1 | import numpy as num |
---|
2 | import anuga.utilities.log as log |
---|
3 | from anuga.file.netcdf import NetCDFFile |
---|
4 | |
---|
5 | from anuga.config import max_float |
---|
6 | from anuga.config import netcdf_float, netcdf_float32, netcdf_int |
---|
7 | from anuga.utilities.numerical_tools import ensure_numeric |
---|
8 | from anuga.coordinate_transforms.geo_reference import Geo_reference, \ |
---|
9 | ensure_geo_reference |
---|
10 | from anuga.config import netcdf_mode_r, netcdf_mode_w, netcdf_mode_a |
---|
11 | |
---|
12 | class Write_sts: |
---|
13 | """ A class to write STS files. |
---|
14 | """ |
---|
15 | sts_quantities = ['stage', 'xmomentum', 'ymomentum'] |
---|
16 | RANGE = '_range' |
---|
17 | EXTREMA = ':extrema' |
---|
18 | |
---|
19 | def __init__(self): |
---|
20 | pass |
---|
21 | |
---|
22 | def store_header(self, |
---|
23 | outfile, |
---|
24 | times, |
---|
25 | number_of_points, |
---|
26 | description='Converted from URS mux2 format', |
---|
27 | sts_precision=netcdf_float32, |
---|
28 | verbose=False): |
---|
29 | """Write a header to the underlying data file. |
---|
30 | |
---|
31 | outfile handle to open file to write |
---|
32 | times list of the time slice times *or* a start time |
---|
33 | number_of_points the number of URS gauge sites |
---|
34 | description description string to write into the STS file |
---|
35 | sts_precision format of data to write (netcdf constant ONLY) |
---|
36 | verbose True if this function is to be verbose |
---|
37 | |
---|
38 | If 'times' is a list, the info will be made relative. |
---|
39 | """ |
---|
40 | |
---|
41 | outfile.institution = 'Geoscience Australia' |
---|
42 | outfile.description = description |
---|
43 | |
---|
44 | try: |
---|
45 | revision_number = get_revision_number() |
---|
46 | except: |
---|
47 | revision_number = None |
---|
48 | |
---|
49 | # Allow None to be stored as a string |
---|
50 | outfile.revision_number = str(revision_number) |
---|
51 | |
---|
52 | # Start time in seconds since the epoch (midnight 1/1/1970) |
---|
53 | # This is being used to seperate one number from a list. |
---|
54 | # what it is actually doing is sorting lists from numeric arrays. |
---|
55 | if isinstance(times, (list, num.ndarray)): |
---|
56 | number_of_times = len(times) |
---|
57 | times = ensure_numeric(times) |
---|
58 | if number_of_times == 0: |
---|
59 | starttime = 0 |
---|
60 | else: |
---|
61 | starttime = times[0] |
---|
62 | times = times - starttime #Store relative times |
---|
63 | else: |
---|
64 | number_of_times = 0 |
---|
65 | starttime = times |
---|
66 | |
---|
67 | outfile.starttime = starttime |
---|
68 | |
---|
69 | # Dimension definitions |
---|
70 | outfile.createDimension('number_of_points', number_of_points) |
---|
71 | outfile.createDimension('number_of_timesteps', number_of_times) |
---|
72 | outfile.createDimension('numbers_in_range', 2) |
---|
73 | |
---|
74 | # Variable definitions |
---|
75 | outfile.createVariable('permutation', netcdf_int, ('number_of_points',)) |
---|
76 | outfile.createVariable('x', sts_precision, ('number_of_points',)) |
---|
77 | outfile.createVariable('y', sts_precision, ('number_of_points',)) |
---|
78 | outfile.createVariable('elevation', sts_precision, \ |
---|
79 | ('number_of_points',)) |
---|
80 | |
---|
81 | q = 'elevation' |
---|
82 | outfile.createVariable(q + Write_sts.RANGE, sts_precision, |
---|
83 | ('numbers_in_range',)) |
---|
84 | |
---|
85 | # Initialise ranges with small and large sentinels. |
---|
86 | # If this was in pure Python we could have used None sensibly |
---|
87 | outfile.variables[q + Write_sts.RANGE][0] = max_float # Min |
---|
88 | outfile.variables[q + Write_sts.RANGE][1] = -max_float # Max |
---|
89 | |
---|
90 | self.write_dynamic_quantities(outfile, Write_sts.sts_quantities, times) |
---|
91 | |
---|
92 | def store_points(self, |
---|
93 | outfile, |
---|
94 | points_utm, |
---|
95 | elevation, zone=None, new_origin=None, |
---|
96 | points_georeference=None, verbose=False): |
---|
97 | |
---|
98 | """ |
---|
99 | points_utm - currently a list or array of the points in UTM. |
---|
100 | points_georeference - the georeference of the points_utm |
---|
101 | |
---|
102 | How about passing new_origin and current_origin. |
---|
103 | If you get both, do a convertion from the old to the new. |
---|
104 | |
---|
105 | If you only get new_origin, the points are absolute, |
---|
106 | convert to relative |
---|
107 | |
---|
108 | if you only get the current_origin the points are relative, store |
---|
109 | as relative. |
---|
110 | |
---|
111 | if you get no georefs create a new georef based on the minimums of |
---|
112 | points_utm. (Another option would be to default to absolute) |
---|
113 | |
---|
114 | Yes, and this is done in another part of the code. |
---|
115 | Probably geospatial. |
---|
116 | |
---|
117 | If you don't supply either geo_refs, then supply a zone. If not |
---|
118 | the default zone will be used. |
---|
119 | |
---|
120 | precondition: |
---|
121 | header has been called. |
---|
122 | """ |
---|
123 | |
---|
124 | number_of_points = len(points_utm) |
---|
125 | points_utm = num.array(points_utm) |
---|
126 | |
---|
127 | # given the two geo_refs and the points, do the stuff |
---|
128 | # described in the method header |
---|
129 | points_georeference = ensure_geo_reference(points_georeference) |
---|
130 | new_origin = ensure_geo_reference(new_origin) |
---|
131 | |
---|
132 | if new_origin is None and points_georeference is not None: |
---|
133 | points = points_utm |
---|
134 | geo_ref = points_georeference |
---|
135 | else: |
---|
136 | if new_origin is None: |
---|
137 | new_origin = Geo_reference(zone, min(points_utm[:,0]), |
---|
138 | min(points_utm[:,1])) |
---|
139 | points = new_origin.change_points_geo_ref(points_utm, |
---|
140 | points_georeference) |
---|
141 | geo_ref = new_origin |
---|
142 | |
---|
143 | # At this stage I need a georef and points |
---|
144 | # the points are relative to the georef |
---|
145 | geo_ref.write_NetCDF(outfile) |
---|
146 | |
---|
147 | x = points[:,0] |
---|
148 | y = points[:,1] |
---|
149 | z = outfile.variables['elevation'][:] |
---|
150 | |
---|
151 | if verbose: |
---|
152 | log.critical('------------------------------------------------') |
---|
153 | log.critical('More Statistics:') |
---|
154 | log.critical(' Extent (/lon):') |
---|
155 | log.critical(' x in [%f, %f], len(lat) == %d' |
---|
156 | % (min(x), max(x), len(x))) |
---|
157 | log.critical(' y in [%f, %f], len(lon) == %d' |
---|
158 | % (min(y), max(y), len(y))) |
---|
159 | log.critical(' z in [%f, %f], len(z) == %d' |
---|
160 | % (min(elevation), max(elevation), len(elevation))) |
---|
161 | log.critical('geo_ref: %s' % str(geo_ref)) |
---|
162 | log.critical('------------------------------------------------') |
---|
163 | |
---|
164 | z = resize(bath_grid,outfile.variables['elevation'][:].shape) |
---|
165 | outfile.variables['x'][:] = points[:,0] #- geo_ref.get_xllcorner() |
---|
166 | outfile.variables['y'][:] = points[:,1] #- geo_ref.get_yllcorner() |
---|
167 | #outfile.variables['z'][:] = elevation |
---|
168 | outfile.variables['elevation'][:] = elevation #FIXME HACK4 |
---|
169 | |
---|
170 | # This updates the _range values |
---|
171 | q = 'elevation' |
---|
172 | outfile.variables[q + Write_sts.RANGE][0] = min(elevation) |
---|
173 | outfile.variables[q + Write_sts.RANGE][1] = max(elevation) |
---|
174 | |
---|
175 | def store_quantities(self, outfile, sts_precision=num.float32, |
---|
176 | slice_index=None, time=None, |
---|
177 | verbose=False, **quant): |
---|
178 | """Write the quantity info. |
---|
179 | |
---|
180 | **quant is extra keyword arguments passed in. These must be |
---|
181 | the sts quantities, currently; stage. |
---|
182 | |
---|
183 | if the time array is already been built, use the slice_index |
---|
184 | to specify the index. |
---|
185 | |
---|
186 | Otherwise, use time to increase the time dimension |
---|
187 | |
---|
188 | Maybe make this general, but the viewer assumes these quantities, |
---|
189 | so maybe we don't want it general - unless the viewer is general |
---|
190 | |
---|
191 | precondition: |
---|
192 | triangulation and header have been called. |
---|
193 | """ |
---|
194 | |
---|
195 | if time is not None: |
---|
196 | file_time = outfile.variables['time'] |
---|
197 | slice_index = len(file_time) |
---|
198 | file_time[slice_index] = time |
---|
199 | |
---|
200 | # Write the conserved quantities from Domain. |
---|
201 | # Typically stage, xmomentum, ymomentum |
---|
202 | # other quantities will be ignored, silently. |
---|
203 | # Also write the ranges: stage_range |
---|
204 | for q in Write_sts.sts_quantities: |
---|
205 | if not quant.has_key(q): |
---|
206 | msg = 'STS file can not write quantity %s' % q |
---|
207 | raise NewQuantity, msg |
---|
208 | else: |
---|
209 | q_values = quant[q] |
---|
210 | outfile.variables[q][slice_index] = \ |
---|
211 | q_values.astype(sts_precision) |
---|
212 | |
---|
213 | # This updates the _range values |
---|
214 | q_range = outfile.variables[q + Write_sts.RANGE][:] |
---|
215 | q_values_min = num.min(q_values) |
---|
216 | if q_values_min < q_range[0]: |
---|
217 | outfile.variables[q + Write_sts.RANGE][0] = q_values_min |
---|
218 | q_values_max = num.max(q_values) |
---|
219 | if q_values_max > q_range[1]: |
---|
220 | outfile.variables[q + Write_sts.RANGE][1] = q_values_max |
---|
221 | |
---|
222 | |
---|
223 | |
---|
224 | def write_dynamic_quantities(self, outfile, quantities, |
---|
225 | times, precis = netcdf_float32, verbose = False): |
---|
226 | """ |
---|
227 | Write out given quantities to file. |
---|
228 | """ |
---|
229 | for q in quantities: |
---|
230 | outfile.createVariable(q, precis, ('number_of_timesteps', |
---|
231 | 'number_of_points')) |
---|
232 | outfile.createVariable(q + Write_sts.RANGE, precis, |
---|
233 | ('numbers_in_range',)) |
---|
234 | |
---|
235 | # Initialise ranges with small and large sentinels. |
---|
236 | # If this was in pure Python we could have used None sensibly |
---|
237 | outfile.variables[q+Write_sts.RANGE][0] = max_float # Min |
---|
238 | outfile.variables[q+Write_sts.RANGE][1] = -max_float # Max |
---|
239 | |
---|
240 | # Doing sts_precision instead of Float gives cast errors. |
---|
241 | outfile.createVariable('time', netcdf_float, ('number_of_timesteps',)) |
---|
242 | |
---|
243 | if isinstance(times, (list, num.ndarray)): |
---|
244 | outfile.variables['time'][:] = times # Store time relative |
---|
245 | |
---|
246 | if verbose: |
---|
247 | log.critical('------------------------------------------------') |
---|
248 | log.critical('Statistics:') |
---|
249 | log.critical(' t in [%f, %f], len(t) == %d' |
---|
250 | % (num.min(times), num.max(times), len(times.flat))) |
---|
251 | |
---|
252 | |
---|
253 | |
---|
254 | def create_sts_boundary(sts_filename): |
---|
255 | """Create a list of points defining a boundary from an STS file. |
---|
256 | |
---|
257 | Create boundary segments from .sts file. Points can be stored in |
---|
258 | arbitrary order within the .sts file. The order in which the .sts points |
---|
259 | make up the boundary are given in order.txt file |
---|
260 | |
---|
261 | FIXME: |
---|
262 | Point coordinates are stored in relative eastings and northings. |
---|
263 | But boundary is produced in absolute coordinates |
---|
264 | """ |
---|
265 | |
---|
266 | if sts_filename.endswith('.sts'): |
---|
267 | stsname_postfixed = sts_filename |
---|
268 | else: |
---|
269 | stsname_postfixed = sts_filename + '.sts' |
---|
270 | |
---|
271 | try: |
---|
272 | fid = NetCDFFile(stsname_postfixed, netcdf_mode_r) |
---|
273 | except IOError: |
---|
274 | msg = 'Cannot open %s' % stsname_postfixed |
---|
275 | raise IOError(msg) |
---|
276 | |
---|
277 | xllcorner = fid.xllcorner |
---|
278 | yllcorner = fid.yllcorner |
---|
279 | |
---|
280 | #Points stored in sts file are normalised to [xllcorner,yllcorner] but |
---|
281 | #we cannot assume that boundary polygon will be. At least the |
---|
282 | #additional points specified by the user after this function is called |
---|
283 | x = fid.variables['x'][:] + xllcorner |
---|
284 | y = fid.variables['y'][:] + yllcorner |
---|
285 | |
---|
286 | x = num.reshape(x, (len(x), 1)) |
---|
287 | y = num.reshape(y, (len(y), 1)) |
---|
288 | sts_points = num.concatenate((x,y), axis=1) |
---|
289 | |
---|
290 | return sts_points.tolist() |
---|
291 | |
---|
292 | |
---|
293 | |
---|