1 | # external modules |
---|
2 | import numpy as num |
---|
3 | |
---|
4 | # ANUGA modules |
---|
5 | import anuga.utilities.log as log |
---|
6 | from anuga.config import netcdf_mode_r, netcdf_mode_w, netcdf_mode_a, \ |
---|
7 | netcdf_float |
---|
8 | |
---|
9 | ## |
---|
10 | # @brief Convert DEM data to PTS data. |
---|
11 | # @param basename_in Stem of input filename. |
---|
12 | # @param basename_out Stem of output filename. |
---|
13 | # @param easting_min |
---|
14 | # @param easting_max |
---|
15 | # @param northing_min |
---|
16 | # @param northing_max |
---|
17 | # @param use_cache |
---|
18 | # @param verbose |
---|
19 | # @return |
---|
20 | def dem2pts(basename_in, basename_out=None, |
---|
21 | easting_min=None, easting_max=None, |
---|
22 | northing_min=None, northing_max=None, |
---|
23 | use_cache=False, verbose=False,): |
---|
24 | """Read Digitial Elevation model from the following NetCDF format (.dem) |
---|
25 | |
---|
26 | Example: |
---|
27 | |
---|
28 | ncols 3121 |
---|
29 | nrows 1800 |
---|
30 | xllcorner 722000 |
---|
31 | yllcorner 5893000 |
---|
32 | cellsize 25 |
---|
33 | NODATA_value -9999 |
---|
34 | 138.3698 137.4194 136.5062 135.5558 .......... |
---|
35 | |
---|
36 | Convert to NetCDF pts format which is |
---|
37 | |
---|
38 | points: (Nx2) float array |
---|
39 | elevation: N float array |
---|
40 | """ |
---|
41 | |
---|
42 | kwargs = {'basename_out': basename_out, |
---|
43 | 'easting_min': easting_min, |
---|
44 | 'easting_max': easting_max, |
---|
45 | 'northing_min': northing_min, |
---|
46 | 'northing_max': northing_max, |
---|
47 | 'verbose': verbose} |
---|
48 | |
---|
49 | if use_cache is True: |
---|
50 | from caching import cache |
---|
51 | result = cache(_dem2pts, basename_in, kwargs, |
---|
52 | dependencies = [basename_in + '.dem'], |
---|
53 | verbose = verbose) |
---|
54 | |
---|
55 | else: |
---|
56 | result = apply(_dem2pts, [basename_in], kwargs) |
---|
57 | |
---|
58 | return result |
---|
59 | |
---|
60 | |
---|
61 | ## |
---|
62 | # @brief |
---|
63 | # @param basename_in |
---|
64 | # @param basename_out |
---|
65 | # @param verbose |
---|
66 | # @param easting_min |
---|
67 | # @param easting_max |
---|
68 | # @param northing_min |
---|
69 | # @param northing_max |
---|
70 | def _dem2pts(basename_in, basename_out=None, verbose=False, |
---|
71 | easting_min=None, easting_max=None, |
---|
72 | northing_min=None, northing_max=None): |
---|
73 | """Read Digitial Elevation model from the following NetCDF format (.dem) |
---|
74 | |
---|
75 | Internal function. See public function dem2pts for details. |
---|
76 | """ |
---|
77 | |
---|
78 | # FIXME: Can this be written feasibly using write_pts? |
---|
79 | |
---|
80 | import os |
---|
81 | from Scientific.IO.NetCDF import NetCDFFile |
---|
82 | |
---|
83 | root = basename_in |
---|
84 | |
---|
85 | # Get NetCDF |
---|
86 | infile = NetCDFFile(root + '.dem', netcdf_mode_r) |
---|
87 | |
---|
88 | if verbose: log.critical('Reading DEM from %s' % (root + '.dem')) |
---|
89 | |
---|
90 | ncols = infile.ncols[0] |
---|
91 | nrows = infile.nrows[0] |
---|
92 | xllcorner = infile.xllcorner[0] # Easting of lower left corner |
---|
93 | yllcorner = infile.yllcorner[0] # Northing of lower left corner |
---|
94 | cellsize = infile.cellsize[0] |
---|
95 | NODATA_value = infile.NODATA_value[0] |
---|
96 | dem_elevation = infile.variables['elevation'] |
---|
97 | |
---|
98 | zone = infile.zone[0] |
---|
99 | false_easting = infile.false_easting[0] |
---|
100 | false_northing = infile.false_northing[0] |
---|
101 | |
---|
102 | # Text strings |
---|
103 | projection = infile.projection |
---|
104 | datum = infile.datum |
---|
105 | units = infile.units |
---|
106 | |
---|
107 | # Get output file |
---|
108 | if basename_out == None: |
---|
109 | ptsname = root + '.pts' |
---|
110 | else: |
---|
111 | ptsname = basename_out + '.pts' |
---|
112 | |
---|
113 | if verbose: log.critical('Store to NetCDF file %s' % ptsname) |
---|
114 | |
---|
115 | # NetCDF file definition |
---|
116 | outfile = NetCDFFile(ptsname, netcdf_mode_w) |
---|
117 | |
---|
118 | # Create new file |
---|
119 | outfile.institution = 'Geoscience Australia' |
---|
120 | outfile.description = 'NetCDF pts format for compact and portable ' \ |
---|
121 | 'storage of spatial point data' |
---|
122 | |
---|
123 | # Assign default values |
---|
124 | if easting_min is None: easting_min = xllcorner |
---|
125 | if easting_max is None: easting_max = xllcorner + ncols*cellsize |
---|
126 | if northing_min is None: northing_min = yllcorner |
---|
127 | if northing_max is None: northing_max = yllcorner + nrows*cellsize |
---|
128 | |
---|
129 | # Compute offsets to update georeferencing |
---|
130 | easting_offset = xllcorner - easting_min |
---|
131 | northing_offset = yllcorner - northing_min |
---|
132 | |
---|
133 | # Georeferencing |
---|
134 | outfile.zone = zone |
---|
135 | outfile.xllcorner = easting_min # Easting of lower left corner |
---|
136 | outfile.yllcorner = northing_min # Northing of lower left corner |
---|
137 | outfile.false_easting = false_easting |
---|
138 | outfile.false_northing = false_northing |
---|
139 | |
---|
140 | outfile.projection = projection |
---|
141 | outfile.datum = datum |
---|
142 | outfile.units = units |
---|
143 | |
---|
144 | # Grid info (FIXME: probably not going to be used, but heck) |
---|
145 | outfile.ncols = ncols |
---|
146 | outfile.nrows = nrows |
---|
147 | |
---|
148 | dem_elevation_r = num.reshape(dem_elevation, (nrows, ncols)) |
---|
149 | totalnopoints = nrows*ncols |
---|
150 | |
---|
151 | # Calculating number of NODATA_values for each row in clipped region |
---|
152 | # FIXME: use array operations to do faster |
---|
153 | nn = 0 |
---|
154 | k = 0 |
---|
155 | i1_0 = 0 |
---|
156 | j1_0 = 0 |
---|
157 | thisj = 0 |
---|
158 | thisi = 0 |
---|
159 | for i in range(nrows): |
---|
160 | y = (nrows-i-1)*cellsize + yllcorner |
---|
161 | for j in range(ncols): |
---|
162 | x = j*cellsize + xllcorner |
---|
163 | if easting_min <= x <= easting_max \ |
---|
164 | and northing_min <= y <= northing_max: |
---|
165 | thisj = j |
---|
166 | thisi = i |
---|
167 | if dem_elevation_r[i,j] == NODATA_value: |
---|
168 | nn += 1 |
---|
169 | |
---|
170 | if k == 0: |
---|
171 | i1_0 = i |
---|
172 | j1_0 = j |
---|
173 | |
---|
174 | k += 1 |
---|
175 | |
---|
176 | index1 = j1_0 |
---|
177 | index2 = thisj |
---|
178 | |
---|
179 | # Dimension definitions |
---|
180 | nrows_in_bounding_box = int(round((northing_max-northing_min)/cellsize)) |
---|
181 | ncols_in_bounding_box = int(round((easting_max-easting_min)/cellsize)) |
---|
182 | |
---|
183 | clippednopoints = (thisi+1-i1_0)*(thisj+1-j1_0) |
---|
184 | nopoints = clippednopoints-nn |
---|
185 | |
---|
186 | clipped_dem_elev = dem_elevation_r[i1_0:thisi+1,j1_0:thisj+1] |
---|
187 | |
---|
188 | if verbose: |
---|
189 | log.critical('There are %d values in the elevation' % totalnopoints) |
---|
190 | log.critical('There are %d values in the clipped elevation' |
---|
191 | % clippednopoints) |
---|
192 | log.critical('There are %d NODATA_values in the clipped elevation' % nn) |
---|
193 | |
---|
194 | outfile.createDimension('number_of_points', nopoints) |
---|
195 | outfile.createDimension('number_of_dimensions', 2) #This is 2d data |
---|
196 | |
---|
197 | # Variable definitions |
---|
198 | outfile.createVariable('points', netcdf_float, ('number_of_points', |
---|
199 | 'number_of_dimensions')) |
---|
200 | outfile.createVariable('elevation', netcdf_float, ('number_of_points',)) |
---|
201 | |
---|
202 | # Get handles to the variables |
---|
203 | points = outfile.variables['points'] |
---|
204 | elevation = outfile.variables['elevation'] |
---|
205 | |
---|
206 | lenv = index2-index1+1 |
---|
207 | |
---|
208 | # Store data |
---|
209 | global_index = 0 |
---|
210 | # for i in range(nrows): |
---|
211 | for i in range(i1_0, thisi+1, 1): |
---|
212 | if verbose and i % ((nrows+10)/10) == 0: |
---|
213 | log.critical('Processing row %d of %d' % (i, nrows)) |
---|
214 | |
---|
215 | lower_index = global_index |
---|
216 | |
---|
217 | v = dem_elevation_r[i,index1:index2+1] |
---|
218 | no_NODATA = num.sum(v == NODATA_value) |
---|
219 | if no_NODATA > 0: |
---|
220 | newcols = lenv - no_NODATA # ncols_in_bounding_box - no_NODATA |
---|
221 | else: |
---|
222 | newcols = lenv # ncols_in_bounding_box |
---|
223 | |
---|
224 | telev = num.zeros(newcols, num.float) |
---|
225 | tpoints = num.zeros((newcols, 2), num.float) |
---|
226 | |
---|
227 | local_index = 0 |
---|
228 | |
---|
229 | y = (nrows-i-1)*cellsize + yllcorner |
---|
230 | #for j in range(ncols): |
---|
231 | for j in range(j1_0,index2+1,1): |
---|
232 | x = j*cellsize + xllcorner |
---|
233 | if easting_min <= x <= easting_max \ |
---|
234 | and northing_min <= y <= northing_max \ |
---|
235 | and dem_elevation_r[i,j] != NODATA_value: |
---|
236 | tpoints[local_index, :] = [x-easting_min, y-northing_min] |
---|
237 | telev[local_index] = dem_elevation_r[i, j] |
---|
238 | global_index += 1 |
---|
239 | local_index += 1 |
---|
240 | |
---|
241 | upper_index = global_index |
---|
242 | |
---|
243 | if upper_index == lower_index + newcols: |
---|
244 | points[lower_index:upper_index, :] = tpoints |
---|
245 | elevation[lower_index:upper_index] = telev |
---|
246 | |
---|
247 | assert global_index == nopoints, 'index not equal to number of points' |
---|
248 | |
---|
249 | infile.close() |
---|
250 | outfile.close() |
---|
251 | |
---|