1 | """ Classes to read an SWW file. |
---|
2 | """ |
---|
3 | |
---|
4 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
5 | from anuga.config import netcdf_mode_r, netcdf_mode_w, netcdf_mode_a |
---|
6 | from anuga.config import netcdf_float, netcdf_float32, netcdf_int |
---|
7 | from anuga.config import max_float |
---|
8 | from anuga.utilities.numerical_tools import ensure_numeric |
---|
9 | import anuga.utilities.log as log |
---|
10 | from Scientific.IO.NetCDF import NetCDFFile |
---|
11 | |
---|
12 | from anuga.coordinate_transforms.geo_reference import \ |
---|
13 | ensure_geo_reference |
---|
14 | |
---|
15 | from file_utils import create_filename |
---|
16 | import numpy as num |
---|
17 | |
---|
18 | ## |
---|
19 | # @brief Generic class for storing output to e.g. visualisation or checkpointing |
---|
20 | class Data_format: |
---|
21 | """Generic interface to data formats |
---|
22 | """ |
---|
23 | |
---|
24 | ## |
---|
25 | # @brief Instantiate this instance. |
---|
26 | # @param domain |
---|
27 | # @param extension |
---|
28 | # @param mode The mode of the underlying file. |
---|
29 | def __init__(self, domain, extension, mode=netcdf_mode_w): |
---|
30 | assert mode[0] in ['r', 'w', 'a'], \ |
---|
31 | "Mode %s must be either:\n" % mode + \ |
---|
32 | " 'w' (write)\n" + \ |
---|
33 | " 'r' (read)\n" + \ |
---|
34 | " 'a' (append)" |
---|
35 | |
---|
36 | #Create filename |
---|
37 | self.filename = create_filename(domain.get_datadir(), |
---|
38 | domain.get_name(), extension) |
---|
39 | |
---|
40 | self.timestep = 0 |
---|
41 | self.domain = domain |
---|
42 | |
---|
43 | # Exclude ghosts in case this is a parallel domain |
---|
44 | self.number_of_nodes = domain.number_of_full_nodes |
---|
45 | self.number_of_volumes = domain.number_of_full_triangles |
---|
46 | #self.number_of_volumes = len(domain) |
---|
47 | |
---|
48 | #FIXME: Should we have a general set_precision function? |
---|
49 | |
---|
50 | |
---|
51 | class SWW_file(Data_format): |
---|
52 | """Interface to native NetCDF format (.sww) for storing model output |
---|
53 | |
---|
54 | There are two kinds of data |
---|
55 | |
---|
56 | 1: Constant data: Vertex coordinates and field values. Stored once |
---|
57 | 2: Variable data: Conserved quantities. Stored once per timestep. |
---|
58 | |
---|
59 | All data is assumed to reside at vertex locations. |
---|
60 | """ |
---|
61 | |
---|
62 | ## |
---|
63 | # @brief Instantiate this instance. |
---|
64 | # @param domain ?? |
---|
65 | # @param mode Mode of the underlying data file. |
---|
66 | # @param max_size ?? |
---|
67 | # @param recursion ?? |
---|
68 | # @note Prepare the underlying data file if mode starts with 'w'. |
---|
69 | def __init__(self, domain, |
---|
70 | mode=netcdf_mode_w, max_size=2000000000, recursion=False): |
---|
71 | from Scientific.IO.NetCDF import NetCDFFile |
---|
72 | |
---|
73 | self.precision = netcdf_float32 # Use single precision for quantities |
---|
74 | self.recursion = recursion |
---|
75 | self.mode = mode |
---|
76 | if hasattr(domain, 'max_size'): |
---|
77 | self.max_size = domain.max_size # File size max is 2Gig |
---|
78 | else: |
---|
79 | self.max_size = max_size |
---|
80 | if hasattr(domain, 'minimum_storable_height'): |
---|
81 | self.minimum_storable_height = domain.minimum_storable_height |
---|
82 | else: |
---|
83 | self.minimum_storable_height = default_minimum_storable_height |
---|
84 | |
---|
85 | # Call parent constructor |
---|
86 | Data_format.__init__(self, domain, 'sww', mode) |
---|
87 | |
---|
88 | # Get static and dynamic quantities from domain |
---|
89 | static_quantities = [] |
---|
90 | dynamic_quantities = [] |
---|
91 | |
---|
92 | for q in domain.quantities_to_be_stored: |
---|
93 | flag = domain.quantities_to_be_stored[q] |
---|
94 | |
---|
95 | msg = 'Quantity %s is requested to be stored ' % q |
---|
96 | msg += 'but it does not exist in domain.quantities' |
---|
97 | assert q in domain.quantities, msg |
---|
98 | |
---|
99 | assert flag in [1,2] |
---|
100 | if flag == 1: static_quantities.append(q) |
---|
101 | if flag == 2: dynamic_quantities.append(q) |
---|
102 | |
---|
103 | |
---|
104 | # NetCDF file definition |
---|
105 | fid = NetCDFFile(self.filename, mode) |
---|
106 | if mode[0] == 'w': |
---|
107 | description = 'Output from anuga.abstract_2d_finite_volumes ' \ |
---|
108 | 'suitable for plotting' |
---|
109 | |
---|
110 | self.writer = Write_sww(static_quantities, dynamic_quantities) |
---|
111 | self.writer.store_header(fid, |
---|
112 | domain.starttime, |
---|
113 | self.number_of_volumes, |
---|
114 | self.domain.number_of_full_nodes, |
---|
115 | description=description, |
---|
116 | smoothing=domain.smooth, |
---|
117 | order=domain.default_order, |
---|
118 | sww_precision=self.precision) |
---|
119 | |
---|
120 | # Extra optional information |
---|
121 | if hasattr(domain, 'texture'): |
---|
122 | fid.texture = domain.texture |
---|
123 | |
---|
124 | if domain.quantities_to_be_monitored is not None: |
---|
125 | fid.createDimension('singleton', 1) |
---|
126 | fid.createDimension('two', 2) |
---|
127 | |
---|
128 | poly = domain.monitor_polygon |
---|
129 | if poly is not None: |
---|
130 | N = len(poly) |
---|
131 | fid.createDimension('polygon_length', N) |
---|
132 | fid.createVariable('extrema.polygon', |
---|
133 | self.precision, |
---|
134 | ('polygon_length', 'two')) |
---|
135 | fid.variables['extrema.polygon'][:] = poly |
---|
136 | |
---|
137 | interval = domain.monitor_time_interval |
---|
138 | if interval is not None: |
---|
139 | fid.createVariable('extrema.time_interval', |
---|
140 | self.precision, |
---|
141 | ('two',)) |
---|
142 | fid.variables['extrema.time_interval'][:] = interval |
---|
143 | |
---|
144 | for q in domain.quantities_to_be_monitored: |
---|
145 | fid.createVariable(q + '.extrema', self.precision, |
---|
146 | ('numbers_in_range',)) |
---|
147 | fid.createVariable(q + '.min_location', self.precision, |
---|
148 | ('numbers_in_range',)) |
---|
149 | fid.createVariable(q + '.max_location', self.precision, |
---|
150 | ('numbers_in_range',)) |
---|
151 | fid.createVariable(q + '.min_time', self.precision, |
---|
152 | ('singleton',)) |
---|
153 | fid.createVariable(q + '.max_time', self.precision, |
---|
154 | ('singleton',)) |
---|
155 | |
---|
156 | fid.close() |
---|
157 | |
---|
158 | ## |
---|
159 | # @brief Store connectivity data into the underlying data file. |
---|
160 | def store_connectivity(self): |
---|
161 | """Store information about nodes, triangles and static quantities |
---|
162 | |
---|
163 | Writes x,y coordinates of triangles and their connectivity. |
---|
164 | |
---|
165 | Store also any quantity that has been identified as static. |
---|
166 | """ |
---|
167 | |
---|
168 | # FIXME: Change name to reflect the fact thta this function |
---|
169 | # stores both connectivity (triangulation) and static quantities |
---|
170 | |
---|
171 | from Scientific.IO.NetCDF import NetCDFFile |
---|
172 | |
---|
173 | domain = self.domain |
---|
174 | |
---|
175 | # append to the NetCDF file |
---|
176 | fid = NetCDFFile(self.filename, netcdf_mode_a) |
---|
177 | |
---|
178 | # Get X, Y from one (any) of the quantities |
---|
179 | Q = domain.quantities.values()[0] |
---|
180 | X,Y,_,V = Q.get_vertex_values(xy=True, precision=self.precision) |
---|
181 | |
---|
182 | # store the connectivity data |
---|
183 | points = num.concatenate((X[:,num.newaxis],Y[:,num.newaxis]), axis=1) |
---|
184 | self.writer.store_triangulation(fid, |
---|
185 | points, |
---|
186 | V.astype(num.float32), |
---|
187 | points_georeference=\ |
---|
188 | domain.geo_reference) |
---|
189 | |
---|
190 | |
---|
191 | # Get names of static quantities |
---|
192 | static_quantities = {} |
---|
193 | for name in self.writer.static_quantities: |
---|
194 | Q = domain.quantities[name] |
---|
195 | A, _ = Q.get_vertex_values(xy=False, |
---|
196 | precision=self.precision) |
---|
197 | static_quantities[name] = A |
---|
198 | |
---|
199 | # Store static quantities |
---|
200 | self.writer.store_static_quantities(fid, **static_quantities) |
---|
201 | |
---|
202 | fid.close() |
---|
203 | |
---|
204 | ## |
---|
205 | # @brief Store time and time dependent quantities |
---|
206 | # to the underlying data file. |
---|
207 | def store_timestep(self): |
---|
208 | """Store time and time dependent quantities |
---|
209 | """ |
---|
210 | |
---|
211 | from Scientific.IO.NetCDF import NetCDFFile |
---|
212 | import types |
---|
213 | from time import sleep |
---|
214 | from os import stat |
---|
215 | |
---|
216 | # Get NetCDF |
---|
217 | retries = 0 |
---|
218 | file_open = False |
---|
219 | while not file_open and retries < 10: |
---|
220 | try: |
---|
221 | # Open existing file |
---|
222 | fid = NetCDFFile(self.filename, netcdf_mode_a) |
---|
223 | except IOError: |
---|
224 | # This could happen if someone was reading the file. |
---|
225 | # In that case, wait a while and try again |
---|
226 | msg = 'Warning (store_timestep): File %s could not be opened' \ |
---|
227 | % self.filename |
---|
228 | msg += ' - trying step %s again' % self.domain.time |
---|
229 | log.critical(msg) |
---|
230 | retries += 1 |
---|
231 | sleep(1) |
---|
232 | else: |
---|
233 | file_open = True |
---|
234 | |
---|
235 | if not file_open: |
---|
236 | msg = 'File %s could not be opened for append' % self.filename |
---|
237 | raise DataFileNotOpenError, msg |
---|
238 | |
---|
239 | # Check to see if the file is already too big: |
---|
240 | time = fid.variables['time'] |
---|
241 | i = len(time) + 1 |
---|
242 | file_size = stat(self.filename)[6] |
---|
243 | file_size_increase = file_size / i |
---|
244 | if file_size + file_size_increase > self.max_size * 2**self.recursion: |
---|
245 | # In order to get the file name and start time correct, |
---|
246 | # I change the domain.filename and domain.starttime. |
---|
247 | # This is the only way to do this without changing |
---|
248 | # other modules (I think). |
---|
249 | |
---|
250 | # Write a filename addon that won't break the anuga viewers |
---|
251 | # (10.sww is bad) |
---|
252 | filename_ext = '_time_%s' % self.domain.time |
---|
253 | filename_ext = filename_ext.replace('.', '_') |
---|
254 | |
---|
255 | # Remember the old filename, then give domain a |
---|
256 | # name with the extension |
---|
257 | old_domain_filename = self.domain.get_name() |
---|
258 | if not self.recursion: |
---|
259 | self.domain.set_name(old_domain_filename + filename_ext) |
---|
260 | |
---|
261 | # Temporarily change the domain starttime to the current time |
---|
262 | old_domain_starttime = self.domain.starttime |
---|
263 | self.domain.starttime = self.domain.get_time() |
---|
264 | |
---|
265 | # Build a new data_structure. |
---|
266 | next_data_structure = SWW_file(self.domain, mode=self.mode, |
---|
267 | max_size=self.max_size, |
---|
268 | recursion=self.recursion+1) |
---|
269 | if not self.recursion: |
---|
270 | log.critical(' file_size = %s' % file_size) |
---|
271 | log.critical(' saving file to %s' |
---|
272 | % next_data_structure.filename) |
---|
273 | |
---|
274 | # Set up the new data_structure |
---|
275 | self.domain.writer = next_data_structure |
---|
276 | |
---|
277 | # Store connectivity and first timestep |
---|
278 | next_data_structure.store_connectivity() |
---|
279 | next_data_structure.store_timestep() |
---|
280 | fid.sync() |
---|
281 | fid.close() |
---|
282 | |
---|
283 | # Restore the old starttime and filename |
---|
284 | self.domain.starttime = old_domain_starttime |
---|
285 | self.domain.set_name(old_domain_filename) |
---|
286 | else: |
---|
287 | self.recursion = False |
---|
288 | domain = self.domain |
---|
289 | |
---|
290 | # Get the variables |
---|
291 | time = fid.variables['time'] |
---|
292 | i = len(time) |
---|
293 | |
---|
294 | if 'stage' in self.writer.dynamic_quantities: |
---|
295 | # Select only those values for stage, |
---|
296 | # xmomentum and ymomentum (if stored) where |
---|
297 | # depth exceeds minimum_storable_height |
---|
298 | # |
---|
299 | # In this branch it is assumed that elevation |
---|
300 | # is also available as a quantity |
---|
301 | |
---|
302 | Q = domain.quantities['stage'] |
---|
303 | w, _ = Q.get_vertex_values(xy=False) |
---|
304 | |
---|
305 | Q = domain.quantities['elevation'] |
---|
306 | z, _ = Q.get_vertex_values(xy=False) |
---|
307 | |
---|
308 | storable_indices = (w-z >= self.minimum_storable_height) |
---|
309 | else: |
---|
310 | # Very unlikely branch |
---|
311 | storable_indices = None # This means take all |
---|
312 | |
---|
313 | |
---|
314 | # Now store dynamic quantities |
---|
315 | dynamic_quantities = {} |
---|
316 | for name in self.writer.dynamic_quantities: |
---|
317 | netcdf_array = fid.variables[name] |
---|
318 | |
---|
319 | Q = domain.quantities[name] |
---|
320 | A, _ = Q.get_vertex_values(xy=False, |
---|
321 | precision=self.precision) |
---|
322 | |
---|
323 | if storable_indices is not None: |
---|
324 | if name == 'stage': |
---|
325 | A = num.choose(storable_indices, (z, A)) |
---|
326 | |
---|
327 | if name in ['xmomentum', 'ymomentum']: |
---|
328 | # Get xmomentum where depth exceeds |
---|
329 | # minimum_storable_height |
---|
330 | |
---|
331 | # Define a zero vector of same size and type as A |
---|
332 | # for use with momenta |
---|
333 | null = num.zeros(num.size(A), A.dtype.char) |
---|
334 | A = num.choose(storable_indices, (null, A)) |
---|
335 | |
---|
336 | dynamic_quantities[name] = A |
---|
337 | |
---|
338 | |
---|
339 | # Store dynamic quantities |
---|
340 | self.writer.store_quantities(fid, |
---|
341 | time=self.domain.time, |
---|
342 | sww_precision=self.precision, |
---|
343 | **dynamic_quantities) |
---|
344 | |
---|
345 | |
---|
346 | # Update extrema if requested |
---|
347 | domain = self.domain |
---|
348 | if domain.quantities_to_be_monitored is not None: |
---|
349 | for q, info in domain.quantities_to_be_monitored.items(): |
---|
350 | if info['min'] is not None: |
---|
351 | fid.variables[q + '.extrema'][0] = info['min'] |
---|
352 | fid.variables[q + '.min_location'][:] = \ |
---|
353 | info['min_location'] |
---|
354 | fid.variables[q + '.min_time'][0] = info['min_time'] |
---|
355 | |
---|
356 | if info['max'] is not None: |
---|
357 | fid.variables[q + '.extrema'][1] = info['max'] |
---|
358 | fid.variables[q + '.max_location'][:] = \ |
---|
359 | info['max_location'] |
---|
360 | fid.variables[q + '.max_time'][0] = info['max_time'] |
---|
361 | |
---|
362 | # Flush and close |
---|
363 | fid.sync() |
---|
364 | fid.close() |
---|
365 | |
---|
366 | |
---|
367 | ## |
---|
368 | # @brief Class to open an sww file so that domain can be populated with quantity values |
---|
369 | class Read_sww: |
---|
370 | |
---|
371 | def __init__(self, source): |
---|
372 | """The source parameter is assumed to be a NetCDF sww file. |
---|
373 | """ |
---|
374 | |
---|
375 | self.source = source |
---|
376 | |
---|
377 | self.frame_number = 0 |
---|
378 | |
---|
379 | fin = NetCDFFile(self.source, 'r') |
---|
380 | |
---|
381 | self.time = num.array(fin.variables['time'], num.float) |
---|
382 | self.last_frame_number = self.time.shape[0] - 1 |
---|
383 | |
---|
384 | self.frames = num.arange(self.last_frame_number+1) |
---|
385 | |
---|
386 | fin.close() |
---|
387 | |
---|
388 | self.read_mesh() |
---|
389 | |
---|
390 | self.quantities = {} |
---|
391 | |
---|
392 | self.read_quantities() |
---|
393 | |
---|
394 | |
---|
395 | def read_mesh(self): |
---|
396 | """ Read and store the mesh data contained within this sww file. |
---|
397 | """ |
---|
398 | fin = NetCDFFile(self.source, 'r') |
---|
399 | |
---|
400 | self.vertices = num.array(fin.variables['volumes'], num.int) |
---|
401 | |
---|
402 | self.x = x = num.array(fin.variables['x'], num.float) |
---|
403 | self.y = y = num.array(fin.variables['y'], num.float) |
---|
404 | |
---|
405 | assert len(self.x) == len(self.y) |
---|
406 | |
---|
407 | self.xmin = num.min(x) |
---|
408 | self.xmax = num.max(x) |
---|
409 | self.ymin = num.min(y) |
---|
410 | self.ymax = num.max(y) |
---|
411 | |
---|
412 | |
---|
413 | fin.close() |
---|
414 | |
---|
415 | def read_quantities(self, frame_number=0): |
---|
416 | """ |
---|
417 | Read the quantities contained in this file. |
---|
418 | frame_number is the time index to load. |
---|
419 | """ |
---|
420 | assert frame_number >= 0 and frame_number <= self.last_frame_number |
---|
421 | |
---|
422 | self.frame_number = frame_number |
---|
423 | |
---|
424 | M = len(self.x)/3 |
---|
425 | |
---|
426 | fin = NetCDFFile(self.source, 'r') |
---|
427 | |
---|
428 | for q in filter(lambda n:n != 'x' and n != 'y' and n != 'time' and n != 'volumes' and \ |
---|
429 | '_range' not in n, \ |
---|
430 | fin.variables.keys()): |
---|
431 | if len(fin.variables[q].shape) == 1: # Not a time-varying quantity |
---|
432 | self.quantities[q] = num.ravel(num.array(fin.variables[q], num.float)).reshape(M,3) |
---|
433 | else: # Time-varying, get the current timestep data |
---|
434 | self.quantities[q] = num.array(fin.variables[q][self.frame_number], num.float).reshape(M,3) |
---|
435 | fin.close() |
---|
436 | return self.quantities |
---|
437 | |
---|
438 | def get_bounds(self): |
---|
439 | """ |
---|
440 | Get the bounding rect around the mesh. |
---|
441 | """ |
---|
442 | return [self.xmin, self.xmax, self.ymin, self.ymax] |
---|
443 | |
---|
444 | def get_last_frame_number(self): |
---|
445 | """ |
---|
446 | Return the last loaded frame index. |
---|
447 | """ |
---|
448 | return self.last_frame_number |
---|
449 | |
---|
450 | def get_time(self): |
---|
451 | """ |
---|
452 | Get time at the current frame num, in secs. |
---|
453 | """ |
---|
454 | return self.time[self.frame_number] |
---|
455 | |
---|
456 | |
---|
457 | class Write_sww: |
---|
458 | """ |
---|
459 | A class to write an SWW file. |
---|
460 | |
---|
461 | It is domain agnostic, and requires all the data to be fed in |
---|
462 | manually. |
---|
463 | """ |
---|
464 | RANGE = '_range' |
---|
465 | EXTREMA = ':extrema' |
---|
466 | |
---|
467 | def __init__(self, static_quantities, dynamic_quantities): |
---|
468 | """Initialise Write_sww with two list af quantity names: |
---|
469 | |
---|
470 | static_quantities (e.g. elevation or friction): |
---|
471 | Stored once at the beginning of the simulation in a 1D array |
---|
472 | of length number_of_points |
---|
473 | dynamic_quantities (e.g stage): |
---|
474 | Stored every timestep in a 2D array with |
---|
475 | dimensions number_of_points X number_of_timesteps |
---|
476 | |
---|
477 | """ |
---|
478 | self.static_quantities = static_quantities |
---|
479 | self.dynamic_quantities = dynamic_quantities |
---|
480 | |
---|
481 | |
---|
482 | def store_header(self, |
---|
483 | outfile, |
---|
484 | times, |
---|
485 | number_of_volumes, |
---|
486 | number_of_points, |
---|
487 | description='Generated by ANUGA', |
---|
488 | smoothing=True, |
---|
489 | order=1, |
---|
490 | sww_precision=netcdf_float32, |
---|
491 | verbose=False): |
---|
492 | """Write an SWW file header. |
---|
493 | |
---|
494 | Writes the first section of the .sww file. |
---|
495 | |
---|
496 | outfile - the open file that will be written |
---|
497 | times - A list of the time slice times OR a start time |
---|
498 | Note, if a list is given the info will be made relative. |
---|
499 | number_of_volumes - the number of triangles |
---|
500 | number_of_points - the number of vertices in the mesh |
---|
501 | """ |
---|
502 | |
---|
503 | from anuga.abstract_2d_finite_volumes.util \ |
---|
504 | import get_revision_number |
---|
505 | |
---|
506 | outfile.institution = 'Geoscience Australia' |
---|
507 | outfile.description = description |
---|
508 | |
---|
509 | # For sww compatibility |
---|
510 | if smoothing is True: |
---|
511 | # Smoothing to be depreciated |
---|
512 | outfile.smoothing = 'Yes' |
---|
513 | outfile.vertices_are_stored_uniquely = 'False' |
---|
514 | else: |
---|
515 | # Smoothing to be depreciated |
---|
516 | outfile.smoothing = 'No' |
---|
517 | outfile.vertices_are_stored_uniquely = 'True' |
---|
518 | outfile.order = order |
---|
519 | |
---|
520 | try: |
---|
521 | revision_number = get_revision_number() |
---|
522 | except: |
---|
523 | # This will be triggered if the system cannot get the SVN |
---|
524 | # revision number. |
---|
525 | revision_number = None |
---|
526 | # Allow None to be stored as a string |
---|
527 | outfile.revision_number = str(revision_number) |
---|
528 | |
---|
529 | # This is being used to seperate one number from a list. |
---|
530 | # what it is actually doing is sorting lists from numeric arrays. |
---|
531 | if isinstance(times, (list, num.ndarray)): |
---|
532 | number_of_times = len(times) |
---|
533 | times = ensure_numeric(times) |
---|
534 | if number_of_times == 0: |
---|
535 | starttime = 0 |
---|
536 | else: |
---|
537 | starttime = times[0] |
---|
538 | times = times - starttime #Store relative times |
---|
539 | else: |
---|
540 | number_of_times = 0 |
---|
541 | starttime = times |
---|
542 | |
---|
543 | |
---|
544 | outfile.starttime = starttime |
---|
545 | |
---|
546 | # dimension definitions |
---|
547 | outfile.createDimension('number_of_volumes', number_of_volumes) |
---|
548 | outfile.createDimension('number_of_vertices', 3) |
---|
549 | outfile.createDimension('numbers_in_range', 2) |
---|
550 | |
---|
551 | if smoothing is True: |
---|
552 | outfile.createDimension('number_of_points', number_of_points) |
---|
553 | # FIXME(Ole): This will cause sww files for parallel domains to |
---|
554 | # have ghost nodes stored (but not used by triangles). |
---|
555 | # To clean this up, we have to change get_vertex_values and |
---|
556 | # friends in quantity.py (but I can't be bothered right now) |
---|
557 | else: |
---|
558 | outfile.createDimension('number_of_points', 3*number_of_volumes) |
---|
559 | |
---|
560 | outfile.createDimension('number_of_timesteps', number_of_times) |
---|
561 | |
---|
562 | # variable definitions |
---|
563 | outfile.createVariable('x', sww_precision, ('number_of_points',)) |
---|
564 | outfile.createVariable('y', sww_precision, ('number_of_points',)) |
---|
565 | |
---|
566 | outfile.createVariable('volumes', netcdf_int, ('number_of_volumes', |
---|
567 | 'number_of_vertices')) |
---|
568 | |
---|
569 | # Doing sww_precision instead of Float gives cast errors. |
---|
570 | outfile.createVariable('time', netcdf_float, |
---|
571 | ('number_of_timesteps',)) |
---|
572 | |
---|
573 | |
---|
574 | for q in self.static_quantities: |
---|
575 | |
---|
576 | outfile.createVariable(q, sww_precision, |
---|
577 | ('number_of_points',)) |
---|
578 | |
---|
579 | outfile.createVariable(q + Write_sww.RANGE, sww_precision, |
---|
580 | ('numbers_in_range',)) |
---|
581 | |
---|
582 | # Initialise ranges with small and large sentinels. |
---|
583 | # If this was in pure Python we could have used None sensibly |
---|
584 | outfile.variables[q+Write_sww.RANGE][0] = max_float # Min |
---|
585 | outfile.variables[q+Write_sww.RANGE][1] = -max_float # Max |
---|
586 | |
---|
587 | #if 'elevation' in self.static_quantities: |
---|
588 | # # FIXME: Backwards compat - get rid of z once old view has retired |
---|
589 | # outfile.createVariable('z', sww_precision, |
---|
590 | # ('number_of_points',)) |
---|
591 | |
---|
592 | for q in self.dynamic_quantities: |
---|
593 | outfile.createVariable(q, sww_precision, ('number_of_timesteps', |
---|
594 | 'number_of_points')) |
---|
595 | outfile.createVariable(q + Write_sww.RANGE, sww_precision, |
---|
596 | ('numbers_in_range',)) |
---|
597 | |
---|
598 | # Initialise ranges with small and large sentinels. |
---|
599 | # If this was in pure Python we could have used None sensibly |
---|
600 | outfile.variables[q+Write_sww.RANGE][0] = max_float # Min |
---|
601 | outfile.variables[q+Write_sww.RANGE][1] = -max_float # Max |
---|
602 | |
---|
603 | if isinstance(times, (list, num.ndarray)): |
---|
604 | outfile.variables['time'][:] = times # Store time relative |
---|
605 | |
---|
606 | if verbose: |
---|
607 | log.critical('------------------------------------------------') |
---|
608 | log.critical('Statistics:') |
---|
609 | log.critical(' t in [%f, %f], len(t) == %d' |
---|
610 | % (num.min(times), num.max(times), len(times.flat))) |
---|
611 | |
---|
612 | |
---|
613 | def store_triangulation(self, |
---|
614 | outfile, |
---|
615 | points_utm, |
---|
616 | volumes, |
---|
617 | zone=None, |
---|
618 | new_origin=None, |
---|
619 | points_georeference=None, |
---|
620 | verbose=False): |
---|
621 | """ |
---|
622 | Store triangulation data in the underlying file. |
---|
623 | |
---|
624 | Stores the points and triangle indices in the sww file |
---|
625 | |
---|
626 | outfile Open handle to underlying file. |
---|
627 | |
---|
628 | new_origin georeference that the points can be set to. |
---|
629 | |
---|
630 | points_georeference The georeference of the points_utm. |
---|
631 | |
---|
632 | verbose True if this function is to be verbose. |
---|
633 | |
---|
634 | new_origin - qa georeference that the points can be set to. (Maybe |
---|
635 | do this before calling this function.) |
---|
636 | |
---|
637 | points_utm - currently a list or array of the points in UTM. |
---|
638 | points_georeference - the georeference of the points_utm |
---|
639 | |
---|
640 | How about passing new_origin and current_origin. |
---|
641 | If you get both, do a convertion from the old to the new. |
---|
642 | |
---|
643 | If you only get new_origin, the points are absolute, |
---|
644 | convert to relative |
---|
645 | |
---|
646 | if you only get the current_origin the points are relative, store |
---|
647 | as relative. |
---|
648 | |
---|
649 | if you get no georefs create a new georef based on the minimums of |
---|
650 | points_utm. (Another option would be to default to absolute) |
---|
651 | |
---|
652 | Yes, and this is done in another part of the code. |
---|
653 | Probably geospatial. |
---|
654 | |
---|
655 | If you don't supply either geo_refs, then supply a zone. If not |
---|
656 | the default zone will be used. |
---|
657 | |
---|
658 | precon: |
---|
659 | header has been called. |
---|
660 | """ |
---|
661 | |
---|
662 | number_of_points = len(points_utm) |
---|
663 | volumes = num.array(volumes) |
---|
664 | points_utm = num.array(points_utm) |
---|
665 | |
---|
666 | # Given the two geo_refs and the points, do the stuff |
---|
667 | # described in the method header |
---|
668 | # if this is needed else where, pull out as a function |
---|
669 | points_georeference = ensure_geo_reference(points_georeference) |
---|
670 | new_origin = ensure_geo_reference(new_origin) |
---|
671 | if new_origin is None and points_georeference is not None: |
---|
672 | points = points_utm |
---|
673 | geo_ref = points_georeference |
---|
674 | else: |
---|
675 | if new_origin is None: |
---|
676 | new_origin = Geo_reference(zone, min(points_utm[:,0]), |
---|
677 | min(points_utm[:,1])) |
---|
678 | points = new_origin.change_points_geo_ref(points_utm, |
---|
679 | points_georeference) |
---|
680 | geo_ref = new_origin |
---|
681 | |
---|
682 | # At this stage I need a georef and points |
---|
683 | # the points are relative to the georef |
---|
684 | geo_ref.write_NetCDF(outfile) |
---|
685 | |
---|
686 | # This will put the geo ref in the middle |
---|
687 | #geo_ref = Geo_reference(refzone,(max(x)+min(x))/2.0,(max(x)+min(y))/2.) |
---|
688 | |
---|
689 | x = points[:,0] |
---|
690 | y = points[:,1] |
---|
691 | |
---|
692 | if verbose: |
---|
693 | log.critical('------------------------------------------------') |
---|
694 | log.critical('More Statistics:') |
---|
695 | log.critical(' Extent (/lon):') |
---|
696 | log.critical(' x in [%f, %f], len(lat) == %d' |
---|
697 | % (min(x), max(x), len(x))) |
---|
698 | log.critical(' y in [%f, %f], len(lon) == %d' |
---|
699 | % (min(y), max(y), len(y))) |
---|
700 | #log.critical(' z in [%f, %f], len(z) == %d' |
---|
701 | # % (min(elevation), max(elevation), len(elevation))) |
---|
702 | log.critical('geo_ref: %s' % str(geo_ref)) |
---|
703 | log.critical('------------------------------------------------') |
---|
704 | |
---|
705 | outfile.variables['x'][:] = points[:,0] #- geo_ref.get_xllcorner() |
---|
706 | outfile.variables['y'][:] = points[:,1] #- geo_ref.get_yllcorner() |
---|
707 | outfile.variables['volumes'][:] = volumes.astype(num.int32) #On Opteron 64 |
---|
708 | |
---|
709 | |
---|
710 | def store_static_quantities(self, |
---|
711 | outfile, |
---|
712 | sww_precision=num.float32, |
---|
713 | verbose=False, |
---|
714 | **quant): |
---|
715 | """ |
---|
716 | Write the static quantity info. |
---|
717 | |
---|
718 | **quant is extra keyword arguments passed in. These must be |
---|
719 | the numpy arrays to be stored in the sww file at each timestep. |
---|
720 | |
---|
721 | The argument sww_precision allows for storing as either |
---|
722 | * single precision (default): num.float32 |
---|
723 | * double precision: num.float64 or num.float |
---|
724 | |
---|
725 | Precondition: |
---|
726 | store_triangulation and |
---|
727 | store_header have been called. |
---|
728 | """ |
---|
729 | |
---|
730 | # The dictionary quant must contain numpy arrays for each name. |
---|
731 | # These will typically be quantities from Domain such as friction |
---|
732 | # |
---|
733 | # Arrays not listed in static_quantitiues will be ignored, silently. |
---|
734 | # |
---|
735 | # This method will also write the ranges for each quantity, |
---|
736 | # e.g. stage_range, xmomentum_range and ymomentum_range |
---|
737 | for q in self.static_quantities: |
---|
738 | if not quant.has_key(q): |
---|
739 | msg = 'Values for quantity %s was not specified in ' % q |
---|
740 | msg += 'store_quantities so they cannot be stored.' |
---|
741 | raise NewQuantity, msg |
---|
742 | else: |
---|
743 | q_values = ensure_numeric(quant[q]) |
---|
744 | |
---|
745 | x = q_values.astype(sww_precision) |
---|
746 | outfile.variables[q][:] = x |
---|
747 | |
---|
748 | # This populates the _range values |
---|
749 | outfile.variables[q + Write_sww.RANGE][0] = num.min(x) |
---|
750 | outfile.variables[q + Write_sww.RANGE][1] = num.max(x) |
---|
751 | |
---|
752 | # FIXME: Hack for backwards compatibility with old viewer |
---|
753 | #if 'elevation' in self.static_quantities: |
---|
754 | # outfile.variables['z'][:] = outfile.variables['elevation'][:] |
---|
755 | |
---|
756 | |
---|
757 | |
---|
758 | |
---|
759 | |
---|
760 | def store_quantities(self, |
---|
761 | outfile, |
---|
762 | sww_precision=num.float32, |
---|
763 | slice_index=None, |
---|
764 | time=None, |
---|
765 | verbose=False, |
---|
766 | **quant): |
---|
767 | """ |
---|
768 | Write the quantity info at each timestep. |
---|
769 | |
---|
770 | **quant is extra keyword arguments passed in. These must be |
---|
771 | the numpy arrays to be stored in the sww file at each timestep. |
---|
772 | |
---|
773 | if the time array is already been built, use the slice_index |
---|
774 | to specify the index. |
---|
775 | |
---|
776 | Otherwise, use time to increase the time dimension |
---|
777 | |
---|
778 | Maybe make this general, but the viewer assumes these quantities, |
---|
779 | so maybe we don't want it general - unless the viewer is general |
---|
780 | |
---|
781 | The argument sww_precision allows for storing as either |
---|
782 | * single precision (default): num.float32 |
---|
783 | * double precision: num.float64 or num.float |
---|
784 | |
---|
785 | Precondition: |
---|
786 | store_triangulation and |
---|
787 | store_header have been called. |
---|
788 | """ |
---|
789 | |
---|
790 | if time is not None: |
---|
791 | file_time = outfile.variables['time'] |
---|
792 | slice_index = len(file_time) |
---|
793 | file_time[slice_index] = time |
---|
794 | else: |
---|
795 | slice_index = int(slice_index) # Has to be cast in case it was numpy.int |
---|
796 | |
---|
797 | # Write the named dynamic quantities |
---|
798 | # The dictionary quant must contain numpy arrays for each name. |
---|
799 | # These will typically be the conserved quantities from Domain |
---|
800 | # (Typically stage, xmomentum, ymomentum). |
---|
801 | # |
---|
802 | # Arrays not listed in dynamic_quantitiues will be ignored, silently. |
---|
803 | # |
---|
804 | # This method will also write the ranges for each quantity, |
---|
805 | # e.g. stage_range, xmomentum_range and ymomentum_range |
---|
806 | for q in self.dynamic_quantities: |
---|
807 | if not quant.has_key(q): |
---|
808 | msg = 'Values for quantity %s was not specified in ' % q |
---|
809 | msg += 'store_quantities so they cannot be stored.' |
---|
810 | raise NewQuantity, msg |
---|
811 | else: |
---|
812 | q_values = ensure_numeric(quant[q]) |
---|
813 | |
---|
814 | x = q_values.astype(sww_precision) |
---|
815 | outfile.variables[q][slice_index] = x |
---|
816 | |
---|
817 | |
---|
818 | # This updates the _range values |
---|
819 | q_range = outfile.variables[q + Write_sww.RANGE][:] |
---|
820 | q_values_min = num.min(q_values) |
---|
821 | if q_values_min < q_range[0]: |
---|
822 | outfile.variables[q + Write_sww.RANGE][0] = q_values_min |
---|
823 | q_values_max = num.max(q_values) |
---|
824 | if q_values_max > q_range[1]: |
---|
825 | outfile.variables[q + Write_sww.RANGE][1] = q_values_max |
---|
826 | |
---|
827 | ## |
---|
828 | # @brief Print the quantities in the underlying file. |
---|
829 | # @param outfile UNUSED. |
---|
830 | def verbose_quantities(self, outfile): |
---|
831 | log.critical('------------------------------------------------') |
---|
832 | log.critical('More Statistics:') |
---|
833 | for q in self.dynamic_quantities: |
---|
834 | log.critical(' %s in [%f, %f]' |
---|
835 | % (q, outfile.variables[q+Write_sww.RANGE][0], |
---|
836 | outfile.variables[q+Write_sww.RANGE][1])) |
---|
837 | log.critical('------------------------------------------------') |
---|
838 | |
---|
839 | |
---|
840 | |
---|
841 | |
---|
842 | def extent_sww(file_name): |
---|
843 | """Read in an sww file, then get its extents |
---|
844 | |
---|
845 | Input: |
---|
846 | file_name - the sww file |
---|
847 | |
---|
848 | Output: |
---|
849 | A list: [min(x),max(x),min(y),max(y),min(stage.flat),max(stage.flat)] |
---|
850 | """ |
---|
851 | |
---|
852 | from Scientific.IO.NetCDF import NetCDFFile |
---|
853 | |
---|
854 | #Get NetCDF |
---|
855 | fid = NetCDFFile(file_name, netcdf_mode_r) |
---|
856 | |
---|
857 | # Get the variables |
---|
858 | x = fid.variables['x'][:] |
---|
859 | y = fid.variables['y'][:] |
---|
860 | stage = fid.variables['stage'][:] |
---|
861 | |
---|
862 | fid.close() |
---|
863 | |
---|
864 | return [min(x), max(x), min(y), max(y), num.min(stage), num.max(stage)] |
---|
865 | |
---|
866 | |
---|
867 | def load_sww_as_domain(filename, boundary=None, t=None, |
---|
868 | fail_if_NaN=True, NaN_filler=0, |
---|
869 | verbose=False, very_verbose=False): |
---|
870 | """ |
---|
871 | Load an sww file into a domain. |
---|
872 | |
---|
873 | Usage: domain = load_sww_as_domain('file.sww', |
---|
874 | t=time (default = last time in file)) |
---|
875 | |
---|
876 | Boundary is not recommended if domain.smooth is not selected, as it |
---|
877 | uses unique coordinates, but not unique boundaries. This means that |
---|
878 | the boundary file will not be compatable with the coordinates, and will |
---|
879 | give a different final boundary, or crash. |
---|
880 | """ |
---|
881 | |
---|
882 | from Scientific.IO.NetCDF import NetCDFFile |
---|
883 | from anuga.shallow_water.shallow_water_domain import Domain |
---|
884 | |
---|
885 | # initialise NaN. |
---|
886 | NaN = 9.969209968386869e+036 |
---|
887 | |
---|
888 | if verbose: log.critical('Reading from %s' % filename) |
---|
889 | |
---|
890 | fid = NetCDFFile(filename, netcdf_mode_r) # Open existing file for read |
---|
891 | time = fid.variables['time'] # Timesteps |
---|
892 | if t is None: |
---|
893 | t = time[-1] |
---|
894 | time_interp = get_time_interp(time,t) |
---|
895 | |
---|
896 | # Get the variables as numeric arrays |
---|
897 | x = fid.variables['x'][:] # x-coordinates of vertices |
---|
898 | y = fid.variables['y'][:] # y-coordinates of vertices |
---|
899 | elevation = fid.variables['elevation'] # Elevation |
---|
900 | stage = fid.variables['stage'] # Water level |
---|
901 | xmomentum = fid.variables['xmomentum'] # Momentum in the x-direction |
---|
902 | ymomentum = fid.variables['ymomentum'] # Momentum in the y-direction |
---|
903 | |
---|
904 | starttime = fid.starttime[0] |
---|
905 | volumes = fid.variables['volumes'][:] # Connectivity |
---|
906 | coordinates = num.transpose(num.asarray([x.tolist(), y.tolist()])) |
---|
907 | # FIXME (Ole): Something like this might be better: |
---|
908 | # concatenate((x, y), axis=1) |
---|
909 | # or concatenate((x[:,num.newaxis], x[:,num.newaxis]), axis=1) |
---|
910 | |
---|
911 | conserved_quantities = [] |
---|
912 | interpolated_quantities = {} |
---|
913 | other_quantities = [] |
---|
914 | |
---|
915 | # get geo_reference |
---|
916 | try: # sww files don't have to have a geo_ref |
---|
917 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
918 | except: # AttributeError, e: |
---|
919 | geo_reference = None |
---|
920 | |
---|
921 | if verbose: log.critical(' getting quantities') |
---|
922 | |
---|
923 | for quantity in fid.variables.keys(): |
---|
924 | dimensions = fid.variables[quantity].dimensions |
---|
925 | if 'number_of_timesteps' in dimensions: |
---|
926 | conserved_quantities.append(quantity) |
---|
927 | interpolated_quantities[quantity] = \ |
---|
928 | interpolated_quantity(fid.variables[quantity][:], time_interp) |
---|
929 | else: |
---|
930 | other_quantities.append(quantity) |
---|
931 | |
---|
932 | other_quantities.remove('x') |
---|
933 | other_quantities.remove('y') |
---|
934 | #other_quantities.remove('z') |
---|
935 | other_quantities.remove('volumes') |
---|
936 | try: |
---|
937 | other_quantities.remove('stage_range') |
---|
938 | other_quantities.remove('xmomentum_range') |
---|
939 | other_quantities.remove('ymomentum_range') |
---|
940 | other_quantities.remove('elevation_range') |
---|
941 | except: |
---|
942 | pass |
---|
943 | |
---|
944 | conserved_quantities.remove('time') |
---|
945 | |
---|
946 | if verbose: log.critical(' building domain') |
---|
947 | |
---|
948 | # From domain.Domain: |
---|
949 | # domain = Domain(coordinates, volumes,\ |
---|
950 | # conserved_quantities = conserved_quantities,\ |
---|
951 | # other_quantities = other_quantities,zone=zone,\ |
---|
952 | # xllcorner=xllcorner, yllcorner=yllcorner) |
---|
953 | |
---|
954 | # From shallow_water.Domain: |
---|
955 | coordinates = coordinates.tolist() |
---|
956 | volumes = volumes.tolist() |
---|
957 | # FIXME:should this be in mesh? (peter row) |
---|
958 | if fid.smoothing == 'Yes': |
---|
959 | unique = False |
---|
960 | else: |
---|
961 | unique = True |
---|
962 | if unique: |
---|
963 | coordinates, volumes, boundary = weed(coordinates, volumes,boundary) |
---|
964 | |
---|
965 | |
---|
966 | |
---|
967 | try: |
---|
968 | domain = Domain(coordinates, volumes, boundary) |
---|
969 | except AssertionError, e: |
---|
970 | fid.close() |
---|
971 | msg = 'Domain could not be created: %s. ' \ |
---|
972 | 'Perhaps use "fail_if_NaN=False and NaN_filler = ..."' % e |
---|
973 | raise DataDomainError, msg |
---|
974 | |
---|
975 | if not boundary is None: |
---|
976 | domain.boundary = boundary |
---|
977 | |
---|
978 | domain.geo_reference = geo_reference |
---|
979 | |
---|
980 | domain.starttime = float(starttime) + float(t) |
---|
981 | domain.time = 0.0 |
---|
982 | |
---|
983 | for quantity in other_quantities: |
---|
984 | try: |
---|
985 | NaN = fid.variables[quantity].missing_value |
---|
986 | except: |
---|
987 | pass # quantity has no missing_value number |
---|
988 | X = fid.variables[quantity][:] |
---|
989 | if very_verbose: |
---|
990 | log.critical(' %s' % str(quantity)) |
---|
991 | log.critical(' NaN = %s' % str(NaN)) |
---|
992 | log.critical(' max(X)') |
---|
993 | log.critical(' %s' % str(max(X))) |
---|
994 | log.critical(' max(X)==NaN') |
---|
995 | log.critical(' %s' % str(max(X)==NaN)) |
---|
996 | log.critical('') |
---|
997 | if max(X) == NaN or min(X) == NaN: |
---|
998 | if fail_if_NaN: |
---|
999 | msg = 'quantity "%s" contains no_data entry' % quantity |
---|
1000 | raise DataMissingValuesError, msg |
---|
1001 | else: |
---|
1002 | data = (X != NaN) |
---|
1003 | X = (X*data) + (data==0)*NaN_filler |
---|
1004 | if unique: |
---|
1005 | X = num.resize(X, (len(X)/3, 3)) |
---|
1006 | domain.set_quantity(quantity, X) |
---|
1007 | # |
---|
1008 | for quantity in conserved_quantities: |
---|
1009 | try: |
---|
1010 | NaN = fid.variables[quantity].missing_value |
---|
1011 | except: |
---|
1012 | pass # quantity has no missing_value number |
---|
1013 | X = interpolated_quantities[quantity] |
---|
1014 | if very_verbose: |
---|
1015 | log.critical(' %s' % str(quantity)) |
---|
1016 | log.critical(' NaN = %s' % str(NaN)) |
---|
1017 | log.critical(' max(X)') |
---|
1018 | log.critical(' %s' % str(max(X))) |
---|
1019 | log.critical(' max(X)==NaN') |
---|
1020 | log.critical(' %s' % str(max(X)==NaN)) |
---|
1021 | log.critical('') |
---|
1022 | if max(X) == NaN or min(X) == NaN: |
---|
1023 | if fail_if_NaN: |
---|
1024 | msg = 'quantity "%s" contains no_data entry' % quantity |
---|
1025 | raise DataMissingValuesError, msg |
---|
1026 | else: |
---|
1027 | data = (X != NaN) |
---|
1028 | X = (X*data) + (data==0)*NaN_filler |
---|
1029 | if unique: |
---|
1030 | X = num.resize(X, (X.shape[0]/3, 3)) |
---|
1031 | domain.set_quantity(quantity, X) |
---|
1032 | |
---|
1033 | fid.close() |
---|
1034 | |
---|
1035 | return domain |
---|
1036 | |
---|
1037 | |
---|
1038 | def get_mesh_and_quantities_from_file(filename, |
---|
1039 | quantities=None, |
---|
1040 | verbose=False): |
---|
1041 | """Get and rebuild mesh structure and associated quantities from sww file |
---|
1042 | |
---|
1043 | Input: |
---|
1044 | filename - Name os sww file |
---|
1045 | quantities - Names of quantities to load |
---|
1046 | |
---|
1047 | Output: |
---|
1048 | mesh - instance of class Interpolate |
---|
1049 | (including mesh and interpolation functionality) |
---|
1050 | quantities - arrays with quantity values at each mesh node |
---|
1051 | time - vector of stored timesteps |
---|
1052 | |
---|
1053 | This function is used by e.g.: |
---|
1054 | get_interpolated_quantities_at_polyline_midpoints |
---|
1055 | """ |
---|
1056 | |
---|
1057 | # FIXME (Ole): Maybe refactor filefunction using this more fundamental code. |
---|
1058 | |
---|
1059 | import types |
---|
1060 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1061 | from anuga.abstract_2d_finite_volumes.neighbour_mesh import Mesh |
---|
1062 | |
---|
1063 | if verbose: log.critical('Reading from %s' % filename) |
---|
1064 | |
---|
1065 | fid = NetCDFFile(filename, netcdf_mode_r) # Open existing file for read |
---|
1066 | time = fid.variables['time'][:] # Time vector |
---|
1067 | time += fid.starttime[0] |
---|
1068 | |
---|
1069 | # Get the variables as numeric arrays |
---|
1070 | x = fid.variables['x'][:] # x-coordinates of nodes |
---|
1071 | y = fid.variables['y'][:] # y-coordinates of nodes |
---|
1072 | elevation = fid.variables['elevation'][:] # Elevation |
---|
1073 | stage = fid.variables['stage'][:] # Water level |
---|
1074 | xmomentum = fid.variables['xmomentum'][:] # Momentum in the x-direction |
---|
1075 | ymomentum = fid.variables['ymomentum'][:] # Momentum in the y-direction |
---|
1076 | |
---|
1077 | # Mesh (nodes (Mx2), triangles (Nx3)) |
---|
1078 | nodes = num.concatenate((x[:,num.newaxis], y[:,num.newaxis]), axis=1) |
---|
1079 | triangles = fid.variables['volumes'][:] |
---|
1080 | |
---|
1081 | # Get geo_reference |
---|
1082 | try: |
---|
1083 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
1084 | except: #AttributeError, e: |
---|
1085 | # Sww files don't have to have a geo_ref |
---|
1086 | geo_reference = None |
---|
1087 | |
---|
1088 | if verbose: log.critical(' building mesh from sww file %s' % filename) |
---|
1089 | |
---|
1090 | boundary = None |
---|
1091 | |
---|
1092 | #FIXME (Peter Row): Should this be in mesh? |
---|
1093 | if fid.smoothing != 'Yes': |
---|
1094 | nodes = nodes.tolist() |
---|
1095 | triangles = triangles.tolist() |
---|
1096 | nodes, triangles, boundary = weed(nodes, triangles, boundary) |
---|
1097 | |
---|
1098 | try: |
---|
1099 | mesh = Mesh(nodes, triangles, boundary, geo_reference=geo_reference) |
---|
1100 | except AssertionError, e: |
---|
1101 | fid.close() |
---|
1102 | msg = 'Domain could not be created: %s. "' % e |
---|
1103 | raise DataDomainError, msg |
---|
1104 | |
---|
1105 | quantities = {} |
---|
1106 | quantities['elevation'] = elevation |
---|
1107 | quantities['stage'] = stage |
---|
1108 | quantities['xmomentum'] = xmomentum |
---|
1109 | quantities['ymomentum'] = ymomentum |
---|
1110 | |
---|
1111 | fid.close() |
---|
1112 | |
---|
1113 | return mesh, quantities, time |
---|
1114 | |
---|
1115 | |
---|
1116 | def get_time_interp(time, t=None): |
---|
1117 | """Finds the ratio and index for time interpolation. |
---|
1118 | time is an array of time steps |
---|
1119 | t is the sample time. |
---|
1120 | returns a tuple containing index into time, and ratio |
---|
1121 | """ |
---|
1122 | if t is None: |
---|
1123 | t=time[-1] |
---|
1124 | index = -1 |
---|
1125 | ratio = 0. |
---|
1126 | else: |
---|
1127 | T = time |
---|
1128 | tau = t |
---|
1129 | index=0 |
---|
1130 | msg = 'Time interval derived from file %s [%s:%s]' \ |
---|
1131 | % ('FIXMEfilename', T[0], T[-1]) |
---|
1132 | msg += ' does not match model time: %s' % tau |
---|
1133 | if tau < time[0]: raise DataTimeError, msg |
---|
1134 | if tau > time[-1]: raise DataTimeError, msg |
---|
1135 | while tau > time[index]: index += 1 |
---|
1136 | while tau < time[index]: index -= 1 |
---|
1137 | if tau == time[index]: |
---|
1138 | #Protect against case where tau == time[-1] (last time) |
---|
1139 | # - also works in general when tau == time[i] |
---|
1140 | ratio = 0 |
---|
1141 | else: |
---|
1142 | #t is now between index and index+1 |
---|
1143 | ratio = (tau - time[index])/(time[index+1] - time[index]) |
---|
1144 | |
---|
1145 | return (index, ratio) |
---|
1146 | |
---|
1147 | |
---|
1148 | |
---|
1149 | ## |
---|
1150 | # @brief Interpolate a quantity wrt time. |
---|
1151 | # @param saved_quantity The quantity to interpolate. |
---|
1152 | # @param time_interp (index, ratio) |
---|
1153 | # @return A vector of interpolated values. |
---|
1154 | def interpolated_quantity(saved_quantity, time_interp): |
---|
1155 | '''Given an index and ratio, interpolate quantity with respect to time.''' |
---|
1156 | |
---|
1157 | index, ratio = time_interp |
---|
1158 | |
---|
1159 | Q = saved_quantity |
---|
1160 | |
---|
1161 | if ratio > 0: |
---|
1162 | q = (1-ratio)*Q[index] + ratio*Q[index+1] |
---|
1163 | else: |
---|
1164 | q = Q[index] |
---|
1165 | |
---|
1166 | #Return vector of interpolated values |
---|
1167 | return q |
---|
1168 | |
---|
1169 | |
---|
1170 | def weed(coordinates, volumes, boundary=None): |
---|
1171 | """ Excise all duplicate points. |
---|
1172 | """ |
---|
1173 | if isinstance(coordinates, num.ndarray): |
---|
1174 | coordinates = coordinates.tolist() |
---|
1175 | if isinstance(volumes, num.ndarray): |
---|
1176 | volumes = volumes.tolist() |
---|
1177 | |
---|
1178 | unique = False |
---|
1179 | point_dict = {} |
---|
1180 | same_point = {} |
---|
1181 | for i in range(len(coordinates)): |
---|
1182 | point = tuple(coordinates[i]) |
---|
1183 | if point_dict.has_key(point): |
---|
1184 | unique = True |
---|
1185 | same_point[i] = point |
---|
1186 | #to change all point i references to point j |
---|
1187 | else: |
---|
1188 | point_dict[point] = i |
---|
1189 | same_point[i] = point |
---|
1190 | |
---|
1191 | coordinates = [] |
---|
1192 | i = 0 |
---|
1193 | for point in point_dict.keys(): |
---|
1194 | point = tuple(point) |
---|
1195 | coordinates.append(list(point)) |
---|
1196 | point_dict[point] = i |
---|
1197 | i += 1 |
---|
1198 | |
---|
1199 | for volume in volumes: |
---|
1200 | for i in range(len(volume)): |
---|
1201 | index = volume[i] |
---|
1202 | if index > -1: |
---|
1203 | volume[i] = point_dict[same_point[index]] |
---|
1204 | |
---|
1205 | new_boundary = {} |
---|
1206 | if not boundary is None: |
---|
1207 | for segment in boundary.keys(): |
---|
1208 | point0 = point_dict[same_point[segment[0]]] |
---|
1209 | point1 = point_dict[same_point[segment[1]]] |
---|
1210 | label = boundary[segment] |
---|
1211 | #FIXME should the bounday attributes be concaterated |
---|
1212 | #('exterior, pond') or replaced ('pond')(peter row) |
---|
1213 | |
---|
1214 | if new_boundary.has_key((point0, point1)): |
---|
1215 | new_boundary[(point0,point1)] = new_boundary[(point0, point1)] |
---|
1216 | |
---|
1217 | elif new_boundary.has_key((point1, point0)): |
---|
1218 | new_boundary[(point1,point0)] = new_boundary[(point1, point0)] |
---|
1219 | else: new_boundary[(point0, point1)] = label |
---|
1220 | |
---|
1221 | boundary = new_boundary |
---|
1222 | |
---|
1223 | return coordinates, volumes, boundary |
---|
1224 | |
---|
1225 | |
---|
1226 | |
---|