1 | """ |
---|
2 | Environmental forcing functions, such as wind and rainfall. |
---|
3 | |
---|
4 | Constraints: See GPL license in the user guide |
---|
5 | Version: 1.0 ($Revision: 7731 $) |
---|
6 | ModifiedBy: |
---|
7 | $Author: hudson $ |
---|
8 | $Date: 2010-05-18 14:54:05 +1000 (Tue, 18 May 2010) $ |
---|
9 | """ |
---|
10 | |
---|
11 | |
---|
12 | from anuga.abstract_2d_finite_volumes.neighbour_mesh import segment_midpoints |
---|
13 | from anuga.utilities.numerical_tools import ensure_numeric |
---|
14 | from anuga.fit_interpolate.interpolate import Modeltime_too_early, \ |
---|
15 | Modeltime_too_late |
---|
16 | from anuga.geometry.polygon import is_inside_polygon, inside_polygon, \ |
---|
17 | polygon_area |
---|
18 | from types import IntType, FloatType |
---|
19 | from anuga.geospatial_data.geospatial_data import ensure_geospatial |
---|
20 | |
---|
21 | from warnings import warn |
---|
22 | import numpy as num |
---|
23 | |
---|
24 | |
---|
25 | |
---|
26 | def check_forcefield(f): |
---|
27 | """Check that force object is as expected. |
---|
28 | |
---|
29 | Check that f is either: |
---|
30 | 1: a callable object f(t,x,y), where x and y are vectors |
---|
31 | and that it returns an array or a list of same length |
---|
32 | as x and y |
---|
33 | 2: a scalar |
---|
34 | """ |
---|
35 | |
---|
36 | if callable(f): |
---|
37 | N = 3 |
---|
38 | x = num.ones(3, num.float) |
---|
39 | y = num.ones(3, num.float) |
---|
40 | try: |
---|
41 | q = f(1.0, x=x, y=y) |
---|
42 | except Exception, e: |
---|
43 | msg = 'Function %s could not be executed:\n%s' %(f, e) |
---|
44 | # FIXME: Reconsider this semantics |
---|
45 | raise Exception, msg |
---|
46 | |
---|
47 | try: |
---|
48 | q = num.array(q, num.float) |
---|
49 | except: |
---|
50 | msg = ('Return value from vector function %s could not ' |
---|
51 | 'be converted into a numeric array of floats.\nSpecified ' |
---|
52 | 'function should return either list or array.' % f) |
---|
53 | raise Exception, msg |
---|
54 | |
---|
55 | # Is this really what we want? |
---|
56 | # info is "(func name, filename, defining line)" |
---|
57 | func_info = (f.func_name, f.func_code.co_filename, |
---|
58 | f.func_code.co_firstlineno) |
---|
59 | func_msg = 'Function %s (defined in %s, line %d)' % func_info |
---|
60 | try: |
---|
61 | result_len = len(q) |
---|
62 | except: |
---|
63 | msg = '%s must return vector' % func_msg |
---|
64 | self.fail(msg) |
---|
65 | msg = '%s must return vector of length %d' % (func_msg, N) |
---|
66 | assert result_len == N, msg |
---|
67 | else: |
---|
68 | try: |
---|
69 | f = float(f) |
---|
70 | except: |
---|
71 | msg = ('Force field %s must be a scalar value coercible to float.' |
---|
72 | % str(f)) |
---|
73 | raise Exception, msg |
---|
74 | |
---|
75 | return f |
---|
76 | |
---|
77 | |
---|
78 | |
---|
79 | class Wind_stress: |
---|
80 | """Apply wind stress to water momentum in terms of |
---|
81 | wind speed [m/s] and wind direction [degrees] |
---|
82 | """ |
---|
83 | def __init__(self, *args, **kwargs): |
---|
84 | """Initialise windfield from wind speed s [m/s] |
---|
85 | and wind direction phi [degrees] |
---|
86 | |
---|
87 | Inputs v and phi can be either scalars or Python functions, e.g. |
---|
88 | |
---|
89 | W = Wind_stress(10, 178) |
---|
90 | |
---|
91 | #FIXME - 'normal' degrees are assumed for now, i.e. the |
---|
92 | vector (1,0) has zero degrees. |
---|
93 | We may need to convert from 'compass' degrees later on and also |
---|
94 | map from True north to grid north. |
---|
95 | |
---|
96 | Arguments can also be Python functions of t,x,y as in |
---|
97 | |
---|
98 | def speed(t,x,y): |
---|
99 | ... |
---|
100 | return s |
---|
101 | |
---|
102 | def angle(t,x,y): |
---|
103 | ... |
---|
104 | return phi |
---|
105 | |
---|
106 | where x and y are vectors. |
---|
107 | |
---|
108 | and then pass the functions in |
---|
109 | |
---|
110 | W = Wind_stress(speed, angle) |
---|
111 | |
---|
112 | The instantiated object W can be appended to the list of |
---|
113 | forcing_terms as in |
---|
114 | |
---|
115 | Alternatively, one vector valued function for (speed, angle) |
---|
116 | can be applied, providing both quantities simultaneously. |
---|
117 | As in |
---|
118 | W = Wind_stress(F), where returns (speed, angle) for each t. |
---|
119 | |
---|
120 | domain.forcing_terms.append(W) |
---|
121 | """ |
---|
122 | |
---|
123 | from anuga.config import rho_a, rho_w, eta_w |
---|
124 | |
---|
125 | if len(args) == 2: |
---|
126 | s = args[0] |
---|
127 | phi = args[1] |
---|
128 | elif len(args) == 1: |
---|
129 | # Assume vector function returning (s, phi)(t,x,y) |
---|
130 | vector_function = args[0] |
---|
131 | s = lambda t,x,y: vector_function(t,x=x,y=y)[0] |
---|
132 | phi = lambda t,x,y: vector_function(t,x=x,y=y)[1] |
---|
133 | else: |
---|
134 | # Assume info is in 2 keyword arguments |
---|
135 | if len(kwargs) == 2: |
---|
136 | s = kwargs['s'] |
---|
137 | phi = kwargs['phi'] |
---|
138 | else: |
---|
139 | raise Exception, 'Assumes two keyword arguments: s=..., phi=....' |
---|
140 | |
---|
141 | self.speed = check_forcefield(s) |
---|
142 | self.phi = check_forcefield(phi) |
---|
143 | |
---|
144 | self.const = eta_w*rho_a/rho_w |
---|
145 | |
---|
146 | ## |
---|
147 | # @brief 'execute' this class instance. |
---|
148 | # @param domain |
---|
149 | def __call__(self, domain): |
---|
150 | """Evaluate windfield based on values found in domain""" |
---|
151 | |
---|
152 | from math import pi, cos, sin, sqrt |
---|
153 | |
---|
154 | xmom_update = domain.quantities['xmomentum'].explicit_update |
---|
155 | ymom_update = domain.quantities['ymomentum'].explicit_update |
---|
156 | |
---|
157 | N = len(domain) # number_of_triangles |
---|
158 | t = domain.time |
---|
159 | |
---|
160 | if callable(self.speed): |
---|
161 | xc = domain.get_centroid_coordinates() |
---|
162 | s_vec = self.speed(t, xc[:,0], xc[:,1]) |
---|
163 | else: |
---|
164 | # Assume s is a scalar |
---|
165 | try: |
---|
166 | s_vec = self.speed * num.ones(N, num.float) |
---|
167 | except: |
---|
168 | msg = 'Speed must be either callable or a scalar: %s' %self.s |
---|
169 | raise msg |
---|
170 | |
---|
171 | if callable(self.phi): |
---|
172 | xc = domain.get_centroid_coordinates() |
---|
173 | phi_vec = self.phi(t, xc[:,0], xc[:,1]) |
---|
174 | else: |
---|
175 | # Assume phi is a scalar |
---|
176 | |
---|
177 | try: |
---|
178 | phi_vec = self.phi * num.ones(N, num.float) |
---|
179 | except: |
---|
180 | msg = 'Angle must be either callable or a scalar: %s' %self.phi |
---|
181 | raise msg |
---|
182 | |
---|
183 | assign_windfield_values(xmom_update, ymom_update, |
---|
184 | s_vec, phi_vec, self.const) |
---|
185 | |
---|
186 | |
---|
187 | ## |
---|
188 | # @brief Assign wind field values |
---|
189 | # @param xmom_update |
---|
190 | # @param ymom_update |
---|
191 | # @param s_vec |
---|
192 | # @param phi_vec |
---|
193 | # @param const |
---|
194 | def assign_windfield_values(xmom_update, ymom_update, |
---|
195 | s_vec, phi_vec, const): |
---|
196 | """Python version of assigning wind field to update vectors. |
---|
197 | A C version also exists (for speed) |
---|
198 | """ |
---|
199 | |
---|
200 | from math import pi, cos, sin, sqrt |
---|
201 | |
---|
202 | N = len(s_vec) |
---|
203 | for k in range(N): |
---|
204 | s = s_vec[k] |
---|
205 | phi = phi_vec[k] |
---|
206 | |
---|
207 | # Convert to radians |
---|
208 | phi = phi*pi/180 |
---|
209 | |
---|
210 | # Compute velocity vector (u, v) |
---|
211 | u = s*cos(phi) |
---|
212 | v = s*sin(phi) |
---|
213 | |
---|
214 | # Compute wind stress |
---|
215 | S = const * sqrt(u**2 + v**2) |
---|
216 | xmom_update[k] += S*u |
---|
217 | ymom_update[k] += S*v |
---|
218 | |
---|
219 | |
---|
220 | ## |
---|
221 | # @brief A class for a general explicit forcing term. |
---|
222 | class General_forcing: |
---|
223 | """General explicit forcing term for update of quantity |
---|
224 | |
---|
225 | This is used by Inflow and Rainfall for instance |
---|
226 | |
---|
227 | |
---|
228 | General_forcing(quantity_name, rate, center, radius, polygon) |
---|
229 | |
---|
230 | domain: ANUGA computational domain |
---|
231 | quantity_name: Name of quantity to update. |
---|
232 | It must be a known conserved quantity. |
---|
233 | |
---|
234 | rate [?/s]: Total rate of change over the specified area. |
---|
235 | This parameter can be either a constant or a |
---|
236 | function of time. Positive values indicate increases, |
---|
237 | negative values indicate decreases. |
---|
238 | Rate can be None at initialisation but must be specified |
---|
239 | before forcing term is applied (i.e. simulation has started). |
---|
240 | |
---|
241 | center [m]: Coordinates at center of flow point |
---|
242 | radius [m]: Size of circular area |
---|
243 | polygon: Arbitrary polygon |
---|
244 | default_rate: Rate to be used if rate fails (e.g. if model time exceeds its data) |
---|
245 | Admissible types: None, constant number or function of t |
---|
246 | |
---|
247 | |
---|
248 | Either center, radius or polygon can be specified but not both. |
---|
249 | If neither are specified the entire domain gets updated. |
---|
250 | All coordinates to be specified in absolute UTM coordinates (x, y) assuming the zone of domain. |
---|
251 | |
---|
252 | Inflow or Rainfall for examples of use |
---|
253 | """ |
---|
254 | |
---|
255 | |
---|
256 | # FIXME (AnyOne) : Add various methods to allow spatial variations |
---|
257 | |
---|
258 | ## |
---|
259 | # @brief Create an instance of this forcing term. |
---|
260 | # @param domain |
---|
261 | # @param quantity_name |
---|
262 | # @param rate |
---|
263 | # @param center |
---|
264 | # @param radius |
---|
265 | # @param polygon |
---|
266 | # @param default_rate |
---|
267 | # @param verbose |
---|
268 | def __init__(self, |
---|
269 | domain, |
---|
270 | quantity_name, |
---|
271 | rate=0.0, |
---|
272 | center=None, |
---|
273 | radius=None, |
---|
274 | polygon=None, |
---|
275 | default_rate=None, |
---|
276 | verbose=False): |
---|
277 | |
---|
278 | from math import pi, cos, sin |
---|
279 | |
---|
280 | if center is None: |
---|
281 | msg = 'I got radius but no center.' |
---|
282 | assert radius is None, msg |
---|
283 | |
---|
284 | if radius is None: |
---|
285 | msg += 'I got center but no radius.' |
---|
286 | assert center is None, msg |
---|
287 | |
---|
288 | self.domain = domain |
---|
289 | self.quantity_name = quantity_name |
---|
290 | self.rate = rate |
---|
291 | self.center = ensure_numeric(center) |
---|
292 | self.radius = radius |
---|
293 | self.polygon = polygon |
---|
294 | self.verbose = verbose |
---|
295 | self.value = 0.0 # Can be used to remember value at |
---|
296 | # previous timestep in order to obtain rate |
---|
297 | |
---|
298 | # Get boundary (in absolute coordinates) |
---|
299 | bounding_polygon = domain.get_boundary_polygon() |
---|
300 | |
---|
301 | # Update area if applicable |
---|
302 | if center is not None and radius is not None: |
---|
303 | assert len(center) == 2 |
---|
304 | msg = 'Polygon cannot be specified when center and radius are' |
---|
305 | assert polygon is None, msg |
---|
306 | |
---|
307 | # Check that circle center lies within the mesh. |
---|
308 | msg = 'Center %s specified for forcing term did not' % str(center) |
---|
309 | msg += 'fall within the domain boundary.' |
---|
310 | assert is_inside_polygon(center, bounding_polygon), msg |
---|
311 | |
---|
312 | # Check that circle periphery lies within the mesh. |
---|
313 | N = 100 |
---|
314 | periphery_points = [] |
---|
315 | for i in range(N): |
---|
316 | theta = 2*pi*i/100 |
---|
317 | |
---|
318 | x = center[0] + radius*cos(theta) |
---|
319 | y = center[1] + radius*sin(theta) |
---|
320 | |
---|
321 | periphery_points.append([x,y]) |
---|
322 | |
---|
323 | for point in periphery_points: |
---|
324 | msg = 'Point %s on periphery for forcing term' % str(point) |
---|
325 | msg += ' did not fall within the domain boundary.' |
---|
326 | assert is_inside_polygon(point, bounding_polygon), msg |
---|
327 | |
---|
328 | if polygon is not None: |
---|
329 | # Check that polygon lies within the mesh. |
---|
330 | for point in self.polygon: |
---|
331 | msg = 'Point %s in polygon for forcing term' % str(point) |
---|
332 | msg += ' did not fall within the domain boundary.' |
---|
333 | assert is_inside_polygon(point, bounding_polygon), msg |
---|
334 | |
---|
335 | # Pointer to update vector |
---|
336 | self.update = domain.quantities[self.quantity_name].explicit_update |
---|
337 | |
---|
338 | # Determine indices in flow area |
---|
339 | N = len(domain) |
---|
340 | points = domain.get_centroid_coordinates(absolute=True) |
---|
341 | |
---|
342 | # Calculate indices in exchange area for this forcing term |
---|
343 | self.exchange_indices = None |
---|
344 | if self.center is not None and self.radius is not None: |
---|
345 | # Inlet is circular |
---|
346 | inlet_region = 'center=%s, radius=%s' % (self.center, self.radius) |
---|
347 | |
---|
348 | self.exchange_indices = [] |
---|
349 | for k in range(N): |
---|
350 | x, y = points[k,:] # Centroid |
---|
351 | |
---|
352 | c = self.center |
---|
353 | if ((x-c[0])**2+(y-c[1])**2) < self.radius**2: |
---|
354 | self.exchange_indices.append(k) |
---|
355 | |
---|
356 | if self.polygon is not None: |
---|
357 | # Inlet is polygon |
---|
358 | inlet_region = 'polygon=%s' % (self.polygon) |
---|
359 | self.exchange_indices = inside_polygon(points, self.polygon) |
---|
360 | |
---|
361 | if self.exchange_indices is None: |
---|
362 | self.exchange_area = polygon_area(bounding_polygon) |
---|
363 | else: |
---|
364 | if len(self.exchange_indices) == 0: |
---|
365 | msg = 'No triangles have been identified in ' |
---|
366 | msg += 'specified region: %s' % inlet_region |
---|
367 | raise Exception, msg |
---|
368 | |
---|
369 | # Compute exchange area as the sum of areas of triangles identified |
---|
370 | # by circle or polygon |
---|
371 | self.exchange_area = 0.0 |
---|
372 | for i in self.exchange_indices: |
---|
373 | self.exchange_area += domain.areas[i] |
---|
374 | |
---|
375 | |
---|
376 | msg = 'Exchange area in forcing term' |
---|
377 | msg += ' has area = %f' %self.exchange_area |
---|
378 | assert self.exchange_area > 0.0 |
---|
379 | |
---|
380 | |
---|
381 | |
---|
382 | |
---|
383 | # Check and store default_rate |
---|
384 | msg = ('Keyword argument default_rate must be either None ' |
---|
385 | 'or a function of time.\nI got %s.' % str(default_rate)) |
---|
386 | assert (default_rate is None or |
---|
387 | type(default_rate) in [IntType, FloatType] or |
---|
388 | callable(default_rate)), msg |
---|
389 | |
---|
390 | if default_rate is not None: |
---|
391 | # If it is a constant, make it a function |
---|
392 | if not callable(default_rate): |
---|
393 | tmp = default_rate |
---|
394 | default_rate = lambda t: tmp |
---|
395 | |
---|
396 | # Check that default_rate is a function of one argument |
---|
397 | try: |
---|
398 | default_rate(0.0) |
---|
399 | except: |
---|
400 | raise Exception, msg |
---|
401 | |
---|
402 | self.default_rate = default_rate |
---|
403 | self.default_rate_invoked = False # Flag |
---|
404 | |
---|
405 | ## |
---|
406 | # @brief Execute this instance. |
---|
407 | # @param domain |
---|
408 | def __call__(self, domain): |
---|
409 | """Apply inflow function at time specified in domain, update stage""" |
---|
410 | |
---|
411 | # Call virtual method allowing local modifications |
---|
412 | t = domain.get_time() |
---|
413 | try: |
---|
414 | rate = self.update_rate(t) |
---|
415 | except Modeltime_too_early, e: |
---|
416 | raise Modeltime_too_early, e |
---|
417 | except Modeltime_too_late, e: |
---|
418 | if self.default_rate is None: |
---|
419 | msg = '%s: ANUGA is trying to run longer than specified data.\n' %str(e) |
---|
420 | msg += 'You can specify keyword argument default_rate in the ' |
---|
421 | msg += 'forcing function to tell it what to do in the absence of time data.' |
---|
422 | raise Modeltime_too_late, msg |
---|
423 | else: |
---|
424 | # Pass control to default rate function |
---|
425 | rate = self.default_rate(t) |
---|
426 | |
---|
427 | if self.default_rate_invoked is False: |
---|
428 | # Issue warning the first time |
---|
429 | msg = ('%s\n' |
---|
430 | 'Instead I will use the default rate: %s\n' |
---|
431 | 'Note: Further warnings will be supressed' |
---|
432 | % (str(e), str(self.default_rate))) |
---|
433 | warn(msg) |
---|
434 | |
---|
435 | # FIXME (Ole): Replace this crude flag with |
---|
436 | # Python's ability to print warnings only once. |
---|
437 | # See http://docs.python.org/lib/warning-filter.html |
---|
438 | self.default_rate_invoked = True |
---|
439 | |
---|
440 | if rate is None: |
---|
441 | msg = ('Attribute rate must be specified in General_forcing ' |
---|
442 | 'or its descendants before attempting to call it') |
---|
443 | raise Exception, msg |
---|
444 | |
---|
445 | # Now rate is a number |
---|
446 | if self.verbose is True: |
---|
447 | log.critical('Rate of %s at time = %.2f = %f' |
---|
448 | % (self.quantity_name, domain.get_time(), rate)) |
---|
449 | |
---|
450 | if self.exchange_indices is None: |
---|
451 | self.update[:] += rate |
---|
452 | else: |
---|
453 | # Brute force assignment of restricted rate |
---|
454 | for k in self.exchange_indices: |
---|
455 | self.update[k] += rate |
---|
456 | |
---|
457 | ## |
---|
458 | # @brief Update the internal rate. |
---|
459 | # @param t A callable or scalar used to set the rate. |
---|
460 | # @return The new rate. |
---|
461 | def update_rate(self, t): |
---|
462 | """Virtual method allowing local modifications by writing an |
---|
463 | overriding version in descendant |
---|
464 | """ |
---|
465 | |
---|
466 | if callable(self.rate): |
---|
467 | rate = self.rate(t) |
---|
468 | else: |
---|
469 | rate = self.rate |
---|
470 | |
---|
471 | return rate |
---|
472 | |
---|
473 | ## |
---|
474 | # @brief Get values for the specified quantity. |
---|
475 | # @param quantity_name Name of the quantity of interest. |
---|
476 | # @return The value(s) of the quantity. |
---|
477 | # @note If 'quantity_name' is None, use self.quantity_name. |
---|
478 | def get_quantity_values(self, quantity_name=None): |
---|
479 | """Return values for specified quantity restricted to opening |
---|
480 | |
---|
481 | Optionally a quantity name can be specified if values from another |
---|
482 | quantity is sought |
---|
483 | """ |
---|
484 | |
---|
485 | if quantity_name is None: |
---|
486 | quantity_name = self.quantity_name |
---|
487 | |
---|
488 | q = self.domain.quantities[quantity_name] |
---|
489 | return q.get_values(location='centroids', |
---|
490 | indices=self.exchange_indices) |
---|
491 | |
---|
492 | ## |
---|
493 | # @brief Set value for the specified quantity. |
---|
494 | # @param val The value object used to set value. |
---|
495 | # @param quantity_name Name of the quantity of interest. |
---|
496 | # @note If 'quantity_name' is None, use self.quantity_name. |
---|
497 | def set_quantity_values(self, val, quantity_name=None): |
---|
498 | """Set values for specified quantity restricted to opening |
---|
499 | |
---|
500 | Optionally a quantity name can be specified if values from another |
---|
501 | quantity is sought |
---|
502 | """ |
---|
503 | |
---|
504 | if quantity_name is None: |
---|
505 | quantity_name = self.quantity_name |
---|
506 | |
---|
507 | q = self.domain.quantities[self.quantity_name] |
---|
508 | q.set_values(val, |
---|
509 | location='centroids', |
---|
510 | indices=self.exchange_indices) |
---|
511 | |
---|
512 | |
---|
513 | ## |
---|
514 | # @brief A class for rainfall forcing function. |
---|
515 | # @note Inherits from General_forcing. |
---|
516 | class Rainfall(General_forcing): |
---|
517 | """Class Rainfall - general 'rain over entire domain' forcing term. |
---|
518 | |
---|
519 | Used for implementing Rainfall over the entire domain. |
---|
520 | |
---|
521 | Current Limited to only One Gauge.. |
---|
522 | |
---|
523 | Need to add Spatial Varying Capability |
---|
524 | (This module came from copying and amending the Inflow Code) |
---|
525 | |
---|
526 | Rainfall(rain) |
---|
527 | |
---|
528 | domain |
---|
529 | rain [mm/s]: Total rain rate over the specified domain. |
---|
530 | NOTE: Raingauge Data needs to reflect the time step. |
---|
531 | IE: if Gauge is mm read at a time step, then the input |
---|
532 | here is as mm/(timeStep) so 10mm in 5minutes becomes |
---|
533 | 10/(5x60) = 0.0333mm/s. |
---|
534 | |
---|
535 | This parameter can be either a constant or a |
---|
536 | function of time. Positive values indicate inflow, |
---|
537 | negative values indicate outflow. |
---|
538 | (and be used for Infiltration - Write Seperate Module) |
---|
539 | The specified flow will be divided by the area of |
---|
540 | the inflow region and then applied to update the |
---|
541 | stage quantity. |
---|
542 | |
---|
543 | polygon: Specifies a polygon to restrict the rainfall. |
---|
544 | |
---|
545 | Examples |
---|
546 | How to put them in a run File... |
---|
547 | |
---|
548 | #------------------------------------------------------------------------ |
---|
549 | # Setup specialised forcing terms |
---|
550 | #------------------------------------------------------------------------ |
---|
551 | # This is the new element implemented by Ole and Rudy to allow direct |
---|
552 | # input of Rainfall in mm/s |
---|
553 | |
---|
554 | catchmentrainfall = Rainfall(rain=file_function('Q100_2hr_Rain.tms')) |
---|
555 | # Note need path to File in String. |
---|
556 | # Else assumed in same directory |
---|
557 | |
---|
558 | domain.forcing_terms.append(catchmentrainfall) |
---|
559 | """ |
---|
560 | |
---|
561 | ## |
---|
562 | # @brief Create an instance of the class. |
---|
563 | # @param domain Domain of interest. |
---|
564 | # @param rate Total rain rate over the specified domain (mm/s). |
---|
565 | # @param center |
---|
566 | # @param radius |
---|
567 | # @param polygon Polygon to restrict rainfall. |
---|
568 | # @param default_rate |
---|
569 | # @param verbose True if this instance is to be verbose. |
---|
570 | def __init__(self, |
---|
571 | domain, |
---|
572 | rate=0.0, |
---|
573 | center=None, |
---|
574 | radius=None, |
---|
575 | polygon=None, |
---|
576 | default_rate=None, |
---|
577 | verbose=False): |
---|
578 | |
---|
579 | # Converting mm/s to m/s to apply in ANUGA) |
---|
580 | if callable(rate): |
---|
581 | rain = lambda t: rate(t)/1000.0 |
---|
582 | else: |
---|
583 | rain = rate/1000.0 |
---|
584 | |
---|
585 | if default_rate is not None: |
---|
586 | if callable(default_rate): |
---|
587 | default_rain = lambda t: default_rate(t)/1000.0 |
---|
588 | else: |
---|
589 | default_rain = default_rate/1000.0 |
---|
590 | else: |
---|
591 | default_rain = None |
---|
592 | |
---|
593 | |
---|
594 | |
---|
595 | General_forcing.__init__(self, |
---|
596 | domain, |
---|
597 | 'stage', |
---|
598 | rate=rain, |
---|
599 | center=center, |
---|
600 | radius=radius, |
---|
601 | polygon=polygon, |
---|
602 | default_rate=default_rain, |
---|
603 | verbose=verbose) |
---|
604 | |
---|
605 | |
---|
606 | ## |
---|
607 | # @brief A class for inflow (rain and drain) forcing function. |
---|
608 | # @note Inherits from General_forcing. |
---|
609 | class Inflow(General_forcing): |
---|
610 | """Class Inflow - general 'rain and drain' forcing term. |
---|
611 | |
---|
612 | Useful for implementing flows in and out of the domain. |
---|
613 | |
---|
614 | Inflow(flow, center, radius, polygon) |
---|
615 | |
---|
616 | domain |
---|
617 | rate [m^3/s]: Total flow rate over the specified area. |
---|
618 | This parameter can be either a constant or a |
---|
619 | function of time. Positive values indicate inflow, |
---|
620 | negative values indicate outflow. |
---|
621 | The specified flow will be divided by the area of |
---|
622 | the inflow region and then applied to update stage. |
---|
623 | center [m]: Coordinates at center of flow point |
---|
624 | radius [m]: Size of circular area |
---|
625 | polygon: Arbitrary polygon. |
---|
626 | |
---|
627 | Either center, radius or polygon must be specified |
---|
628 | |
---|
629 | Examples |
---|
630 | |
---|
631 | # Constant drain at 0.003 m^3/s. |
---|
632 | # The outflow area is 0.07**2*pi=0.0154 m^2 |
---|
633 | # This corresponds to a rate of change of 0.003/0.0154 = 0.2 m/s |
---|
634 | # |
---|
635 | Inflow((0.7, 0.4), 0.07, -0.003) |
---|
636 | |
---|
637 | |
---|
638 | # Tap turning up to a maximum inflow of 0.0142 m^3/s. |
---|
639 | # The inflow area is 0.03**2*pi = 0.00283 m^2 |
---|
640 | # This corresponds to a rate of change of 0.0142/0.00283 = 5 m/s |
---|
641 | # over the specified area |
---|
642 | Inflow((0.5, 0.5), 0.03, lambda t: min(0.01*t, 0.0142)) |
---|
643 | |
---|
644 | |
---|
645 | #------------------------------------------------------------------------ |
---|
646 | # Setup specialised forcing terms |
---|
647 | #------------------------------------------------------------------------ |
---|
648 | # This is the new element implemented by Ole to allow direct input |
---|
649 | # of Inflow in m^3/s |
---|
650 | |
---|
651 | hydrograph = Inflow(center=(320, 300), radius=10, |
---|
652 | rate=file_function('Q/QPMF_Rot_Sub13.tms')) |
---|
653 | |
---|
654 | domain.forcing_terms.append(hydrograph) |
---|
655 | """ |
---|
656 | |
---|
657 | ## |
---|
658 | # @brief Create an instance of the class. |
---|
659 | # @param domain Domain of interest. |
---|
660 | # @param rate Total rain rate over the specified domain (mm/s). |
---|
661 | # @param center |
---|
662 | # @param radius |
---|
663 | # @param polygon Polygon to restrict rainfall. |
---|
664 | # @param default_rate |
---|
665 | # @param verbose True if this instance is to be verbose. |
---|
666 | def __init__(self, |
---|
667 | domain, |
---|
668 | rate=0.0, |
---|
669 | center=None, |
---|
670 | radius=None, |
---|
671 | polygon=None, |
---|
672 | default_rate=None, |
---|
673 | verbose=False): |
---|
674 | # Create object first to make area is available |
---|
675 | General_forcing.__init__(self, |
---|
676 | domain, |
---|
677 | 'stage', |
---|
678 | rate=rate, |
---|
679 | center=center, |
---|
680 | radius=radius, |
---|
681 | polygon=polygon, |
---|
682 | default_rate=default_rate, |
---|
683 | verbose=verbose) |
---|
684 | |
---|
685 | ## |
---|
686 | # @brief Update the instance rate. |
---|
687 | # @param t New rate object. |
---|
688 | def update_rate(self, t): |
---|
689 | """Virtual method allowing local modifications by writing an |
---|
690 | overriding version in descendant |
---|
691 | |
---|
692 | This one converts m^3/s to m/s which can be added directly |
---|
693 | to 'stage' in ANUGA |
---|
694 | """ |
---|
695 | |
---|
696 | if callable(self.rate): |
---|
697 | _rate = self.rate(t)/self.exchange_area |
---|
698 | else: |
---|
699 | _rate = self.rate/self.exchange_area |
---|
700 | |
---|
701 | return _rate |
---|
702 | |
---|
703 | |
---|
704 | ## |
---|
705 | # @brief A class for creating cross sections. |
---|
706 | # @note Inherits from General_forcing. |
---|
707 | class Cross_section: |
---|
708 | """Class Cross_section - a class to setup a cross section from |
---|
709 | which you can then calculate flow and energy through cross section |
---|
710 | |
---|
711 | |
---|
712 | Cross_section(domain, polyline) |
---|
713 | |
---|
714 | domain: |
---|
715 | polyline: Representation of desired cross section - it may contain |
---|
716 | multiple sections allowing for complex shapes. Assume |
---|
717 | absolute UTM coordinates. |
---|
718 | Format [[x0, y0], [x1, y1], ...] |
---|
719 | verbose: |
---|
720 | """ |
---|
721 | |
---|
722 | ## |
---|
723 | # @brief Create an instance of the class. |
---|
724 | # @param domain Domain of interest. |
---|
725 | # @param polyline Polyline defining cross section |
---|
726 | # @param verbose True if this instance is to be verbose. |
---|
727 | def __init__(self, |
---|
728 | domain, |
---|
729 | polyline=None, |
---|
730 | verbose=False): |
---|
731 | |
---|
732 | self.domain = domain |
---|
733 | self.polyline = polyline |
---|
734 | self.verbose = verbose |
---|
735 | |
---|
736 | # Find all intersections and associated triangles. |
---|
737 | self.segments = self.domain.get_intersecting_segments(self.polyline, |
---|
738 | use_cache=True, |
---|
739 | verbose=self.verbose) |
---|
740 | |
---|
741 | # Get midpoints |
---|
742 | self.midpoints = segment_midpoints(self.segments) |
---|
743 | |
---|
744 | # Make midpoints Geospatial instances |
---|
745 | self.midpoints = ensure_geospatial(self.midpoints, self.domain.geo_reference) |
---|
746 | |
---|
747 | ## |
---|
748 | # @brief set verbose mode |
---|
749 | def set_verbose(self,verbose=True): |
---|
750 | """Set verbose mode true or flase |
---|
751 | """ |
---|
752 | |
---|
753 | self.verbose=verbose |
---|
754 | |
---|
755 | ## |
---|
756 | # @brief calculate current flow through cross section |
---|
757 | def get_flow_through_cross_section(self): |
---|
758 | """ Output: Total flow [m^3/s] across cross section. |
---|
759 | """ |
---|
760 | |
---|
761 | # Get interpolated values |
---|
762 | xmomentum = self.domain.get_quantity('xmomentum') |
---|
763 | ymomentum = self.domain.get_quantity('ymomentum') |
---|
764 | |
---|
765 | uh = xmomentum.get_values(interpolation_points=self.midpoints, |
---|
766 | use_cache=True) |
---|
767 | vh = ymomentum.get_values(interpolation_points=self.midpoints, |
---|
768 | use_cache=True) |
---|
769 | |
---|
770 | # Compute and sum flows across each segment |
---|
771 | total_flow = 0 |
---|
772 | for i in range(len(uh)): |
---|
773 | # Inner product of momentum vector with segment normal [m^2/s] |
---|
774 | normal = self.segments[i].normal |
---|
775 | normal_momentum = uh[i]*normal[0] + vh[i]*normal[1] |
---|
776 | |
---|
777 | # Flow across this segment [m^3/s] |
---|
778 | segment_flow = normal_momentum*self.segments[i].length |
---|
779 | |
---|
780 | # Accumulate |
---|
781 | total_flow += segment_flow |
---|
782 | |
---|
783 | return total_flow |
---|
784 | |
---|
785 | |
---|
786 | ## |
---|
787 | # @brief calculate current energy flow through cross section |
---|
788 | def get_energy_through_cross_section(self, kind='total'): |
---|
789 | """Obtain average energy head [m] across specified cross section. |
---|
790 | |
---|
791 | Output: |
---|
792 | E: Average energy [m] across given segments for all stored times. |
---|
793 | |
---|
794 | The average velocity is computed for each triangle intersected by |
---|
795 | the polyline and averaged weighted by segment lengths. |
---|
796 | |
---|
797 | The typical usage of this function would be to get average energy of |
---|
798 | flow in a channel, and the polyline would then be a cross section |
---|
799 | perpendicular to the flow. |
---|
800 | |
---|
801 | #FIXME (Ole) - need name for this energy reflecting that its dimension |
---|
802 | is [m]. |
---|
803 | """ |
---|
804 | |
---|
805 | from anuga.config import g, epsilon, velocity_protection as h0 |
---|
806 | |
---|
807 | # Get interpolated values |
---|
808 | stage = self.domain.get_quantity('stage') |
---|
809 | elevation = self.domain.get_quantity('elevation') |
---|
810 | xmomentum = self.domain.get_quantity('xmomentum') |
---|
811 | ymomentum = self.domain.get_quantity('ymomentum') |
---|
812 | |
---|
813 | w = stage.get_values(interpolation_points=self.midpoints, use_cache=True) |
---|
814 | z = elevation.get_values(interpolation_points=self.midpoints, use_cache=True) |
---|
815 | uh = xmomentum.get_values(interpolation_points=self.midpoints, |
---|
816 | use_cache=True) |
---|
817 | vh = ymomentum.get_values(interpolation_points=self.midpoints, |
---|
818 | use_cache=True) |
---|
819 | h = w-z # Depth |
---|
820 | |
---|
821 | # Compute total length of polyline for use with weighted averages |
---|
822 | total_line_length = 0.0 |
---|
823 | for segment in self.segments: |
---|
824 | total_line_length += segment.length |
---|
825 | |
---|
826 | # Compute and sum flows across each segment |
---|
827 | average_energy = 0.0 |
---|
828 | for i in range(len(w)): |
---|
829 | # Average velocity across this segment |
---|
830 | if h[i] > epsilon: |
---|
831 | # Use protection against degenerate velocities |
---|
832 | u = uh[i]/(h[i] + h0/h[i]) |
---|
833 | v = vh[i]/(h[i] + h0/h[i]) |
---|
834 | else: |
---|
835 | u = v = 0.0 |
---|
836 | |
---|
837 | speed_squared = u*u + v*v |
---|
838 | kinetic_energy = 0.5*speed_squared/g |
---|
839 | |
---|
840 | if kind == 'specific': |
---|
841 | segment_energy = h[i] + kinetic_energy |
---|
842 | elif kind == 'total': |
---|
843 | segment_energy = w[i] + kinetic_energy |
---|
844 | else: |
---|
845 | msg = 'Energy kind must be either "specific" or "total".' |
---|
846 | msg += ' I got %s' %kind |
---|
847 | |
---|
848 | # Add to weighted average |
---|
849 | weigth = self.segments[i].length/total_line_length |
---|
850 | average_energy += segment_energy*weigth |
---|
851 | |
---|
852 | return average_energy |
---|
853 | |
---|