1 | #!/usr/bin/env python |
---|
2 | |
---|
3 | |
---|
4 | import unittest |
---|
5 | import os.path |
---|
6 | import sys |
---|
7 | |
---|
8 | import anuga |
---|
9 | |
---|
10 | from anuga.utilities.system_tools import get_pathname_from_package |
---|
11 | from anuga.geometry.polygon_function import Polygon_function |
---|
12 | |
---|
13 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
14 | from anuga.abstract_2d_finite_volumes.quantity import Quantity |
---|
15 | |
---|
16 | from anuga.culvert_flows.new_culvert_class import Culvert_flow |
---|
17 | from anuga.culvert_flows.culvert_routines import boyd_generalised_culvert_model |
---|
18 | |
---|
19 | from math import pi,pow,sqrt |
---|
20 | |
---|
21 | import numpy as num |
---|
22 | |
---|
23 | |
---|
24 | # Helper functions |
---|
25 | def run_culvert_flow_problem(depth): |
---|
26 | """Run flow with culvert given depth |
---|
27 | """ |
---|
28 | |
---|
29 | length = 40. |
---|
30 | width = 5. |
---|
31 | |
---|
32 | dx = dy = 1 # Resolution: Length of subdivisions on both axes |
---|
33 | |
---|
34 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
35 | int(width/dy), |
---|
36 | len1=length, |
---|
37 | len2=width) |
---|
38 | domain = anuga.Domain(points, vertices, boundary) |
---|
39 | domain.set_name('Test_culvert_shallow') # Output name |
---|
40 | domain.set_default_order(2) |
---|
41 | |
---|
42 | |
---|
43 | #---------------------------------------------------------------------- |
---|
44 | # Setup initial conditions |
---|
45 | #---------------------------------------------------------------------- |
---|
46 | |
---|
47 | def topography(x, y): |
---|
48 | """Set up a weir |
---|
49 | |
---|
50 | A culvert will connect either side |
---|
51 | """ |
---|
52 | # General Slope of Topography |
---|
53 | z=-x/1000 |
---|
54 | |
---|
55 | N = len(x) |
---|
56 | for i in range(N): |
---|
57 | |
---|
58 | # Sloping Embankment Across Channel |
---|
59 | if 5.0 < x[i] < 10.1: |
---|
60 | # Cut Out Segment for Culvert face |
---|
61 | if 1.0+(x[i]-5.0)/5.0 < y[i] < 4.0 - (x[i]-5.0)/5.0: |
---|
62 | z[i]=z[i] |
---|
63 | else: |
---|
64 | z[i] += 0.5*(x[i] -5.0) # Sloping Segment U/S Face |
---|
65 | if 10.0 < x[i] < 12.1: |
---|
66 | z[i] += 2.5 # Flat Crest of Embankment |
---|
67 | if 12.0 < x[i] < 14.5: |
---|
68 | # Cut Out Segment for Culvert face |
---|
69 | if 2.0-(x[i]-12.0)/2.5 < y[i] < 3.0 + (x[i]-12.0)/2.5: |
---|
70 | z[i]=z[i] |
---|
71 | else: |
---|
72 | z[i] += 2.5-1.0*(x[i] -12.0) # Sloping D/S Face |
---|
73 | |
---|
74 | |
---|
75 | return z |
---|
76 | |
---|
77 | |
---|
78 | domain.set_quantity('elevation', topography) |
---|
79 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
80 | domain.set_quantity('stage', |
---|
81 | expression='elevation + %f' % depth) # Shallow initial condition |
---|
82 | |
---|
83 | # Boyd culvert |
---|
84 | culvert = Culvert_flow(domain, |
---|
85 | label='Culvert No. 1', |
---|
86 | description='This culvert is a test unit 1.2m Wide by 0.75m High', |
---|
87 | end_point0=[9.0, 2.5], |
---|
88 | end_point1=[13.0, 2.5], |
---|
89 | width=1.20, height=0.75, |
---|
90 | culvert_routine=boyd_generalised_culvert_model, |
---|
91 | number_of_barrels=1, |
---|
92 | update_interval=2, |
---|
93 | verbose=False) |
---|
94 | |
---|
95 | |
---|
96 | domain.forcing_terms.append(culvert) |
---|
97 | |
---|
98 | |
---|
99 | #----------------------------------------------------------------------- |
---|
100 | # Setup boundary conditions |
---|
101 | #----------------------------------------------------------------------- |
---|
102 | |
---|
103 | # Inflow based on Flow Depth and Approaching Momentum |
---|
104 | |
---|
105 | Br = anuga.Reflective_boundary(domain) # Solid reflective wall |
---|
106 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
107 | |
---|
108 | |
---|
109 | |
---|
110 | #----------------------------------------------------------------------- |
---|
111 | # Evolve system through time |
---|
112 | #----------------------------------------------------------------------- |
---|
113 | |
---|
114 | #print 'depth', depth |
---|
115 | ref_volume = domain.get_quantity('stage').get_integral() |
---|
116 | for t in domain.evolve(yieldstep = 0.1, finaltime = 25): |
---|
117 | new_volume = domain.get_quantity('stage').get_integral() |
---|
118 | |
---|
119 | msg = ('Total volume has changed: Is %.8f m^3 should have been %.8f m^3' |
---|
120 | % (new_volume, ref_volume)) |
---|
121 | assert num.allclose(new_volume, ref_volume), msg |
---|
122 | |
---|
123 | |
---|
124 | os.remove('Test_culvert_shallow.sww') |
---|
125 | |
---|
126 | class Test_Culvert(unittest.TestCase): |
---|
127 | def setUp(self): |
---|
128 | pass |
---|
129 | |
---|
130 | def tearDown(self): |
---|
131 | pass |
---|
132 | |
---|
133 | |
---|
134 | def test_that_culvert_runs_rating(self): |
---|
135 | """test_that_culvert_runs_rating |
---|
136 | |
---|
137 | This test exercises the culvert and checks values outside rating curve |
---|
138 | are dealt with |
---|
139 | """ |
---|
140 | |
---|
141 | path = get_pathname_from_package('anuga.culvert_flows') |
---|
142 | |
---|
143 | length = 40. |
---|
144 | width = 5. |
---|
145 | |
---|
146 | dx = dy = 1 # Resolution: Length of subdivisions on both axes |
---|
147 | |
---|
148 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
149 | int(width/dy), |
---|
150 | len1=length, |
---|
151 | len2=width) |
---|
152 | domain = anuga.Domain(points, vertices, boundary) |
---|
153 | domain.set_name('Test_culvert') # Output name |
---|
154 | domain.set_default_order(2) |
---|
155 | |
---|
156 | |
---|
157 | #---------------------------------------------------------------------- |
---|
158 | # Setup initial conditions |
---|
159 | #---------------------------------------------------------------------- |
---|
160 | |
---|
161 | def topography(x, y): |
---|
162 | """Set up a weir |
---|
163 | |
---|
164 | A culvert will connect either side |
---|
165 | """ |
---|
166 | # General Slope of Topography |
---|
167 | z=-x/1000 |
---|
168 | |
---|
169 | N = len(x) |
---|
170 | for i in range(N): |
---|
171 | |
---|
172 | # Sloping Embankment Across Channel |
---|
173 | if 5.0 < x[i] < 10.1: |
---|
174 | # Cut Out Segment for Culvert face |
---|
175 | if 1.0+(x[i]-5.0)/5.0 < y[i] < 4.0 - (x[i]-5.0)/5.0: |
---|
176 | z[i]=z[i] |
---|
177 | else: |
---|
178 | z[i] += 0.5*(x[i] -5.0) # Sloping Segment U/S Face |
---|
179 | if 10.0 < x[i] < 12.1: |
---|
180 | z[i] += 2.5 # Flat Crest of Embankment |
---|
181 | if 12.0 < x[i] < 14.5: |
---|
182 | # Cut Out Segment for Culvert face |
---|
183 | if 2.0-(x[i]-12.0)/2.5 < y[i] < 3.0 + (x[i]-12.0)/2.5: |
---|
184 | z[i]=z[i] |
---|
185 | else: |
---|
186 | z[i] += 2.5-1.0*(x[i] -12.0) # Sloping D/S Face |
---|
187 | |
---|
188 | |
---|
189 | return z |
---|
190 | |
---|
191 | |
---|
192 | domain.set_quantity('elevation', topography) |
---|
193 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
194 | domain.set_quantity('stage', |
---|
195 | expression='elevation') # Dry initial condition |
---|
196 | |
---|
197 | filename=os.path.join(path, 'example_rating_curve.csv') |
---|
198 | culvert = Culvert_flow(domain, |
---|
199 | culvert_description_filename=filename, |
---|
200 | end_point0=[9.0, 2.5], |
---|
201 | end_point1=[13.0, 2.5], |
---|
202 | width=1.00, |
---|
203 | use_velocity_head=True, |
---|
204 | verbose=False) |
---|
205 | |
---|
206 | domain.forcing_terms.append(culvert) |
---|
207 | |
---|
208 | |
---|
209 | #----------------------------------------------------------------------- |
---|
210 | # Setup boundary conditions |
---|
211 | #----------------------------------------------------------------------- |
---|
212 | |
---|
213 | # Inflow based on Flow Depth and Approaching Momentum |
---|
214 | Bi = anuga.Dirichlet_boundary([0.0, 0.0, 0.0]) |
---|
215 | Br = anuga.Reflective_boundary(domain) # Solid reflective wall |
---|
216 | Bo = anuga.Dirichlet_boundary([-5, 0, 0]) # Outflow |
---|
217 | |
---|
218 | # Upstream and downstream conditions that will exceed the rating curve |
---|
219 | # I.e produce delta_h outside the range [0, 10] specified in the the |
---|
220 | # file example_rating_curve.csv |
---|
221 | Btus = anuga.Time_boundary(domain, lambda t: [100*num.sin(2*pi*(t-4)/10), 0.0, 0.0]) |
---|
222 | Btds = anuga.Time_boundary(domain, lambda t: [-5*(num.cos(2*pi*(t-4)/20)), 0.0, 0.0]) |
---|
223 | domain.set_boundary({'left': Btus, 'right': Btds, 'top': Br, 'bottom': Br}) |
---|
224 | |
---|
225 | |
---|
226 | #----------------------------------------------------------------------- |
---|
227 | # Evolve system through time |
---|
228 | #----------------------------------------------------------------------- |
---|
229 | |
---|
230 | min_delta_w = sys.maxint |
---|
231 | max_delta_w = -min_delta_w |
---|
232 | for t in domain.evolve(yieldstep = 1, finaltime = 25): |
---|
233 | delta_w = culvert.inlet.stage - culvert.outlet.stage |
---|
234 | |
---|
235 | if delta_w > max_delta_w: max_delta_w = delta_w |
---|
236 | if delta_w < min_delta_w: min_delta_w = delta_w |
---|
237 | |
---|
238 | pass |
---|
239 | |
---|
240 | # Check that extreme values in rating curve have been exceeded |
---|
241 | # so that we know that condition has been exercised |
---|
242 | assert min_delta_w < 0 |
---|
243 | assert max_delta_w > 10 |
---|
244 | |
---|
245 | |
---|
246 | os.remove('Test_culvert.sww') |
---|
247 | |
---|
248 | def test_that_culvert_dry_bed_rating_does_not_produce_flow(self): |
---|
249 | """test_that_culvert_in_dry_bed_does_not_produce_flow(self): |
---|
250 | |
---|
251 | Test that culvert on a sloping dry bed doesn't produce flows |
---|
252 | although there will be a 'pressure' head due to delta_w > 0 |
---|
253 | |
---|
254 | This one is using the rating curve variant |
---|
255 | """ |
---|
256 | |
---|
257 | path = get_pathname_from_package('anuga.culvert_flows') |
---|
258 | |
---|
259 | length = 40. |
---|
260 | width = 5. |
---|
261 | |
---|
262 | dx = dy = 1 # Resolution: Length of subdivisions on both axes |
---|
263 | |
---|
264 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
265 | int(width/dy), |
---|
266 | len1=length, |
---|
267 | len2=width) |
---|
268 | domain = anuga.Domain(points, vertices, boundary) |
---|
269 | domain.set_name('Test_culvert_dry') # Output name |
---|
270 | domain.set_default_order(2) |
---|
271 | |
---|
272 | |
---|
273 | #---------------------------------------------------------------------- |
---|
274 | # Setup initial conditions |
---|
275 | #---------------------------------------------------------------------- |
---|
276 | |
---|
277 | def topography(x, y): |
---|
278 | """Set up a weir |
---|
279 | |
---|
280 | A culvert will connect either side |
---|
281 | """ |
---|
282 | # General Slope of Topography |
---|
283 | z=-x/1000 |
---|
284 | |
---|
285 | N = len(x) |
---|
286 | for i in range(N): |
---|
287 | |
---|
288 | # Sloping Embankment Across Channel |
---|
289 | if 5.0 < x[i] < 10.1: |
---|
290 | # Cut Out Segment for Culvert face |
---|
291 | if 1.0+(x[i]-5.0)/5.0 < y[i] < 4.0 - (x[i]-5.0)/5.0: |
---|
292 | z[i]=z[i] |
---|
293 | else: |
---|
294 | z[i] += 0.5*(x[i] -5.0) # Sloping Segment U/S Face |
---|
295 | if 10.0 < x[i] < 12.1: |
---|
296 | z[i] += 2.5 # Flat Crest of Embankment |
---|
297 | if 12.0 < x[i] < 14.5: |
---|
298 | # Cut Out Segment for Culvert face |
---|
299 | if 2.0-(x[i]-12.0)/2.5 < y[i] < 3.0 + (x[i]-12.0)/2.5: |
---|
300 | z[i]=z[i] |
---|
301 | else: |
---|
302 | z[i] += 2.5-1.0*(x[i] -12.0) # Sloping D/S Face |
---|
303 | |
---|
304 | |
---|
305 | return z |
---|
306 | |
---|
307 | |
---|
308 | domain.set_quantity('elevation', topography) |
---|
309 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
310 | domain.set_quantity('stage', |
---|
311 | expression='elevation') # Dry initial condition |
---|
312 | |
---|
313 | |
---|
314 | filename = os.path.join(path, 'example_rating_curve.csv') |
---|
315 | culvert = Culvert_flow(domain, |
---|
316 | culvert_description_filename=filename, |
---|
317 | end_point0=[9.0, 2.5], |
---|
318 | end_point1=[13.0, 2.5], |
---|
319 | height=0.75, |
---|
320 | verbose=False) |
---|
321 | |
---|
322 | domain.forcing_terms.append(culvert) |
---|
323 | |
---|
324 | |
---|
325 | #----------------------------------------------------------------------- |
---|
326 | # Setup boundary conditions |
---|
327 | #----------------------------------------------------------------------- |
---|
328 | |
---|
329 | # Inflow based on Flow Depth and Approaching Momentum |
---|
330 | |
---|
331 | Br = anuga.Reflective_boundary(domain) # Solid reflective wall |
---|
332 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
333 | |
---|
334 | |
---|
335 | #----------------------------------------------------------------------- |
---|
336 | # Evolve system through time |
---|
337 | #----------------------------------------------------------------------- |
---|
338 | |
---|
339 | ref_volume = domain.get_quantity('stage').get_integral() |
---|
340 | for t in domain.evolve(yieldstep = 1, finaltime = 25): |
---|
341 | new_volume = domain.get_quantity('stage').get_integral() |
---|
342 | |
---|
343 | msg = 'Total volume has changed' |
---|
344 | assert num.allclose(new_volume, ref_volume, rtol=1.0e-10), msg |
---|
345 | pass |
---|
346 | |
---|
347 | |
---|
348 | |
---|
349 | os.remove('Test_culvert_dry.sww') |
---|
350 | |
---|
351 | def test_that_culvert_flows_conserves_volume(self): |
---|
352 | """test_that_culvert_flows_conserves_volume |
---|
353 | |
---|
354 | Test that culvert on a sloping dry bed limits flows when very little water |
---|
355 | is present at inlet. |
---|
356 | |
---|
357 | Uses helper function: run_culvert_flow_problem(depth): |
---|
358 | |
---|
359 | """ |
---|
360 | |
---|
361 | # Try this for a range of depths |
---|
362 | for depth in [0.1, 0.2, 0.5, 1.0]: |
---|
363 | run_culvert_flow_problem(depth) |
---|
364 | |
---|
365 | |
---|
366 | def OBSOLETE_XXXtest_that_culvert_rating_limits_flow_in_shallow_inlet_condition(self): |
---|
367 | """test_that_culvert_rating_limits_flow_in_shallow_inlet_condition |
---|
368 | |
---|
369 | Test that culvert on a sloping dry bed limits flows when very little water |
---|
370 | is present at inlet |
---|
371 | |
---|
372 | This one is using the rating curve variant |
---|
373 | """ |
---|
374 | |
---|
375 | |
---|
376 | |
---|
377 | path = get_pathname_from_package('anuga.culvert_flows') |
---|
378 | |
---|
379 | length = 40. |
---|
380 | width = 5. |
---|
381 | |
---|
382 | dx = dy = 1 # Resolution: Length of subdivisions on both axes |
---|
383 | |
---|
384 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
385 | int(width/dy), |
---|
386 | len1=length, |
---|
387 | len2=width) |
---|
388 | domain = anuga.Domain(points, vertices, boundary) |
---|
389 | domain.set_name('Test_culvert_shallow') # Output name |
---|
390 | domain.set_default_order(2) |
---|
391 | |
---|
392 | |
---|
393 | #---------------------------------------------------------------------- |
---|
394 | # Setup initial conditions |
---|
395 | #---------------------------------------------------------------------- |
---|
396 | |
---|
397 | def topography(x, y): |
---|
398 | """Set up a weir |
---|
399 | |
---|
400 | A culvert will connect either side |
---|
401 | """ |
---|
402 | # General Slope of Topography |
---|
403 | z=-x/1000 |
---|
404 | |
---|
405 | N = len(x) |
---|
406 | for i in range(N): |
---|
407 | |
---|
408 | # Sloping Embankment Across Channel |
---|
409 | if 5.0 < x[i] < 10.1: |
---|
410 | # Cut Out Segment for Culvert face |
---|
411 | if 1.0+(x[i]-5.0)/5.0 < y[i] < 4.0 - (x[i]-5.0)/5.0: |
---|
412 | z[i]=z[i] |
---|
413 | else: |
---|
414 | z[i] += 0.5*(x[i] -5.0) # Sloping Segment U/S Face |
---|
415 | if 10.0 < x[i] < 12.1: |
---|
416 | z[i] += 2.5 # Flat Crest of Embankment |
---|
417 | if 12.0 < x[i] < 14.5: |
---|
418 | # Cut Out Segment for Culvert face |
---|
419 | if 2.0-(x[i]-12.0)/2.5 < y[i] < 3.0 + (x[i]-12.0)/2.5: |
---|
420 | z[i]=z[i] |
---|
421 | else: |
---|
422 | z[i] += 2.5-1.0*(x[i] -12.0) # Sloping D/S Face |
---|
423 | |
---|
424 | |
---|
425 | return z |
---|
426 | |
---|
427 | |
---|
428 | domain.set_quantity('elevation', topography) |
---|
429 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
430 | domain.set_quantity('stage', |
---|
431 | expression='elevation + 0.1') # Shallow initial condition |
---|
432 | |
---|
433 | # Boyd culvert |
---|
434 | culvert = Culvert_flow(domain, |
---|
435 | label='Culvert No. 1', |
---|
436 | description='This culvert is a test unit 1.2m Wide by 0.75m High', |
---|
437 | end_point0=[9.0, 2.5], |
---|
438 | end_point1=[13.0, 2.5], |
---|
439 | width=1.20, height=0.75, |
---|
440 | culvert_routine=boyd_generalised_culvert_model, |
---|
441 | number_of_barrels=1, |
---|
442 | update_interval=2, |
---|
443 | verbose=False) |
---|
444 | |
---|
445 | # Rating curve |
---|
446 | #filename = os.path.join(path, 'example_rating_curve.csv') |
---|
447 | #culvert = Culvert_flow(domain, |
---|
448 | # culvert_description_filename=filename, |
---|
449 | # end_point0=[9.0, 2.5], |
---|
450 | # end_point1=[13.0, 2.5], |
---|
451 | # trigger_depth=0.01, |
---|
452 | # verbose=False) |
---|
453 | |
---|
454 | domain.forcing_terms.append(culvert) |
---|
455 | |
---|
456 | |
---|
457 | #----------------------------------------------------------------------- |
---|
458 | # Setup boundary conditions |
---|
459 | #----------------------------------------------------------------------- |
---|
460 | |
---|
461 | # Inflow based on Flow Depth and Approaching Momentum |
---|
462 | |
---|
463 | Br = anuga.Reflective_boundary(domain) # Solid reflective wall |
---|
464 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
465 | |
---|
466 | |
---|
467 | |
---|
468 | #----------------------------------------------------------------------- |
---|
469 | # Evolve system through time |
---|
470 | #----------------------------------------------------------------------- |
---|
471 | |
---|
472 | print 'depth', 0.1 |
---|
473 | ref_volume = domain.get_quantity('stage').get_integral() |
---|
474 | for t in domain.evolve(yieldstep = 0.1, finaltime = 25): |
---|
475 | new_volume = domain.get_quantity('stage').get_integral() |
---|
476 | |
---|
477 | msg = ('Total volume has changed: Is %.8f m^3 should have been %.8f m^3' |
---|
478 | % (new_volume, ref_volume)) |
---|
479 | assert num.allclose(new_volume, ref_volume, rtol=1.0e-10), msg |
---|
480 | |
---|
481 | |
---|
482 | return |
---|
483 | # Now try this again for a depth of 10 cm and for a range of other depths |
---|
484 | for depth in [0.1, 0.2, 0.5, 1.0]: |
---|
485 | print 'depth', depth |
---|
486 | domain.set_time(0.0) |
---|
487 | |
---|
488 | domain.set_quantity('elevation', topography) |
---|
489 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
490 | domain.set_quantity('stage', |
---|
491 | expression='elevation + %f' % depth) |
---|
492 | |
---|
493 | |
---|
494 | ref_volume = domain.get_quantity('stage').get_integral() |
---|
495 | for t in domain.evolve(yieldstep = 0.1, finaltime = 25): |
---|
496 | new_volume = domain.get_quantity('stage').get_integral() |
---|
497 | |
---|
498 | msg = 'Total volume has changed: Is %.8f m^3 should have been %.8f m^3'\ |
---|
499 | % (new_volume, ref_volume) |
---|
500 | |
---|
501 | assert num.allclose(new_volume, ref_volume, rtol=1.0e-10), msg |
---|
502 | |
---|
503 | |
---|
504 | |
---|
505 | def test_that_culvert_dry_bed_boyd_does_not_produce_flow(self): |
---|
506 | """test_that_culvert_in_dry_bed_boyd_does_not_produce_flow(self): |
---|
507 | |
---|
508 | Test that culvert on a sloping dry bed doesn't produce flows |
---|
509 | although there will be a 'pressure' head due to delta_w > 0 |
---|
510 | |
---|
511 | This one is using the 'Boyd' variant |
---|
512 | """ |
---|
513 | |
---|
514 | path = get_pathname_from_package('anuga.culvert_flows') |
---|
515 | |
---|
516 | length = 40. |
---|
517 | width = 5. |
---|
518 | |
---|
519 | dx = dy = 1 # Resolution: Length of subdivisions on both axes |
---|
520 | |
---|
521 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
522 | int(width/dy), |
---|
523 | len1=length, |
---|
524 | len2=width) |
---|
525 | domain = anuga.Domain(points, vertices, boundary) |
---|
526 | domain.set_name('Test_culvert_dry') # Output name |
---|
527 | domain.set_default_order(2) |
---|
528 | |
---|
529 | |
---|
530 | #---------------------------------------------------------------------- |
---|
531 | # Setup initial conditions |
---|
532 | #---------------------------------------------------------------------- |
---|
533 | |
---|
534 | def topography(x, y): |
---|
535 | """Set up a weir |
---|
536 | |
---|
537 | A culvert will connect either side |
---|
538 | """ |
---|
539 | # General Slope of Topography |
---|
540 | z=-x/1000 |
---|
541 | |
---|
542 | N = len(x) |
---|
543 | for i in range(N): |
---|
544 | |
---|
545 | # Sloping Embankment Across Channel |
---|
546 | if 5.0 < x[i] < 10.1: |
---|
547 | # Cut Out Segment for Culvert face |
---|
548 | if 1.0+(x[i]-5.0)/5.0 < y[i] < 4.0 - (x[i]-5.0)/5.0: |
---|
549 | z[i]=z[i] |
---|
550 | else: |
---|
551 | z[i] += 0.5*(x[i] -5.0) # Sloping Segment U/S Face |
---|
552 | if 10.0 < x[i] < 12.1: |
---|
553 | z[i] += 2.5 # Flat Crest of Embankment |
---|
554 | if 12.0 < x[i] < 14.5: |
---|
555 | # Cut Out Segment for Culvert face |
---|
556 | if 2.0-(x[i]-12.0)/2.5 < y[i] < 3.0 + (x[i]-12.0)/2.5: |
---|
557 | z[i]=z[i] |
---|
558 | else: |
---|
559 | z[i] += 2.5-1.0*(x[i] -12.0) # Sloping D/S Face |
---|
560 | |
---|
561 | |
---|
562 | return z |
---|
563 | |
---|
564 | |
---|
565 | domain.set_quantity('elevation', topography) |
---|
566 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
567 | domain.set_quantity('stage', |
---|
568 | expression='elevation') # Dry initial condition |
---|
569 | |
---|
570 | |
---|
571 | filename = os.path.join(path, 'example_rating_curve.csv') |
---|
572 | |
---|
573 | |
---|
574 | culvert = Culvert_flow(domain, |
---|
575 | label='Culvert No. 1', |
---|
576 | description='This culvert is a test unit 1.2m Wide by 0.75m High', |
---|
577 | end_point0=[9.0, 2.5], |
---|
578 | end_point1=[13.0, 2.5], |
---|
579 | width=1.20, height=0.75, |
---|
580 | culvert_routine=boyd_generalised_culvert_model, |
---|
581 | number_of_barrels=1, |
---|
582 | update_interval=2, |
---|
583 | verbose=False) |
---|
584 | |
---|
585 | domain.forcing_terms.append(culvert) |
---|
586 | |
---|
587 | |
---|
588 | #----------------------------------------------------------------------- |
---|
589 | # Setup boundary conditions |
---|
590 | #----------------------------------------------------------------------- |
---|
591 | |
---|
592 | # Inflow based on Flow Depth and Approaching Momentum |
---|
593 | |
---|
594 | Br = anuga.Reflective_boundary(domain) # Solid reflective wall |
---|
595 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
596 | |
---|
597 | |
---|
598 | #----------------------------------------------------------------------- |
---|
599 | # Evolve system through time |
---|
600 | #----------------------------------------------------------------------- |
---|
601 | |
---|
602 | ref_volume = domain.get_quantity('stage').get_integral() |
---|
603 | for t in domain.evolve(yieldstep = 1, finaltime = 25): |
---|
604 | |
---|
605 | new_volume = domain.get_quantity('stage').get_integral() |
---|
606 | |
---|
607 | msg = 'Total volume has changed' |
---|
608 | assert num.allclose(new_volume, ref_volume, rtol=1.0e-10), msg |
---|
609 | pass |
---|
610 | |
---|
611 | |
---|
612 | |
---|
613 | |
---|
614 | |
---|
615 | def test_predicted_boyd_flow(self): |
---|
616 | """test_predicted_boyd_flow |
---|
617 | |
---|
618 | Test that flows predicted by the boyd method are consistent with what what |
---|
619 | is calculated in engineering codes. |
---|
620 | The data was supplied by Petar Milevski |
---|
621 | """ |
---|
622 | |
---|
623 | # FIXME(Ole) this is nowhere near finished |
---|
624 | path = get_pathname_from_package('anuga.culvert_flows') |
---|
625 | |
---|
626 | length = 12. |
---|
627 | width = 5. |
---|
628 | |
---|
629 | dx = dy = 0.5 # Resolution: Length of subdivisions on both axes |
---|
630 | |
---|
631 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
632 | int(width/dy), |
---|
633 | len1=length, |
---|
634 | len2=width) |
---|
635 | domain = anuga.Domain(points, vertices, boundary) |
---|
636 | |
---|
637 | domain.set_name('test_culvert') # Output name |
---|
638 | domain.set_default_order(2) |
---|
639 | |
---|
640 | |
---|
641 | #---------------------------------------------------------------------- |
---|
642 | # Setup initial conditions |
---|
643 | #---------------------------------------------------------------------- |
---|
644 | |
---|
645 | def topography(x, y): |
---|
646 | # General Slope of Topography |
---|
647 | z=-x/10 |
---|
648 | |
---|
649 | return z |
---|
650 | |
---|
651 | |
---|
652 | domain.set_quantity('elevation', topography) |
---|
653 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
654 | domain.set_quantity('stage', expression='elevation') |
---|
655 | |
---|
656 | |
---|
657 | Q0 = domain.get_quantity('stage') |
---|
658 | Q1 = Quantity(domain) |
---|
659 | |
---|
660 | # Add depths to stage |
---|
661 | head_water_depth = 0.169 |
---|
662 | tail_water_depth = 0.089 |
---|
663 | |
---|
664 | inlet_poly = [[0,0], [6,0], [6,5], [0,5]] |
---|
665 | outlet_poly = [[6,0], [12,0], [12,5], [6,5]] |
---|
666 | |
---|
667 | Q1.set_values(Polygon_function([(inlet_poly, head_water_depth), |
---|
668 | (outlet_poly, tail_water_depth)])) |
---|
669 | |
---|
670 | domain.set_quantity('stage', Q0 + Q1) |
---|
671 | |
---|
672 | |
---|
673 | |
---|
674 | culvert = Culvert_flow(domain, |
---|
675 | label='Test culvert', |
---|
676 | description='4 m test culvert', |
---|
677 | end_point0=[4.0, 2.5], |
---|
678 | end_point1=[8.0, 2.5], |
---|
679 | width=1.20, |
---|
680 | height=0.75, |
---|
681 | culvert_routine=boyd_generalised_culvert_model, |
---|
682 | number_of_barrels=1, |
---|
683 | verbose=False) |
---|
684 | |
---|
685 | |
---|
686 | domain.forcing_terms.append(culvert) |
---|
687 | |
---|
688 | # Call |
---|
689 | culvert(domain) |
---|
690 | |
---|
691 | |
---|
692 | |
---|
693 | |
---|
694 | def test_momentum_jet(self): |
---|
695 | """test_momentum_jet |
---|
696 | |
---|
697 | Test that culvert_class can accept keyword use_momentum_jet |
---|
698 | This does not yet imply that the values have been tested. FIXME |
---|
699 | """ |
---|
700 | |
---|
701 | |
---|
702 | length = 40. |
---|
703 | width = 5. |
---|
704 | |
---|
705 | dx = dy = 1 # Resolution: Length of subdivisions on both axes |
---|
706 | |
---|
707 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
708 | int(width/dy), |
---|
709 | len1=length, |
---|
710 | len2=width) |
---|
711 | domain = anuga.Domain(points, vertices, boundary) |
---|
712 | domain.set_name('Test_culvert_shallow') # Output name |
---|
713 | domain.set_default_order(2) |
---|
714 | |
---|
715 | |
---|
716 | #---------------------------------------------------------------------- |
---|
717 | # Setup initial conditions |
---|
718 | #---------------------------------------------------------------------- |
---|
719 | |
---|
720 | def topography(x, y): |
---|
721 | """Set up a weir |
---|
722 | |
---|
723 | A culvert will connect either side |
---|
724 | """ |
---|
725 | # General Slope of Topography |
---|
726 | z=-x/1000 |
---|
727 | |
---|
728 | N = len(x) |
---|
729 | for i in range(N): |
---|
730 | |
---|
731 | # Sloping Embankment Across Channel |
---|
732 | if 5.0 < x[i] < 10.1: |
---|
733 | # Cut Out Segment for Culvert face |
---|
734 | if 1.0+(x[i]-5.0)/5.0 < y[i] < 4.0 - (x[i]-5.0)/5.0: |
---|
735 | z[i]=z[i] |
---|
736 | else: |
---|
737 | z[i] += 0.5*(x[i] -5.0) # Sloping Segment U/S Face |
---|
738 | if 10.0 < x[i] < 12.1: |
---|
739 | z[i] += 2.5 # Flat Crest of Embankment |
---|
740 | if 12.0 < x[i] < 14.5: |
---|
741 | # Cut Out Segment for Culvert face |
---|
742 | if 2.0-(x[i]-12.0)/2.5 < y[i] < 3.0 + (x[i]-12.0)/2.5: |
---|
743 | z[i]=z[i] |
---|
744 | else: |
---|
745 | z[i] += 2.5-1.0*(x[i] -12.0) # Sloping D/S Face |
---|
746 | |
---|
747 | |
---|
748 | return z |
---|
749 | |
---|
750 | |
---|
751 | domain.set_quantity('elevation', topography) |
---|
752 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
753 | domain.set_quantity('stage', |
---|
754 | expression='elevation + 1.0') # Shallow initial condition |
---|
755 | |
---|
756 | # Boyd culvert |
---|
757 | culvert = Culvert_flow(domain, |
---|
758 | label='Culvert No. 1', |
---|
759 | description='This culvert is a test unit 1.2m Wide by 0.75m High', |
---|
760 | end_point0=[9.0, 2.5], |
---|
761 | end_point1=[13.0, 2.5], |
---|
762 | width=1.20, height=0.75, |
---|
763 | culvert_routine=boyd_generalised_culvert_model, |
---|
764 | number_of_barrels=1, |
---|
765 | use_momentum_jet=True, |
---|
766 | update_interval=2, |
---|
767 | verbose=False) |
---|
768 | |
---|
769 | |
---|
770 | domain.forcing_terms.append(culvert) |
---|
771 | |
---|
772 | |
---|
773 | # Call |
---|
774 | culvert(domain) |
---|
775 | |
---|
776 | |
---|
777 | #----------------------------------------------------------------------- |
---|
778 | # Setup boundary conditions |
---|
779 | #----------------------------------------------------------------------- |
---|
780 | |
---|
781 | |
---|
782 | Br = anuga.Reflective_boundary(domain) # Solid reflective wall |
---|
783 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
784 | |
---|
785 | #----------------------------------------------------------------------- |
---|
786 | # Evolve system through time |
---|
787 | #----------------------------------------------------------------------- |
---|
788 | |
---|
789 | ref_volume = domain.get_quantity('stage').get_integral() |
---|
790 | for t in domain.evolve(yieldstep = 0.1, finaltime = 25): |
---|
791 | new_volume = domain.get_quantity('stage').get_integral() |
---|
792 | |
---|
793 | msg = ('Total volume has changed: Is %.8f m^3 should have been %.8f m^3' |
---|
794 | % (new_volume, ref_volume)) |
---|
795 | assert num.allclose(new_volume, ref_volume, rtol=1.0e-10), msg |
---|
796 | |
---|
797 | |
---|
798 | |
---|
799 | |
---|
800 | |
---|
801 | #------------------------------------------------------------- |
---|
802 | |
---|
803 | if __name__ == "__main__": |
---|
804 | suite = unittest.makeSuite(Test_Culvert, 'test') |
---|
805 | runner = unittest.TextTestRunner() #verbosity=2) |
---|
806 | runner.run(suite) |
---|
807 | |
---|