source: trunk/anuga_core/source/anuga/geometry/polygon.py @ 9213

Last change on this file since 9213 was 9213, checked in by steve, 10 years ago

Adding in some test_all.py

File size: 35.9 KB
Line 
1#!/usr/bin/env python
2
3"""Polygon manipulations"""
4
5import numpy as num
6import math
7
8from anuga.utilities.numerical_tools import ensure_numeric
9from anuga.geospatial_data.geospatial_data import ensure_absolute, \
10                                                    Geospatial_data
11import anuga.utilities.log as log
12
13from aabb import AABB
14
15def point_on_line(point, line, rtol=1.0e-5, atol=1.0e-8):
16    """Determine whether a point is on a line segment
17
18    Input:
19        point is given by [x, y]
20        line is given by [x0, y0], [x1, y1]] or
21        the equivalent 2x2 numeric array with each row corresponding to a point.
22
23    Output:
24
25    Note: Line can be degenerate and function still works to discern coinciding
26          points from non-coinciding.
27    """
28
29    point = ensure_numeric(point)
30    line = ensure_numeric(line)
31
32    res = _point_on_line(point[0], point[1],
33                         line[0, 0], line[0, 1],
34                         line[1, 0], line[1, 1],
35                         rtol, atol)
36
37    return bool(res)
38
39
40######
41# Result functions used in intersection() below for collinear lines.
42# (p0,p1) defines line 0, (p2,p3) defines line 1.
43######
44
45# result functions for possible states
46def lines_dont_coincide(p0, p1, p2, p3):
47    return (3, None)
48   
49def lines_0_fully_included_in_1(p0, p1, p2, p3):
50    return (2, num.array([p0, p1]))
51   
52def lines_1_fully_included_in_0(p0, p1, p2, p3):
53    return (2, num.array([p2, p3]))
54   
55def lines_overlap_same_direction(p0, p1, p2, p3):
56    return (2, num.array([p0, p3]))
57   
58def lines_overlap_same_direction2(p0, p1, p2, p3):
59    return (2, num.array([p2, p1]))
60   
61def lines_overlap_opposite_direction(p0, p1, p2, p3):
62    return (2, num.array([p0, p2]))
63   
64def lines_overlap_opposite_direction2(p0, p1, p2, p3):
65    return (2, num.array([p3, p1]))
66
67# this function called when an impossible state is found
68def lines_error(p1, p2, p3, p4):
69    raise RuntimeError, ('INTERNAL ERROR: p1=%s, p2=%s, p3=%s, p4=%s'
70                         % (str(p1), str(p2), str(p3), str(p4)))
71
72collinear_result = {
73# line 0 starts on 1, 0 ends 1, 1 starts 0, 1 ends 0
74#       0s1    0e1    1s0    1e0   
75       (False, False, False, False): lines_dont_coincide,
76       (False, False, False, True ): lines_error,
77       (False, False, True,  False): lines_error,
78       (False, False, True,  True ): lines_1_fully_included_in_0,
79       (False, True,  False, False): lines_error,
80       (False, True,  False, True ): lines_overlap_opposite_direction2,
81       (False, True,  True,  False): lines_overlap_same_direction2,
82       (False, True,  True,  True ): lines_1_fully_included_in_0,
83       (True,  False, False, False): lines_error,
84       (True,  False, False, True ): lines_overlap_same_direction,
85       (True,  False, True,  False): lines_overlap_opposite_direction,
86       (True,  False, True,  True ): lines_1_fully_included_in_0,
87       (True,  True,  False, False): lines_0_fully_included_in_1,
88       (True,  True,  False, True ): lines_0_fully_included_in_1,
89       (True,  True,  True,  False): lines_0_fully_included_in_1,
90       (True,  True,  True,  True ): lines_0_fully_included_in_1
91   }
92
93def intersection(line0, line1, rtol=1.0e-5, atol=1.0e-8):
94    """Returns intersecting point between two line segments.
95
96    However, if parallel lines coincide partly (i.e. share a common segment),
97    the line segment where lines coincide is returned
98
99    Inputs:
100        line0, line1: Each defined by two end points as in: [[x0, y0], [x1, y1]]
101                      A line can also be a 2x2 numpy array with each row
102                      corresponding to a point.
103
104    Output:
105        status, value - where status and value is interpreted as follows:
106        status == 0: no intersection, value set to None.
107        status == 1: intersection point found and returned in value as [x,y].
108        status == 2: Collinear overlapping lines found.
109                     Value takes the form [[x0,y0], [x1,y1]].
110        status == 3: Collinear non-overlapping lines. Value set to None.
111        status == 4: Lines are parallel. Value set to None.
112    """
113
114    # FIXME (Ole): Write this in C
115
116    line0 = ensure_numeric(line0, num.float)
117    line1 = ensure_numeric(line1, num.float)
118
119    x0 = line0[0, 0]; y0 = line0[0, 1]
120    x1 = line0[1, 0]; y1 = line0[1, 1]
121
122    x2 = line1[0, 0]; y2 = line1[0, 1]
123    x3 = line1[1, 0]; y3 = line1[1, 1]
124
125    denom = (y3-y2)*(x1-x0) - (x3-x2)*(y1-y0)
126    u0 = (x3-x2)*(y0-y2) - (y3-y2)*(x0-x2)
127    u1 = (x2-x0)*(y1-y0) - (y2-y0)*(x1-x0)
128
129    if num.allclose(denom, 0.0, rtol=rtol, atol=atol):
130        # Lines are parallel - check if they are collinear
131        if num.allclose([u0, u1], 0.0, rtol=rtol, atol=atol):
132            # We now know that the lines are collinear
133            state_tuple = (point_on_line([x0, y0], line1, rtol=rtol, atol=atol),
134                           point_on_line([x1, y1], line1, rtol=rtol, atol=atol),
135                           point_on_line([x2, y2], line0, rtol=rtol, atol=atol),
136                           point_on_line([x3, y3], line0, rtol=rtol, atol=atol))
137
138            return collinear_result[state_tuple]([x0, y0], [x1, y1],
139                                                 [x2, y2], [x3, y3])
140        else:
141            # Lines are parallel but aren't collinear
142            return 4, None #FIXME (Ole): Add distance here instead of None
143    else:
144        # Lines are not parallel, check if they intersect
145        u0 = u0/denom
146        u1 = u1/denom
147
148        x = x0 + u0*(x1-x0)
149        y = y0 + u0*(y1-y0)
150
151        # Sanity check - can be removed to speed up if needed
152        assert num.allclose(x, x2 + u1*(x3-x2), rtol=rtol, atol=atol)
153        assert num.allclose(y, y2 + u1*(y3-y2), rtol=rtol, atol=atol)
154
155        # Check if point found lies within given line segments
156        if 0.0 <= u0 <= 1.0 and 0.0 <= u1 <= 1.0:
157            # We have intersection
158            return 1, num.array([x, y])
159        else:
160            # No intersection
161            return 0, None
162
163def NEW_C_intersection(line0, line1):
164    """Returns intersecting point between two line segments.
165
166    However, if parallel lines coincide partly (i.e. share a common segment),
167    the line segment where lines coincide is returned
168
169    Inputs:
170        line0, line1: Each defined by two end points as in: [[x0, y0], [x1, y1]]
171                      A line can also be a 2x2 numpy array with each row
172                      corresponding to a point.
173
174    Output:
175        status, value - where status and value is interpreted as follows:
176        status == 0: no intersection, value set to None.
177        status == 1: intersection point found and returned in value as [x,y].
178        status == 2: Collinear overlapping lines found.
179                     Value takes the form [[x0,y0], [x1,y1]].
180        status == 3: Collinear non-overlapping lines. Value set to None.
181        status == 4: Lines are parallel. Value set to None.
182    """
183
184    line0 = ensure_numeric(line0, num.float)
185    line1 = ensure_numeric(line1, num.float)
186
187    status, value = _intersection(line0[0, 0], line0[0, 1],
188                                  line0[1, 0], line0[1, 1],
189                                  line1[0, 0], line1[0, 1],
190                                  line1[1, 0], line1[1, 1])
191
192    return status, value
193
194def polygon_overlap(triangles, polygon, verbose=False):
195    """Determine if a polygon and triangle overlap
196
197    """
198    polygon = ensure_numeric(polygon)
199    triangles = ensure_numeric(triangles)
200   
201    M = triangles.shape[0]/3  # Number of triangles
202
203    indices = num.zeros(M, num.int)
204
205    count = _polygon_overlap(polygon, triangles, indices)
206
207    if verbose:
208        log.critical('Found %d triangles (out of %d) that polygon' % (count, M))
209
210    return indices[:count]
211   
212def not_polygon_overlap(triangles, polygon, verbose=False):
213    """Determine if a polygon and triangle overlap
214
215    """
216    polygon = ensure_numeric(polygon)
217    triangles = ensure_numeric(triangles)
218   
219    M = triangles.shape[0]/3  # Number of triangles
220
221    indices = num.zeros(M, num.int)
222
223    count = _polygon_overlap(polygon, triangles, indices)
224
225    if verbose:
226        log.critical('Found %d triangles (out of %d) that polygon' % (count, M))
227
228    return indices[count:]   
229
230def line_intersect(triangles, line, verbose=False):
231    """Determine which of a list of trianglee intersect a line
232
233    """
234    line = ensure_numeric(line)
235    triangles = ensure_numeric(triangles)
236   
237    M = triangles.shape[0]/3  # Number of triangles
238
239    indices = num.zeros(M, num.int)
240
241    count = _line_intersect(line, triangles, indices)
242
243    if verbose:
244        log.critical('Found %d triangles (out of %d) that intersect line' % (count, M))
245
246    return indices[:count]
247
248
249def line_length(line):
250    """Determine the length of the line
251    """
252   
253    l12 = line[1]-line[0]
254
255    return math.sqrt(num.dot(l12,l12))
256   
257def not_line_intersect(triangles, line, verbose=False):
258    """Determine if a polyline and triangle overlap
259
260    """
261    line = ensure_numeric(line)
262    triangles = ensure_numeric(triangles)
263   
264    M = triangles.shape[0]/3  # Number of triangles
265
266    indices = num.zeros(M, num.int)
267
268    count = _line_intersect(line, triangles, indices)
269
270    if verbose:
271        log.critical('Found %d triangles (out of %d) that intersect the line' % (count, M))
272
273    return indices[count:]   
274   
275
276def is_inside_triangle(point, triangle, 
277                       closed=True, 
278                       rtol=1.0e-12,
279                       atol=1.0e-12,                     
280                       check_inputs=True):
281    """Determine if one point is inside a triangle
282   
283    This uses the barycentric method:
284   
285    Triangle is A, B, C
286    Point P can then be written as
287   
288    P = A + alpha * (C-A) + beta * (B-A)
289    or if we let
290    v=P-A, v0=C-A, v1=B-A   
291   
292    v = alpha*v0 + beta*v1
293
294    Dot this equation by v0 and v1 to get two:
295   
296    dot(v0, v) = alpha*dot(v0, v0) + beta*dot(v0, v1)
297    dot(v1, v) = alpha*dot(v1, v0) + beta*dot(v1, v1)   
298   
299    or if a_ij = dot(v_i, v_j) and b_i = dot(v_i, v)
300    the matrix equation:
301   
302    a_00 a_01   alpha     b_0
303                       =
304    a_10 a_11   beta      b_1
305   
306    Solving for alpha and beta yields:
307   
308    alpha = (b_0*a_11 - b_1*a_01)/denom
309    beta =  (b_1*a_00 - b_0*a_10)/denom
310   
311    with denom = a_11*a_00 - a_10*a_01
312   
313    The point is in the triangle whenever
314    alpha and beta and their sums are in the unit interval.
315   
316    rtol and atol will determine how close the point has to be to the edge
317    before it is deemed to be on the edge.
318   
319    """
320
321    triangle = ensure_numeric(triangle)       
322    point = ensure_numeric(point, num.float)   
323   
324    if check_inputs is True:
325        msg = 'is_inside_triangle must be invoked with one point only'
326        assert num.allclose(point.shape, [2]), msg
327   
328   
329    # Use C-implementation
330    return bool(_is_inside_triangle(point, triangle, int(closed), rtol, atol))
331   
332def is_complex(polygon, closed=True, verbose=False):
333    """Check if a polygon is complex (self-intersecting).
334       Uses a sweep algorithm that is O(n^2) in the worst case, but
335       for most normal looking polygons it'll be O(n log n).
336
337       polygon is a list of points that define a closed polygon.
338       verbose will print a list of the intersection points if true
339       
340       Return True if polygon is complex.
341    """           
342           
343    def key_xpos(item):
344        """ Return the x coord out of the passed point for sorting key. """
345        return (item[0][0])
346   
347    def segments_joined(seg0, seg1):
348        """ See if there are identical segments in the 2 lists. """
349        for i in seg0:
350            for j in seg1:   
351                if i == j: return True
352        return False
353       
354    polygon = ensure_numeric(polygon, num.float)
355
356    # build a list of discrete segments from the polygon
357    unsorted_segs = []
358    for i in range(0, len(polygon)-1):
359        unsorted_segs.append([list(polygon[i]), list(polygon[i+1])])
360
361    if closed:
362        unsorted_segs.append([list(polygon[0]), list(polygon[-1])])
363   
364    # all segments must point in same direction
365    for val in unsorted_segs:
366        if val[0][0] > val[1][0]:
367            val[0], val[1] = val[1], val[0]   
368           
369    l_x = sorted(unsorted_segs, key=key_xpos)
370
371    comparisons = 0
372   
373    # loop through, only comparing lines that partially overlap in x
374    for index, leftmost in enumerate(l_x):
375        cmp = index+1
376        while cmp < len(l_x) and leftmost[1][0] > l_x[cmp][0][0]:
377            if not segments_joined(leftmost, l_x[cmp]):
378                (type, point) = intersection(leftmost, l_x[cmp])
379                comparisons += 1
380                if type != 0 and type != 4 and type != 3 or (type == 2 and list(point[0]) !=\
381                                                list(point[1])):
382                    if verbose:
383                        print 'Self-intersecting polygon found, type ', type
384                        print 'point', point,
385                        print 'vertices: ', leftmost, ' - ', l_x[cmp] 
386                    return True           
387            cmp += 1
388       
389    return False
390   
391
392def is_inside_polygon(point, polygon, closed=True, verbose=False):
393    """Determine if one point is inside a polygon
394
395    See inside_polygon for more details
396    """
397
398    indices = inside_polygon(point, polygon, closed, verbose)
399
400    if indices.shape[0] == 1:
401        return True
402    elif indices.shape[0] == 0:
403        return False
404    else:
405        msg = 'is_inside_polygon must be invoked with one point only'
406        raise Exception(msg)
407
408def inside_polygon(points, polygon, closed=True, verbose=False):
409    """Determine points inside a polygon
410
411       Functions inside_polygon and outside_polygon have been defined in
412       terms of separate_by_polygon which will put all inside indices in
413       the first part of the indices array and outside indices in the last
414
415       See separate_points_by_polygon for documentation
416
417       points and polygon can be a geospatial instance,
418       a list or a numeric array
419    """
420
421    try:
422        points = ensure_absolute(points)
423    except NameError, err:
424        raise NameError, err
425    except:
426        # If this fails it is going to be because the points can't be
427        # converted to a numeric array.
428        msg = 'Points could not be converted to numeric array' 
429        raise Exception, msg
430
431
432    try:
433        polygon = ensure_absolute(polygon)
434    except NameError, e:
435        raise NameError, e
436    except:
437        # If this fails it is going to be because the points can't be
438        # converted to a numeric array.
439        msg = ('Polygon %s could not be converted to numeric array'
440               % (str(polygon)))
441        raise Exception, msg
442
443    if len(points.shape) == 1:
444        # Only one point was passed in. Convert to array of points
445        points = num.reshape(points, (1,2))
446
447    indices, count = separate_points_by_polygon(points, polygon,
448                                                closed=closed,
449                                                verbose=verbose)
450
451    # Return indices of points inside polygon
452    return indices[:count]
453
454def is_outside_polygon(point, polygon, closed=True, verbose=False,
455                       points_geo_ref=None, polygon_geo_ref=None):
456    """Determine if one point is outside a polygon
457
458    See outside_polygon for more details
459    """
460
461    indices = outside_polygon(point, polygon, closed, verbose)
462
463    if indices.shape[0] == 1:
464        return True
465    elif indices.shape[0] == 0:
466        return False
467    else:
468        msg = 'is_outside_polygon must be invoked with one point only'
469        raise Exception, msg
470
471def outside_polygon(points, polygon, closed = True, verbose = False):
472    """Determine points outside a polygon
473
474       Functions inside_polygon and outside_polygon have been defined in
475       terms of separate_by_polygon which will put all inside indices in
476       the first part of the indices array and outside indices in the last
477
478       See separate_points_by_polygon for documentation
479    """
480
481    try:
482        points = ensure_numeric(points, num.float)
483    except NameError, e:
484        raise NameError, e
485    except:
486        msg = 'Points could not be converted to numeric array'
487        raise Exception, msg
488
489    try:
490        polygon = ensure_numeric(polygon, num.float)
491    except NameError, e:
492        raise NameError, e
493    except:
494        msg = 'Polygon could not be converted to numeric array'
495        raise Exception, msg
496
497    if len(points.shape) == 1:
498        # Only one point was passed in. Convert to array of points
499        points = num.reshape(points, (1, 2))
500
501    indices, count = separate_points_by_polygon(points, polygon,
502                                                closed=closed,
503                                                verbose=verbose)
504
505    # Return indices of points outside polygon
506    if count == len(indices):
507        # No points are outside
508        return num.array([])
509    else:
510        return indices[count:][::-1]  #return reversed
511
512def in_and_outside_polygon(points, polygon, closed=True, verbose=False):
513    """Determine points inside and outside a polygon
514
515       See separate_points_by_polygon for documentation
516
517       Returns an array of points inside and array of points outside the polygon
518    """
519
520    try:
521        points = ensure_numeric(points, num.float)
522    except NameError, e:
523        raise NameError, e
524    except:
525        msg = 'Points could not be converted to numeric array'
526        raise Exception, msg
527
528    try:
529        polygon = ensure_numeric(polygon, num.float)
530    except NameError, e:
531        raise NameError, e
532    except:
533        msg = 'Polygon could not be converted to numeric array'
534        raise Exception, msg
535
536    if len(points.shape) == 1:
537        # Only one point was passed in. Convert to array of points
538        points = num.reshape(points, (1, 2))
539
540    indices, count = separate_points_by_polygon(points, polygon,
541                                                closed=closed,
542                                                verbose=verbose)
543
544    # Returns indices of points inside and indices of points outside
545    # the polygon
546    if count == len(indices):
547        # No points are outside
548        return indices[:count], []
549    else:
550        return  indices[:count], indices[count:][::-1]  #return reversed
551
552
553
554def separate_points_by_polygon(points, polygon,
555                               closed=True, 
556                               check_input=True,
557                               verbose=False):
558    """Determine whether points are inside or outside a polygon
559
560    Input:
561       points - Tuple of (x, y) coordinates, or list of tuples
562       polygon - list of vertices of polygon
563       closed - (optional) determine whether points on boundary should be
564       regarded as belonging to the polygon (closed = True)
565       or not (closed = False)
566       check_input: Allows faster execution if set to False
567
568    Outputs:
569       indices: array of same length as points with indices of points falling
570       inside the polygon listed from the beginning and indices of points
571       falling outside listed from the end.
572
573       count: count of points falling inside the polygon
574
575       The indices of points inside are obtained as indices[:count]
576       The indices of points outside are obtained as indices[count:]
577
578    Examples:
579       U = [[0,0], [1,0], [1,1], [0,1]] #Unit square
580
581       separate_points_by_polygon( [[0.5, 0.5], [1, -0.5], [0.3, 0.2]], U)
582       will return the indices [0, 2, 1] and count == 2 as only the first
583       and the last point are inside the unit square
584
585    Remarks:
586       The vertices may be listed clockwise or counterclockwise and
587       the first point may optionally be repeated.
588       Polygons do not need to be convex.
589       Polygons can have holes in them and points inside a hole is
590       regarded as being outside the polygon.
591
592    Algorithm is based on work by Darel Finley,
593    http://www.alienryderflex.com/polygon/
594
595    Uses underlying C-implementation in polygon_ext.c
596    """
597
598    if check_input:
599        #Input checks
600        assert isinstance(closed, bool), \
601                    'Keyword argument "closed" must be boolean'
602        assert isinstance(verbose, bool), \
603                    'Keyword argument "verbose" must be boolean'
604
605        try:
606            points = ensure_numeric(points, num.float)
607        except NameError, e:
608            raise NameError, e
609        except:
610            msg = 'Points could not be converted to numeric array'
611            raise Exception(msg)
612
613        try:
614            polygon = ensure_numeric(polygon, num.float)
615        except NameError, e:
616            raise NameError(e)
617        except:
618            msg = 'Polygon could not be converted to numeric array'
619            raise Exception(msg)
620
621        msg = 'Polygon array must be a 2d array of vertices'
622        assert len(polygon.shape) == 2, msg
623
624        msg = 'Polygon array must have two columns' 
625        assert polygon.shape[1] == 2, msg
626
627
628        msg = ('Points array must be 1 or 2 dimensional. '
629               'I got %d dimensions' % len(points.shape))
630        assert 0 < len(points.shape) < 3, msg
631
632        if len(points.shape) == 1:
633            # Only one point was passed in.  Convert to array of points.
634            points = num.reshape(points, (1, 2))
635   
636            msg = ('Point array must have two columns (x,y), '
637                   'I got points.shape[1]=%d' % points.shape[0])
638            assert points.shape[1]==2, msg
639
640       
641            msg = ('Points array must be a 2d array. I got %s.'
642                   % str(points[:30]))
643            assert len(points.shape) == 2, msg
644
645            msg = 'Points array must have two columns'
646            assert points.shape[1] == 2, msg
647
648    N = polygon.shape[0] # Number of vertices in polygon
649    M = points.shape[0]  # Number of points
650
651    indices = num.zeros(M, num.int)
652
653    count = _separate_points_by_polygon(points, polygon, indices,
654                                        int(closed), int(verbose))
655
656    if verbose:
657        log.critical('Found %d points (out of %d) inside polygon' % (count, M))
658
659    return indices, count
660
661
662def polygon_area(input_polygon):
663    """ Determine area of arbitrary polygon.
664
665        input_polygon The polygon to get area of.
666       
667        return A scalar value for the polygon area.
668
669        Reference:     http://mathworld.wolfram.com/PolygonArea.html
670    """
671    # Move polygon to origin (0,0) to avoid rounding errors
672    # This makes a copy of the polygon to avoid destroying it
673    input_polygon = ensure_numeric(input_polygon)
674    min_x = min(input_polygon[:, 0])
675    min_y = min(input_polygon[:, 1])
676    polygon = input_polygon - [min_x, min_y]
677
678    # Compute area
679    n = len(polygon)
680    poly_area = 0.0
681
682    for i in range(n):
683        pti = polygon[i]
684        if i == n-1:
685            pt1 = polygon[0]
686        else:
687            pt1 = polygon[i+1]
688        xi = pti[0]
689        yi1 = pt1[1]
690        xi1 = pt1[0]
691        yi = pti[1]
692        poly_area += xi*yi1 - xi1*yi
693
694    return abs(poly_area/2)
695
696
697def plot_polygons(polygons_points,
698                  style=None,
699                  figname=None,
700                  label=None,
701                  alpha=None):
702    """ Take list of polygons and plot.
703
704    Inputs:
705
706    polygons         - list of polygons
707
708    style            - style list corresponding to each polygon
709                     - for a polygon, use 'line'
710                     - for points falling outside a polygon, use 'outside'
711                     - style can also be user defined as in normal pylab plot.
712
713    figname          - name to save figure to
714
715    label            - title for plotA
716
717    alpha            - transparency of polygon fill, 0.0=none, 1.0=solid
718                       if not supplied, no fill.
719
720    Outputs:
721
722    - plot of polygons
723    """
724
725
726    import matplotlib as mpl
727    mpl.use('Agg')
728    #import matplotlib.pyplot as plt
729       
730
731    from matplotlib.pyplot import hold, plot, savefig, xlabel, \
732                    ylabel, title, close, title, fill
733
734    assert type(polygons_points) == list, \
735                'input must be a list of polygons and/or points'
736
737    #ion()
738    hold(True)
739
740    if label is None:
741        label = ''
742
743    # clamp alpha to sensible range
744    if alpha:
745        try:
746            alpha = float(alpha)
747        except ValueError:
748            alpha = None
749        else:
750            alpha = max(0.0, min(1.0, alpha))
751
752    num_points = len(polygons_points)
753    colour = []
754    if style is None:
755        style_type = 'line'
756        style = []
757        for i in range(num_points):
758            style.append(style_type)
759            colour.append('b-')
760    else:
761        for style_name in style:
762            if style_name == 'line':
763                colour.append('b-')
764            if style_name == 'outside':
765                colour.append('r.')
766            if style_name == 'point':
767                colour.append('g.')
768            if style_name not in ['line', 'outside', 'point']:
769                colour.append(style_name)
770
771    for i, item in enumerate(polygons_points):
772        pt_x, pt_y = _poly_xy(item)
773        plot(pt_x, pt_y, colour[i])
774        if alpha:
775            fill(pt_x, pt_y, colour[i], alpha=alpha)
776        xlabel('x')
777        ylabel('y')
778        title(label)
779
780    if figname is not None:
781        savefig(figname)
782    else:
783        savefig('test_image')
784
785    #ioff()
786    hold(False)
787    close('all')
788
789
790def _poly_xy(polygon):
791    """ this is used within plot_polygons so need to duplicate
792        the first point so can have closed polygon in plot
793
794        polygon A set of points defining a polygon.
795        verbose True if this function is to be verbose.
796
797        Returns a tuple (x, y) of X and Y coordinates of the polygon.
798        We duplicate the first point so can have closed polygon in plot.
799    """
800
801    try:
802        polygon = ensure_numeric(polygon, num.float)
803    except NameError, err:
804        raise NameError, err
805    except:
806        msg = ('Polygon %s could not be converted to numeric array'
807               % (str(polygon)))
808        raise Exception, msg
809
810    pts_x = num.concatenate((polygon[:, 0], [polygon[0, 0]]), axis = 0)
811    pts_y = num.concatenate((polygon[:, 1], [polygon[0, 1]]), axis = 0)
812
813    return pts_x, pts_y
814
815
816################################################################################
817# Functions to read and write polygon information
818################################################################################
819
820def read_polygon(filename, delimiter=',', closed=True, verbose=False):
821    """ Read points assumed to form a (closed) polygon.
822        Can also be used to read  in a polyline (closed=False)
823
824        Also checks to make sure polygon (polyline)
825        is not complex (self-intersecting).
826
827        filename Path to file containing polygon data.
828        delimiter Delimiter to split polygon data with.
829        A list of point data from the polygon file.
830
831        There must be exactly two numbers in each line
832        separated by the delimiter.
833        No header.
834    """
835
836    fid = open(filename)
837    lines = fid.readlines()
838    fid.close()
839    polygon = []
840    for line in lines:
841        fields = line.split(delimiter)
842        polygon.append([float(fields[0]), float(fields[1])])
843   
844    # check this is a valid polygon (polyline).
845    if is_complex(polygon, closed, verbose=verbose):
846        msg = 'ERROR: Self-intersecting polygon detected in file '
847        msg += filename +'. A complex polygon will not '
848        msg += 'necessarily break the algorithms within ANUGA, but it'
849        msg += 'usually signifies pathological data. Please fix this file.'
850        raise Exception, msg
851   
852    return polygon
853
854
855def write_polygon(polygon, filename=None):
856    """Write polygon to csv file.
857
858    There will be exactly two numbers, easting and northing, in each line
859    separated by a comma.
860
861    No header.
862    """
863
864    fid = open(filename, 'w')
865    for point in polygon:
866        fid.write('%f, %f\n' % point)
867    fid.close()
868
869
870def populate_polygon(polygon, number_of_points, seed=None, exclude=None):
871    """Populate given polygon with uniformly distributed points.
872
873    Input:
874       polygon - list of vertices of polygon
875       number_of_points - (optional) number of points
876       seed - seed for random number generator (default=None)
877       exclude - list of polygons (inside main polygon) from where points
878                 should be excluded
879
880    Output:
881       points - list of points inside polygon
882
883    Examples:
884       populate_polygon( [[0,0], [1,0], [1,1], [0,1]], 5 )
885       will return five randomly selected points inside the unit square
886    """
887
888    from random import uniform, seed as seed_function
889
890    seed_function(seed)
891
892    points = []
893
894    # Find outer extent of polygon
895    extents = AABB(polygon)
896   
897    while len(points) < number_of_points:
898        rand_x = uniform(extents.xmin, extents.xmax)
899        rand_y = uniform(extents.ymin, extents.ymax)
900
901        append = False
902        if is_inside_polygon([rand_x, rand_y], polygon):
903            append = True
904
905            #Check exclusions
906            if exclude is not None:
907                for ex_poly in exclude:
908                    if is_inside_polygon([rand_x, rand_y], ex_poly):
909                        append = False
910
911        if append is True:
912            points.append([rand_x, rand_y])
913
914    return points
915
916
917def point_in_polygon(polygon, delta=1e-8):
918    """Return a point inside a given polygon which will be close to the
919    polygon edge.
920
921    Input:
922       polygon - list of vertices of polygon
923       delta - the square root of 2 * delta is the maximum distance from the
924       polygon points and the returned point.
925    Output:
926       points - a point inside polygon
927
928       searches in all diagonals and up and down (not left and right).
929    """
930
931    polygon = ensure_numeric(polygon)
932   
933    while True:
934        for poly_point in polygon:
935            for x_mult in range(-1, 2):
936                for y_mult in range(-1, 2):
937                    pt_x, pt_y = poly_point
938
939                    if pt_x == 0:
940                        x_delta = x_mult * delta
941                    else:
942                        x_delta = pt_x + x_mult*pt_x*delta
943
944                    if pt_y == 0:
945                        y_delta = y_mult * delta
946                    else:
947                        y_delta = pt_y + y_mult*pt_y*delta
948
949                    point = [x_delta, y_delta]
950
951                    if is_inside_polygon(point, polygon, closed=False):
952                        return point
953        delta = delta * 0.1
954
955
956def number_mesh_triangles(interior_regions, bounding_poly, remainder_res):
957    """Calculate the approximate number of triangles inside the
958    bounding polygon and the other interior regions
959
960    Polygon areas are converted to square Kms
961
962    FIXME: Add tests for this function
963    """
964
965    # TO DO check if any of the regions fall inside one another
966
967    log.info('-' * 80)
968    log.info('Polygon  Max triangle area (m^2)  Total area (km^2)  '
969             'Estimated #triangles')
970    log.info('-' * 80)
971       
972    no_triangles = 0.0
973    area = polygon_area(bounding_poly)
974
975    for poly, resolution in interior_regions:
976        this_area = polygon_area(poly)
977        this_triangles = this_area/resolution
978        no_triangles += this_triangles
979        area -= this_area
980
981        log.info('Interior %s%s%d'
982                 % (('%.0f' % resolution).ljust(25),
983                    ('%.2f' % (this_area/1000000)).ljust(19), 
984                    this_triangles))
985
986    bound_triangles = area/remainder_res
987    no_triangles += bound_triangles
988
989    log.info('Bounding %s%s%d'
990             % (('%.0f' % remainder_res).ljust(25),
991                ('%.2f' % (area/1000000)).ljust(19),
992                bound_triangles))
993
994    total_number_of_triangles = no_triangles/0.7
995
996    log.info('Estimated total number of triangles: %d'
997                 % total_number_of_triangles)
998    log.info('Note: This is generally about 20% less than the final amount')
999
1000    return int(total_number_of_triangles)
1001
1002
1003def decimate_polygon(polygon, factor=10):
1004    """Reduce number of points in polygon by the specified
1005    factor (default=10, hence the name of the function) such that
1006    the extrema in both axes are preserved.
1007
1008    Reduce number of points in polygon by the specified factor.
1009    polygon The polygon to reduce.
1010    factor The factor to reduce polygon points by (default 10).
1011
1012    The extrema of both axes are preserved.
1013
1014    Return reduced polygon
1015    """
1016
1017    # FIXME(Ole): This doesn't work at present,
1018    # but it isn't critical either
1019
1020    # Find outer extent of polygon
1021    num_polygon = ensure_numeric(polygon)
1022    max_x = max(num_polygon[:, 0])
1023    max_y = max(num_polygon[:, 1])
1024    min_x = min(num_polygon[:, 0])
1025    min_y = min(num_polygon[:, 1])
1026
1027    # Keep only some points making sure extrema are kept
1028    reduced_polygon = []
1029    for i, point in enumerate(polygon):
1030        if point[0] in [min_x, max_x] and point[1] in [min_y, max_y]:
1031            # Keep
1032            reduced_polygon.append(point)
1033        else:
1034            if len(reduced_polygon)*factor < i:
1035                reduced_polygon.append(point)
1036
1037    return reduced_polygon
1038
1039
1040def interpolate_polyline(data,
1041                         polyline_nodes,
1042                         gauge_neighbour_id,
1043                         interpolation_points=None,
1044                         rtol=1.0e-6,
1045                         atol=1.0e-8):
1046    """Interpolate linearly between values data on polyline nodes
1047    of a polyline to list of interpolation points.
1048
1049    data is the data on the polyline nodes.
1050
1051    Inputs:
1052      data: Vector or array of data at the polyline nodes.
1053      polyline_nodes: Location of nodes where data is available.
1054      gauge_neighbour_id: ?
1055      interpolation_points: Interpolate polyline data to these positions.
1056          List of coordinate pairs [x, y] of
1057          data points or an nx2 numeric array or a Geospatial_data object
1058      rtol, atol: Used to determine whether a point is on the polyline or not.
1059                  See point_on_line.
1060
1061    Output:
1062      Interpolated values at interpolation points
1063    """
1064
1065    if isinstance(interpolation_points, Geospatial_data):
1066        interpolation_points = interpolation_points.\
1067                                    get_data_points(absolute=True)
1068
1069    interpolated_values = num.zeros(len(interpolation_points), num.float)
1070
1071    data = ensure_numeric(data, num.float)
1072    polyline_nodes = ensure_numeric(polyline_nodes, num.float)
1073    interpolation_points = ensure_numeric(interpolation_points, num.float)
1074    gauge_neighbour_id = ensure_numeric(gauge_neighbour_id, num.int)
1075
1076    num_nodes = polyline_nodes.shape[0]    # Number of nodes in polyline
1077
1078    # Input sanity check
1079    assert_msg = 'interpolation_points are not given (interpolate.py)'
1080    assert interpolation_points is not None, assert_msg
1081
1082    assert_msg = 'function value must be specified at every interpolation node'
1083    assert data.shape[0] == polyline_nodes.shape[0], assert_msg
1084
1085    assert_msg = 'Must define function value at one or more nodes'
1086    assert data.shape[0] > 0, assert_msg
1087
1088    if num_nodes == 1:
1089        assert_msg = 'Polyline contained only one point. I need more. '
1090        assert_msg += str(data)
1091        raise Exception, assert_msg
1092    elif num_nodes > 1:
1093        _interpolate_polyline(data,
1094                              polyline_nodes,
1095                              gauge_neighbour_id,
1096                              interpolation_points,
1097                              interpolated_values,
1098                              rtol,
1099                              atol)
1100
1101
1102    return interpolated_values
1103
1104   
1105def polylist2points_verts(polylist):
1106    """ Convert a list of polygons to discrete points and vertices.
1107    """
1108   
1109    offset = 0
1110    points = []
1111    vertices = []
1112    for poly in polylist:
1113        points.extend(poly)
1114        vertices.extend([[i, i+1] for i in range(offset, offset+len(poly)-1)])
1115        offset += len(poly)
1116               
1117    return points, vertices
1118
1119
1120################################################################################
1121# Initialise module
1122################################################################################
1123
1124from polygon_ext import _point_on_line
1125from polygon_ext import _separate_points_by_polygon
1126from polygon_ext import _interpolate_polyline   
1127from polygon_ext import _polygon_overlap
1128from polygon_ext import _line_intersect
1129from polygon_ext import _is_inside_triangle       
1130#from polygon_ext import _intersection
1131
1132
1133
1134
1135if __name__ == "__main__":
1136    pass
Note: See TracBrowser for help on using the repository browser.