 * (1 + 0.0053024 sin(phi)**2 - 0.000 0059 sin(2*phi)**2) |
---|
46 | # micro m/s**2, where phi is the latitude |
---|
47 | #The 'official' average is 9.80665 |
---|
48 | |
---|
49 | eta_w = 3.0e-3 # Wind stress coefficient |
---|
50 | rho_a = 1.2e-3 # Atmospheric density |
---|
51 | rho_w = 1023 # Fluid density [kg/m^3] (rho_w = 1023 for salt water) |
---|
52 | |
---|
53 | ################################################################################ |
---|
54 | # Limiters - used with linear reconstruction of vertex |
---|
55 | # values from centroid values |
---|
56 | ################################################################################ |
---|
57 | # Note the individual beta values are set in domain.set_flow_method which also sets |
---|
58 | # the timestepping method |
---|
59 | |
---|
60 | beta_w = 1.0 |
---|
61 | |
---|
62 | # Alpha_balance controls how limiters are balanced between deep and shallow. |
---|
63 | # A large value will favour the deep water limiters, allowing the a closer hug |
---|
64 | # to the coastline. This will minimise 'creep' but at the same time cause |
---|
65 | # smaller time steps |
---|
66 | # Range: |
---|
67 | alpha_balance = 2.0 |
---|
68 | |
---|
69 | # Flag use of new limiters. |
---|
70 | # tight_slope_limiters = 0 means use old limiters (e.g. for some tests) |
---|
71 | # tight_slope_limiters = 1 means use new limiters that hug the bathymetry closer |
---|
72 | tight_slope_limiters = True |
---|
73 | |
---|
74 | use_edge_limiter = False # The edge limiter is better, but most runs have been |
---|
75 | # using vertex limiting. Validations passed with this |
---|
76 | # one True 9th May 2008, but many unit tests need |
---|
77 | # backward compatibility flag set FIXME(Ole). |
---|
78 | |
---|
79 | # Use centroid velocities to reconstruct momentum at vertices in |
---|
80 | # very shallow water |
---|
81 | # This option has a first order flavour to it, but we still have second order |
---|
82 | # reconstruction of stage and this option only applies in |
---|
83 | # balance_deep_and_shallow when |
---|
84 | # alpha < 1 so in deeper water the full second order scheme is used. |
---|
85 | # |
---|
86 | # This option is good with tight_slope_limiters, especially for large domains. |
---|
87 | use_centroid_velocities = True |
---|
88 | |
---|
89 | # FIXME (Ole) Maybe get rid of order altogether and use beta_w |
---|
90 | default_order = 2 |
---|
91 | |
---|
92 | # Option to use velocity extrapolation instead of momentum extrapolation in the |
---|
93 | # routine domain.extrapolate_second_order_sw |
---|
94 | extrapolate_velocity_second_order=True |
---|
95 | |
---|
96 | # Option to setup compute_fluxes_method |
---|
97 | # Currently "original' and 'wb_1' to 'wb_3' and 'tsunami' |
---|
98 | compute_fluxes_method = 'wb_2' |
---|
99 | |
---|
100 | # Option to setup distribute_to_vertices_and_edges_method |
---|
101 | # Currently "original' and 'tsunami' |
---|
102 | distribute_to_vertices_and_edges_method = 'original' |
---|
103 | |
---|
104 | ################################################################################ |
---|
105 | # Friction Method |
---|
106 | ################################################################################ |
---|
107 | |
---|
108 | sloped_mannings_function = False |
---|
109 | |
---|
110 | ################################################################################ |
---|
111 | # Timestepping |
---|
112 | ################################################################################ |
---|
113 | |
---|
114 | CFL = 1.0 # CFL condition assigned to domain.CFL - controls timestep size |
---|
115 | |
---|
116 | # Choose type of timestepping and spatial reconstruction method |
---|
117 | |
---|
118 | timestepping_method = 1 |
---|
119 | |
---|
120 | # For shallow water we have a method that sets both timestepping and spatial reconstruction and |
---|
121 | # beta values. In this case the settings for timestepping_method will be overriden |
---|
122 | |
---|
123 | #flow_algorithm = '1_0' # 1st order euler and conservative piecewise constant spatial reconstruction |
---|
124 | flow_algorithm = '1_5' # 1st order euler and conservative piecewise linear spatial reconstruction |
---|
125 | #flow_algorithm = '1_75' # 1st order euler and more aggressive piecewise linear spatial reconstruction |
---|
126 | #flow_algorithm = '2_0' # 2nd order TVD scheme and more aggressive piecewise linear spatial reconstruction |
---|
127 | #flow_algorithm = '2.5' # 3rd order TVD scheme and more aggressive piecewise linear spatial reconstruction |
---|
128 | #flow_algorithm = 'tsunami' # 2nd order space and time, well balanced inc at wet-dry fronts, porosity-type alg |
---|
129 | #flow_algorithm = 'DE0' # 1st order time 2nd order space, discontinuous elevation, well balanced + better shallow flows than 'tsunami' |
---|
130 | #flow_algorithm = 'DE1' # 2nd order space and time, discontinuous elevation, well balanced + better shallow flows than 'tsunami' |
---|
131 | |
---|
132 | |
---|
133 | |
---|
134 | # rk2 is a little more stable than euler, so rk2 timestepping |
---|
135 | # can deal with a larger beta when slope limiting the reconstructed |
---|
136 | # solution. The large beta is needed if solving problems sensitive |
---|
137 | # to numerical diffusion, like a small forced wave in an ocean |
---|
138 | beta_euler = 1.0 |
---|
139 | beta_rk2 = 1.6 |
---|
140 | |
---|
141 | # Option to search for signatures where isolated triangles are |
---|
142 | # responsible for a small global timestep. |
---|
143 | # Treating these by limiting their momenta may help speed up the |
---|
144 | # overall computation. |
---|
145 | # This facility is experimental. |
---|
146 | # protect_against_isolated_degenerate_timesteps = False |
---|
147 | protect_against_isolated_degenerate_timesteps = False |
---|
148 | |
---|
149 | min_timestep = 1.0e-6 # Minimal timestep accepted in ANUGA |
---|
150 | max_timestep = 1.0e+3 |
---|
151 | max_smallsteps = 50 # Max number of degenerate steps allowed b4 |
---|
152 | # trying first order |
---|
153 | |
---|
154 | # Perhaps minimal timestep could be based on the geometry as follows: |
---|
155 | # Define maximal possible speed in open water v_max, e.g. 500m/s (soundspeed?) |
---|
156 | # Then work out minimal internal distance in mesh r_min and set |
---|
157 | # min_timestep = r_min/v_max |
---|
158 | # |
---|
159 | # Max speeds are calculated in the flux function as |
---|
160 | # |
---|
161 | # lambda = v +/- sqrt(gh) |
---|
162 | # |
---|
163 | # so with 500 m/s, h ~ 500^2/g = 2500 m well out of the domain of the |
---|
164 | # shallow water wave equation |
---|
165 | # |
---|
166 | # The actual soundspeed can be as high as 1530m/s |
---|
167 | # (see http://staff.washington.edu/aganse/public.projects/ |
---|
168 | # clustering/clustering.html), |
---|
169 | # but that would only happen with h>225000m in this equation. Why ? |
---|
170 | # The maximal speed we specify is really related to the max speed |
---|
171 | # of surface pertubation |
---|
172 | # |
---|
173 | # v_max = 100 #For use in domain_ext.c |
---|
174 | # sound_speed = 500 |
---|
175 | |
---|
176 | ################################################################################ |
---|
177 | # Ranges specific to the shallow water wave equation |
---|
178 | # These control maximal and minimal values of quantities |
---|
179 | ################################################################################ |
---|
180 | |
---|
181 | # Water depth below which it is considered to be 0 in the model |
---|
182 | minimum_allowed_height = 1.0e-05 |
---|
183 | |
---|
184 | # Water depth below which it is *stored* as 0 |
---|
185 | minimum_storable_height = 1.0e-03 |
---|
186 | |
---|
187 | # FIXME (Ole): Redefine this parameter to control maximal speeds in general |
---|
188 | # and associate it with protect_against_isolated_degenerate_timesteps = True |
---|
189 | maximum_allowed_speed = 0.0 # Maximal particle speed of water |
---|
190 | #maximum_allowed_speed = 1.0 # Maximal particle speed of water |
---|
191 | # Too large (100) creates 'flopping' water |
---|
192 | # Too small (0) creates 'creep' |
---|
193 | |
---|
194 | maximum_froude_number = 100.0 # To be used in limiters. |
---|
195 | |
---|
196 | ################################################################################ |
---|
197 | # Performance parameters used to invoke various optimisations |
---|
198 | ################################################################################ |
---|
199 | |
---|
200 | use_psyco = False # Use psyco optimisations |
---|
201 | |
---|
202 | optimise_dry_cells = True # Exclude dry and still cells from flux computation |
---|
203 | optimised_gradient_limiter = True # Use hardwired gradient limiter |
---|
204 | |
---|
205 | points_file_block_line_size = 5e7 # Number of lines read in from a points file |
---|
206 | # when blocking |
---|
207 | |
---|
208 | ################################################################################ |
---|
209 | # NetCDF-specific type constants. Used when defining NetCDF file variables. |
---|
210 | ################################################################################ |
---|
211 | |
---|
212 | netcdf_char = 'c' |
---|
213 | netcdf_byte = 'b' |
---|
214 | netcdf_int = 'i' |
---|
215 | netcdf_float = 'd' |
---|
216 | netcdf_float64 = 'd' |
---|
217 | netcdf_float32 = 'f' |
---|
218 | |
---|
219 | ################################################################################ |
---|
220 | # Dynamically-defined constants. |
---|
221 | ################################################################################ |
---|
222 | |
---|
223 | # Determine if we can read/write large NetCDF files |
---|
224 | netcdf_mode_w = 'w' |
---|
225 | netcdf_mode_a = 'a' |
---|
226 | netcdf_mode_r = 'r' |
---|
227 | |
---|
228 | |
---|
229 | indent = ' ' |
---|
230 | |
---|
231 | # Code to set the write mode depending on |
---|
232 | # whether Scientific.IO supports large NetCDF files |
---|
233 | s = """ |
---|
234 | import os, tempfile |
---|
235 | from anuga.file.netcdf import NetCDFFile |
---|
236 | |
---|
237 | filename = tempfile.mktemp('.nc') |
---|
238 | |
---|
239 | fid = NetCDFFile(filename, 'wl') |
---|
240 | fid.close() |
---|
241 | os.remove(filename) |
---|
242 | """ |
---|
243 | |
---|
244 | """ |
---|
245 | # Need to run in a separate process due an |
---|
246 | # error with older versions of Scientific.IO |
---|
247 | if sys.platform == 'win32': |
---|
248 | null = 'NUL' |
---|
249 | else: |
---|
250 | null = '/dev/null' |
---|
251 | cmd = 'python -c "%s" 2> %s' % (s, null) |
---|
252 | err = os.system(cmd) |
---|
253 | |
---|
254 | if err != 0: |
---|
255 | # The Python script s failed e.g. with a segfault |
---|
256 | # which means that large file support is |
---|
257 | # definitely not supported |
---|
258 | pass |
---|
259 | else: |
---|
260 | # Try the import within this process |
---|
261 | try: |
---|
262 | exec(s) |
---|
263 | except IOError: |
---|
264 | # NetCDFFile does not segfault but it does not |
---|
265 | # support large file support |
---|
266 | pass |
---|
267 | else: |
---|
268 | # Set the default mode to large file support |
---|
269 | #netcdf_mode_w = 'w4' # Future use of HDF5 |
---|
270 | netcdf_mode_w = 'wl' # Large NetCDF (new default 30/6/2009) |
---|
271 | #netcdf_mode_w = 'w' # Old style NetCDF used by OSG viewer |
---|
272 | |
---|
273 | """ |
---|