[7276] | 1 | """ |
---|
| 2 | Finite-volume computations of the shallow water wave equation. |
---|
[4004] | 3 | |
---|
[4005] | 4 | Title: ANGUA shallow_water_domain - 2D triangular domains for finite-volume |
---|
| 5 | computations of the shallow water wave equation. |
---|
[3804] | 6 | |
---|
| 7 | |
---|
[5186] | 8 | Author: Ole Nielsen, Ole.Nielsen@ga.gov.au |
---|
| 9 | Stephen Roberts, Stephen.Roberts@anu.edu.au |
---|
| 10 | Duncan Gray, Duncan.Gray@ga.gov.au |
---|
[4004] | 11 | |
---|
| 12 | CreationDate: 2004 |
---|
| 13 | |
---|
| 14 | Description: |
---|
[4005] | 15 | This module contains a specialisation of class Domain from |
---|
| 16 | module domain.py consisting of methods specific to the |
---|
| 17 | Shallow Water Wave Equation |
---|
[4004] | 18 | |
---|
[4005] | 19 | U_t + E_x + G_y = S |
---|
[3804] | 20 | |
---|
[4005] | 21 | where |
---|
[3804] | 22 | |
---|
[4005] | 23 | U = [w, uh, vh] |
---|
| 24 | E = [uh, u^2h + gh^2/2, uvh] |
---|
| 25 | G = [vh, uvh, v^2h + gh^2/2] |
---|
| 26 | S represents source terms forcing the system |
---|
| 27 | (e.g. gravity, friction, wind stress, ...) |
---|
[3804] | 28 | |
---|
[4005] | 29 | and _t, _x, _y denote the derivative with respect to t, x and y |
---|
| 30 | respectively. |
---|
[3804] | 31 | |
---|
| 32 | |
---|
[4005] | 33 | The quantities are |
---|
[3804] | 34 | |
---|
[4005] | 35 | symbol variable name explanation |
---|
| 36 | x x horizontal distance from origin [m] |
---|
| 37 | y y vertical distance from origin [m] |
---|
| 38 | z elevation elevation of bed on which flow is modelled [m] |
---|
| 39 | h height water height above z [m] |
---|
| 40 | w stage absolute water level, w = z+h [m] |
---|
| 41 | u speed in the x direction [m/s] |
---|
| 42 | v speed in the y direction [m/s] |
---|
| 43 | uh xmomentum momentum in the x direction [m^2/s] |
---|
| 44 | vh ymomentum momentum in the y direction [m^2/s] |
---|
[3804] | 45 | |
---|
[4005] | 46 | eta mannings friction coefficient [to appear] |
---|
| 47 | nu wind stress coefficient [to appear] |
---|
[3804] | 48 | |
---|
[4005] | 49 | The conserved quantities are w, uh, vh |
---|
[3804] | 50 | |
---|
[4004] | 51 | Reference: |
---|
[4005] | 52 | Catastrophic Collapse of Water Supply Reservoirs in Urban Areas, |
---|
| 53 | Christopher Zoppou and Stephen Roberts, |
---|
| 54 | Journal of Hydraulic Engineering, vol. 127, No. 7 July 1999 |
---|
[3804] | 55 | |
---|
[7276] | 56 | Hydrodynamic modelling of coastal inundation. |
---|
[4005] | 57 | Nielsen, O., S. Roberts, D. Gray, A. McPherson and A. Hitchman |
---|
| 58 | In Zerger, A. and Argent, R.M. (eds) MODSIM 2005 International Congress on |
---|
| 59 | Modelling and Simulation. Modelling and Simulation Society of Australia and |
---|
| 60 | New Zealand, December 2005, pp. 518-523. ISBN: 0-9758400-2-9. |
---|
| 61 | http://www.mssanz.org.au/modsim05/papers/nielsen.pdf |
---|
[3804] | 62 | |
---|
| 63 | |
---|
[4005] | 64 | SeeAlso: |
---|
| 65 | TRAC administration of ANUGA (User Manuals etc) at |
---|
| 66 | https://datamining.anu.edu.au/anuga and Subversion repository at |
---|
[7870] | 67 | $HeadURL: https://datamining.anu.edu.au/svn/anuga/trunk/anuga_core/source/ |
---|
| 68 | anuga/shallow_water/shallow_water_domain.py $ |
---|
[3804] | 69 | |
---|
[4004] | 70 | Constraints: See GPL license in the user guide |
---|
| 71 | Version: 1.0 ($Revision: 7870 $) |
---|
| 72 | ModifiedBy: |
---|
[4005] | 73 | $Author: hudson $ |
---|
| 74 | $Date: 2010-06-23 04:33:54 +0000 (Wed, 23 Jun 2010) $ |
---|
[3804] | 75 | """ |
---|
| 76 | |
---|
| 77 | |
---|
[7276] | 78 | import numpy as num |
---|
| 79 | |
---|
[7736] | 80 | from anuga.abstract_2d_finite_volumes.generic_domain \ |
---|
| 81 | import Generic_Domain |
---|
[6928] | 82 | |
---|
[7733] | 83 | from anuga.shallow_water.forcing import Cross_section |
---|
[7870] | 84 | from anuga.utilities.numerical_tools import mean |
---|
[7776] | 85 | from anuga.file.sww import SWW_file |
---|
[7870] | 86 | |
---|
[7317] | 87 | import anuga.utilities.log as log |
---|
[5294] | 88 | |
---|
[7342] | 89 | import types |
---|
[5294] | 90 | |
---|
[3804] | 91 | class Domain(Generic_Domain): |
---|
[7870] | 92 | """ Class for a shallow water domain.""" |
---|
[3804] | 93 | def __init__(self, |
---|
| 94 | coordinates=None, |
---|
| 95 | vertices=None, |
---|
| 96 | boundary=None, |
---|
| 97 | tagged_elements=None, |
---|
| 98 | geo_reference=None, |
---|
| 99 | use_inscribed_circle=False, |
---|
| 100 | mesh_filename=None, |
---|
| 101 | use_cache=False, |
---|
| 102 | verbose=False, |
---|
[7573] | 103 | conserved_quantities = None, |
---|
[7519] | 104 | evolved_quantities = None, |
---|
| 105 | other_quantities = None, |
---|
[3804] | 106 | full_send_dict=None, |
---|
| 107 | ghost_recv_dict=None, |
---|
| 108 | processor=0, |
---|
[3926] | 109 | numproc=1, |
---|
[3928] | 110 | number_of_full_nodes=None, |
---|
| 111 | number_of_full_triangles=None): |
---|
[7870] | 112 | """ |
---|
| 113 | Instantiate a shallow water domain. |
---|
| 114 | coordinates - vertex locations for the mesh |
---|
| 115 | vertices - vertex indices for the mesh |
---|
| 116 | boundary - boundaries of the mesh |
---|
| 117 | # @param tagged_elements |
---|
| 118 | # @param geo_reference |
---|
| 119 | # @param use_inscribed_circle |
---|
| 120 | # @param mesh_filename |
---|
| 121 | # @param use_cache |
---|
| 122 | # @param verbose |
---|
| 123 | # @param evolved_quantities |
---|
| 124 | # @param full_send_dict |
---|
| 125 | # @param ghost_recv_dict |
---|
| 126 | # @param processor |
---|
| 127 | # @param numproc |
---|
| 128 | # @param number_of_full_nodes |
---|
| 129 | # @param number_of_full_triangles |
---|
| 130 | """ |
---|
[3804] | 131 | |
---|
[7573] | 132 | # Define quantities for the shallow_water domain |
---|
| 133 | if conserved_quantities == None: |
---|
| 134 | conserved_quantities = ['stage', 'xmomentum', 'ymomentum'] |
---|
[7519] | 135 | |
---|
[7573] | 136 | if evolved_quantities == None: |
---|
| 137 | evolved_quantities = ['stage', 'xmomentum', 'ymomentum'] |
---|
| 138 | |
---|
[7519] | 139 | if other_quantities == None: |
---|
| 140 | other_quantities = ['elevation', 'friction'] |
---|
[7342] | 141 | |
---|
[3804] | 142 | Generic_Domain.__init__(self, |
---|
[7870] | 143 | coordinates, |
---|
| 144 | vertices, |
---|
| 145 | boundary, |
---|
| 146 | conserved_quantities, |
---|
| 147 | evolved_quantities, |
---|
| 148 | other_quantities, |
---|
| 149 | tagged_elements, |
---|
| 150 | geo_reference, |
---|
| 151 | use_inscribed_circle, |
---|
| 152 | mesh_filename, |
---|
| 153 | use_cache, |
---|
| 154 | verbose, |
---|
| 155 | full_send_dict, |
---|
| 156 | ghost_recv_dict, |
---|
| 157 | processor, |
---|
| 158 | numproc, |
---|
| 159 | number_of_full_nodes=number_of_full_nodes, |
---|
| 160 | number_of_full_triangles=number_of_full_triangles) |
---|
[3804] | 161 | |
---|
[7562] | 162 | self.set_defaults() |
---|
| 163 | |
---|
| 164 | |
---|
| 165 | self.forcing_terms.append(manning_friction_implicit) |
---|
| 166 | self.forcing_terms.append(gravity) |
---|
| 167 | |
---|
| 168 | # Stored output |
---|
| 169 | self.store = True |
---|
| 170 | self.set_store_vertices_uniquely(False) |
---|
| 171 | |
---|
| 172 | self.quantities_to_be_stored = {'elevation': 1, |
---|
| 173 | 'stage': 2, |
---|
| 174 | 'xmomentum': 2, |
---|
| 175 | 'ymomentum': 2} |
---|
| 176 | |
---|
| 177 | |
---|
| 178 | def set_defaults(self): |
---|
| 179 | """Set the default values in this routine. That way we can inherit class |
---|
| 180 | and just over redefine the defaults for the new class |
---|
| 181 | """ |
---|
| 182 | |
---|
| 183 | from anuga.config import minimum_storable_height |
---|
| 184 | from anuga.config import minimum_allowed_height, maximum_allowed_speed |
---|
[7870] | 185 | from anuga.config import g, beta_w, beta_w_dry, \ |
---|
[7562] | 186 | beta_uh, beta_uh_dry, beta_vh, beta_vh_dry, tight_slope_limiters |
---|
| 187 | from anuga.config import alpha_balance |
---|
| 188 | from anuga.config import optimise_dry_cells |
---|
| 189 | from anuga.config import optimised_gradient_limiter |
---|
| 190 | from anuga.config import use_edge_limiter |
---|
| 191 | from anuga.config import use_centroid_velocities |
---|
| 192 | |
---|
[7276] | 193 | self.set_minimum_allowed_height(minimum_allowed_height) |
---|
[7562] | 194 | self.maximum_allowed_speed = maximum_allowed_speed |
---|
[4769] | 195 | |
---|
[3804] | 196 | self.g = g |
---|
[7276] | 197 | self.beta_w = beta_w |
---|
| 198 | self.beta_w_dry = beta_w_dry |
---|
| 199 | self.beta_uh = beta_uh |
---|
[3804] | 200 | self.beta_uh_dry = beta_uh_dry |
---|
[7276] | 201 | self.beta_vh = beta_vh |
---|
[3804] | 202 | self.beta_vh_dry = beta_vh_dry |
---|
[3876] | 203 | self.alpha_balance = alpha_balance |
---|
[3804] | 204 | |
---|
[4631] | 205 | self.tight_slope_limiters = tight_slope_limiters |
---|
[4685] | 206 | self.optimise_dry_cells = optimise_dry_cells |
---|
[4239] | 207 | |
---|
[7562] | 208 | |
---|
| 209 | self.set_new_mannings_function(False) |
---|
[3804] | 210 | |
---|
| 211 | self.minimum_storable_height = minimum_storable_height |
---|
[5162] | 212 | |
---|
[7562] | 213 | # Limiters |
---|
[5175] | 214 | self.use_edge_limiter = use_edge_limiter |
---|
[5162] | 215 | self.optimised_gradient_limiter = optimised_gradient_limiter |
---|
[7562] | 216 | self.use_centroid_velocities = use_centroid_velocities |
---|
[3804] | 217 | |
---|
[7870] | 218 | |
---|
[7519] | 219 | def set_new_mannings_function(self, flag=True): |
---|
| 220 | """Cludge to allow unit test to pass, but to |
---|
| 221 | also introduce new mannings friction function |
---|
| 222 | which takes into account the slope of the bed. |
---|
| 223 | The flag is tested in the python wrapper |
---|
| 224 | mannings_friction_implicit |
---|
| 225 | """ |
---|
| 226 | if flag: |
---|
| 227 | self.use_new_mannings = True |
---|
| 228 | else: |
---|
| 229 | self.use_new_mannings = False |
---|
| 230 | |
---|
| 231 | |
---|
| 232 | def set_use_edge_limiter(self, flag=True): |
---|
| 233 | """Cludge to allow unit test to pass, but to |
---|
| 234 | also introduce new edge limiting. The flag is |
---|
| 235 | tested in distribute_to_vertices_and_edges |
---|
| 236 | """ |
---|
| 237 | if flag: |
---|
| 238 | self.use_edge_limiter = True |
---|
| 239 | else: |
---|
| 240 | self.use_edge_limiter = False |
---|
| 241 | |
---|
| 242 | |
---|
[3848] | 243 | def set_all_limiters(self, beta): |
---|
[7276] | 244 | """Shorthand to assign one constant value [0,1] to all limiters. |
---|
[3847] | 245 | 0 Corresponds to first order, where as larger values make use of |
---|
[7276] | 246 | the second order scheme. |
---|
[3847] | 247 | """ |
---|
[3804] | 248 | |
---|
[7276] | 249 | self.beta_w = beta |
---|
| 250 | self.beta_w_dry = beta |
---|
[5162] | 251 | self.quantities['stage'].beta = beta |
---|
[7276] | 252 | |
---|
| 253 | self.beta_uh = beta |
---|
[3847] | 254 | self.beta_uh_dry = beta |
---|
[5162] | 255 | self.quantities['xmomentum'].beta = beta |
---|
[7276] | 256 | |
---|
| 257 | self.beta_vh = beta |
---|
[3847] | 258 | self.beta_vh_dry = beta |
---|
[5162] | 259 | self.quantities['ymomentum'].beta = beta |
---|
[3847] | 260 | |
---|
[7870] | 261 | |
---|
[3804] | 262 | def set_store_vertices_uniquely(self, flag, reduction=None): |
---|
| 263 | """Decide whether vertex values should be stored uniquely as |
---|
[7312] | 264 | computed in the model (True) or whether they should be reduced to one |
---|
| 265 | value per vertex using self.reduction (False). |
---|
[3804] | 266 | """ |
---|
[3954] | 267 | |
---|
[7312] | 268 | # FIXME (Ole): how about using the word "continuous vertex values" or |
---|
| 269 | # "continuous stage surface" |
---|
[3804] | 270 | self.smooth = not flag |
---|
| 271 | |
---|
[4733] | 272 | # Reduction operation for get_vertex_values |
---|
[3804] | 273 | if reduction is None: |
---|
| 274 | self.reduction = mean |
---|
| 275 | #self.reduction = min #Looks better near steep slopes |
---|
| 276 | |
---|
[7276] | 277 | ## |
---|
| 278 | # @brief Set the minimum depth that will be written to an SWW file. |
---|
| 279 | # @param minimum_storable_height The minimum stored height (in m). |
---|
[3804] | 280 | def set_minimum_storable_height(self, minimum_storable_height): |
---|
[7276] | 281 | """Set the minimum depth that will be recognised when writing |
---|
[3804] | 282 | to an sww file. This is useful for removing thin water layers |
---|
| 283 | that seems to be caused by friction creep. |
---|
| 284 | |
---|
| 285 | The minimum allowed sww depth is in meters. |
---|
| 286 | """ |
---|
[7276] | 287 | |
---|
[3804] | 288 | self.minimum_storable_height = minimum_storable_height |
---|
[4258] | 289 | |
---|
[7276] | 290 | ## |
---|
| 291 | # @brief |
---|
| 292 | # @param minimum_allowed_height |
---|
[4258] | 293 | def set_minimum_allowed_height(self, minimum_allowed_height): |
---|
[7276] | 294 | """Set minimum depth that will be recognised in the numerical scheme. |
---|
[4258] | 295 | |
---|
| 296 | The minimum allowed depth is in meters. |
---|
| 297 | |
---|
| 298 | The parameter H0 (Minimal height for flux computation) |
---|
| 299 | is also set by this function |
---|
| 300 | """ |
---|
[4438] | 301 | |
---|
| 302 | #FIXME (Ole): rename H0 to minimum_allowed_height_in_flux_computation |
---|
[4701] | 303 | |
---|
| 304 | #FIXME (Ole): Maybe use histogram to identify isolated extreme speeds |
---|
| 305 | #and deal with them adaptively similarly to how we used to use 1 order |
---|
| 306 | #steps to recover. |
---|
[7276] | 307 | |
---|
[4258] | 308 | self.minimum_allowed_height = minimum_allowed_height |
---|
[7276] | 309 | self.H0 = minimum_allowed_height |
---|
[3804] | 310 | |
---|
[7276] | 311 | ## |
---|
| 312 | # @brief |
---|
| 313 | # @param maximum_allowed_speed |
---|
[3804] | 314 | def set_maximum_allowed_speed(self, maximum_allowed_speed): |
---|
[7276] | 315 | """Set the maximum particle speed that is allowed in water |
---|
[3804] | 316 | shallower than minimum_allowed_height. This is useful for |
---|
| 317 | controlling speeds in very thin layers of water and at the same time |
---|
| 318 | allow some movement avoiding pooling of water. |
---|
[7276] | 319 | """ |
---|
[3804] | 320 | |
---|
| 321 | self.maximum_allowed_speed = maximum_allowed_speed |
---|
| 322 | |
---|
[7276] | 323 | ## |
---|
| 324 | # @brief |
---|
| 325 | # @param points_file_block_line_size |
---|
| 326 | def set_points_file_block_line_size(self, points_file_block_line_size): |
---|
| 327 | """Set the minimum depth that will be recognised when writing |
---|
[4254] | 328 | to an sww file. This is useful for removing thin water layers |
---|
| 329 | that seems to be caused by friction creep. |
---|
| 330 | |
---|
| 331 | The minimum allowed sww depth is in meters. |
---|
| 332 | """ |
---|
| 333 | self.points_file_block_line_size = points_file_block_line_size |
---|
[7276] | 334 | |
---|
[7342] | 335 | |
---|
| 336 | # FIXME: Probably obsolete in its curren form |
---|
[7276] | 337 | ## |
---|
| 338 | # @brief Set the quantities that will be written to an SWW file. |
---|
| 339 | # @param q The quantities to be written. |
---|
| 340 | # @note Param 'q' may be None, single quantity or list of quantity strings. |
---|
| 341 | # @note If 'q' is None, no quantities will be stored in the SWW file. |
---|
[3804] | 342 | def set_quantities_to_be_stored(self, q): |
---|
[7342] | 343 | """Specify which quantities will be stored in the sww file |
---|
| 344 | |
---|
[3804] | 345 | q must be either: |
---|
[7342] | 346 | - a dictionary with quantity names |
---|
| 347 | - a list of quantity names (for backwards compatibility) |
---|
[3804] | 348 | - None |
---|
| 349 | |
---|
[7342] | 350 | The format of the dictionary is as follows |
---|
| 351 | |
---|
| 352 | quantity_name: flag where flag must be either 1 or 2. |
---|
| 353 | If flag is 1, the quantity is considered static and will be |
---|
| 354 | stored once at the beginning of the simulation in a 1D array. |
---|
| 355 | |
---|
| 356 | If flag is 2, the quantity is considered time dependent and |
---|
| 357 | it will be stored at each yieldstep by appending it to the |
---|
| 358 | appropriate 2D array in the sww file. |
---|
| 359 | |
---|
[3804] | 360 | If q is None, storage will be switched off altogether. |
---|
[7342] | 361 | |
---|
| 362 | Once the simulation has started and thw sww file opened, |
---|
| 363 | this function will have no effect. |
---|
| 364 | |
---|
[7870] | 365 | The format, where q is a list of names is for backwards compatibility |
---|
| 366 | only. |
---|
[7342] | 367 | It will take the specified quantities to be time dependent and assume |
---|
| 368 | 'elevation' to be static regardless. |
---|
[3804] | 369 | """ |
---|
| 370 | |
---|
| 371 | if q is None: |
---|
[7342] | 372 | self.quantities_to_be_stored = {} |
---|
[3804] | 373 | self.store = False |
---|
| 374 | return |
---|
| 375 | |
---|
[7870] | 376 | # Check correctness |
---|
[3804] | 377 | for quantity_name in q: |
---|
[7276] | 378 | msg = ('Quantity %s is not a valid conserved quantity' |
---|
| 379 | % quantity_name) |
---|
[7342] | 380 | assert quantity_name in self.quantities, msg |
---|
[3804] | 381 | |
---|
[7342] | 382 | assert type(q) == types.DictType |
---|
[3804] | 383 | self.quantities_to_be_stored = q |
---|
| 384 | |
---|
[7276] | 385 | ## |
---|
| 386 | # @brief |
---|
| 387 | # @param indices |
---|
[3804] | 388 | def get_wet_elements(self, indices=None): |
---|
| 389 | """Return indices for elements where h > minimum_allowed_height |
---|
| 390 | |
---|
| 391 | Optional argument: |
---|
| 392 | indices is the set of element ids that the operation applies to. |
---|
| 393 | |
---|
| 394 | Usage: |
---|
| 395 | indices = get_wet_elements() |
---|
| 396 | |
---|
[7276] | 397 | Note, centroid values are used for this operation |
---|
[3804] | 398 | """ |
---|
| 399 | |
---|
| 400 | # Water depth below which it is considered to be 0 in the model |
---|
| 401 | # FIXME (Ole): Allow this to be specified as a keyword argument as well |
---|
| 402 | from anuga.config import minimum_allowed_height |
---|
| 403 | |
---|
| 404 | elevation = self.get_quantity('elevation').\ |
---|
[7276] | 405 | get_values(location='centroids', indices=indices) |
---|
| 406 | stage = self.get_quantity('stage').\ |
---|
[3804] | 407 | get_values(location='centroids', indices=indices) |
---|
| 408 | depth = stage - elevation |
---|
| 409 | |
---|
| 410 | # Select indices for which depth > 0 |
---|
[6157] | 411 | wet_indices = num.compress(depth > minimum_allowed_height, |
---|
| 412 | num.arange(len(depth))) |
---|
[7276] | 413 | return wet_indices |
---|
[3804] | 414 | |
---|
[7276] | 415 | ## |
---|
| 416 | # @brief |
---|
| 417 | # @param indices |
---|
[3804] | 418 | def get_maximum_inundation_elevation(self, indices=None): |
---|
| 419 | """Return highest elevation where h > 0 |
---|
| 420 | |
---|
| 421 | Optional argument: |
---|
| 422 | indices is the set of element ids that the operation applies to. |
---|
| 423 | |
---|
| 424 | Usage: |
---|
| 425 | q = get_maximum_inundation_elevation() |
---|
| 426 | |
---|
[7276] | 427 | Note, centroid values are used for this operation |
---|
[3804] | 428 | """ |
---|
| 429 | |
---|
| 430 | wet_elements = self.get_wet_elements(indices) |
---|
| 431 | return self.get_quantity('elevation').\ |
---|
[7276] | 432 | get_maximum_value(indices=wet_elements) |
---|
[3804] | 433 | |
---|
[7276] | 434 | ## |
---|
| 435 | # @brief |
---|
| 436 | # @param indices |
---|
[3804] | 437 | def get_maximum_inundation_location(self, indices=None): |
---|
[4554] | 438 | """Return location of highest elevation where h > 0 |
---|
[3804] | 439 | |
---|
| 440 | Optional argument: |
---|
| 441 | indices is the set of element ids that the operation applies to. |
---|
| 442 | |
---|
| 443 | Usage: |
---|
[4554] | 444 | q = get_maximum_inundation_location() |
---|
[3804] | 445 | |
---|
[7276] | 446 | Note, centroid values are used for this operation |
---|
[3804] | 447 | """ |
---|
| 448 | |
---|
| 449 | wet_elements = self.get_wet_elements(indices) |
---|
| 450 | return self.get_quantity('elevation').\ |
---|
[7276] | 451 | get_maximum_location(indices=wet_elements) |
---|
| 452 | |
---|
[7350] | 453 | |
---|
[7276] | 454 | def get_flow_through_cross_section(self, polyline, verbose=False): |
---|
| 455 | """Get the total flow through an arbitrary poly line. |
---|
| 456 | |
---|
| 457 | This is a run-time equivalent of the function with same name |
---|
[7778] | 458 | in sww_interrogate.py |
---|
[7276] | 459 | |
---|
[5729] | 460 | Input: |
---|
[7276] | 461 | polyline: Representation of desired cross section - it may contain |
---|
| 462 | multiple sections allowing for complex shapes. Assume |
---|
[5729] | 463 | absolute UTM coordinates. |
---|
[7276] | 464 | Format [[x0, y0], [x1, y1], ...] |
---|
| 465 | |
---|
| 466 | Output: |
---|
[5729] | 467 | Q: Total flow [m^3/s] across given segments. |
---|
[7276] | 468 | """ |
---|
| 469 | |
---|
[7350] | 470 | |
---|
| 471 | cross_section = Cross_section(self, polyline, verbose) |
---|
| 472 | |
---|
| 473 | return cross_section.get_flow_through_cross_section() |
---|
| 474 | |
---|
| 475 | |
---|
[7452] | 476 | def get_energy_through_cross_section(self, polyline, |
---|
[7352] | 477 | kind='total', |
---|
| 478 | verbose=False): |
---|
| 479 | """Obtain average energy head [m] across specified cross section. |
---|
| 480 | |
---|
| 481 | Inputs: |
---|
| 482 | polyline: Representation of desired cross section - it may contain |
---|
| 483 | multiple sections allowing for complex shapes. Assume |
---|
| 484 | absolute UTM coordinates. |
---|
| 485 | Format [[x0, y0], [x1, y1], ...] |
---|
| 486 | kind: Select which energy to compute. |
---|
| 487 | Options are 'specific' and 'total' (default) |
---|
| 488 | |
---|
| 489 | Output: |
---|
| 490 | E: Average energy [m] across given segments for all stored times. |
---|
| 491 | |
---|
| 492 | The average velocity is computed for each triangle intersected by |
---|
| 493 | the polyline and averaged weighted by segment lengths. |
---|
| 494 | |
---|
| 495 | The typical usage of this function would be to get average energy of |
---|
| 496 | flow in a channel, and the polyline would then be a cross section |
---|
| 497 | perpendicular to the flow. |
---|
| 498 | |
---|
| 499 | #FIXME (Ole) - need name for this energy reflecting that its dimension |
---|
| 500 | is [m]. |
---|
| 501 | """ |
---|
| 502 | |
---|
| 503 | |
---|
| 504 | |
---|
| 505 | cross_section = Cross_section(self, polyline, verbose) |
---|
| 506 | |
---|
[7452] | 507 | return cross_section.get_energy_through_cross_section(kind) |
---|
[7352] | 508 | |
---|
| 509 | |
---|
[3804] | 510 | def check_integrity(self): |
---|
[7870] | 511 | """ Run integrity checks on shallow water domain. """ |
---|
[3804] | 512 | Generic_Domain.check_integrity(self) |
---|
| 513 | |
---|
| 514 | #Check that we are solving the shallow water wave equation |
---|
| 515 | msg = 'First conserved quantity must be "stage"' |
---|
| 516 | assert self.conserved_quantities[0] == 'stage', msg |
---|
| 517 | msg = 'Second conserved quantity must be "xmomentum"' |
---|
| 518 | assert self.conserved_quantities[1] == 'xmomentum', msg |
---|
| 519 | msg = 'Third conserved quantity must be "ymomentum"' |
---|
| 520 | assert self.conserved_quantities[2] == 'ymomentum', msg |
---|
| 521 | |
---|
| 522 | def extrapolate_second_order_sw(self): |
---|
[7870] | 523 | """Call correct module function |
---|
| 524 | (either from this module or C-extension)""" |
---|
[3804] | 525 | extrapolate_second_order_sw(self) |
---|
| 526 | |
---|
| 527 | def compute_fluxes(self): |
---|
[7870] | 528 | """Call correct module function |
---|
| 529 | (either from this module or C-extension)""" |
---|
[3804] | 530 | compute_fluxes(self) |
---|
| 531 | |
---|
| 532 | def distribute_to_vertices_and_edges(self): |
---|
[7870] | 533 | """ Call correct module function """ |
---|
[5176] | 534 | if self.use_edge_limiter: |
---|
[7276] | 535 | distribute_using_edge_limiter(self) |
---|
[5175] | 536 | else: |
---|
[5306] | 537 | distribute_using_vertex_limiter(self) |
---|
[3804] | 538 | |
---|
[7352] | 539 | |
---|
| 540 | |
---|
[3804] | 541 | def evolve(self, |
---|
[7276] | 542 | yieldstep=None, |
---|
| 543 | finaltime=None, |
---|
| 544 | duration=None, |
---|
| 545 | skip_initial_step=False): |
---|
[7870] | 546 | """Specialisation of basic evolve method from parent class. |
---|
| 547 | |
---|
| 548 | Evolve the model by 1 step. |
---|
| 549 | """ |
---|
[3804] | 550 | |
---|
[4769] | 551 | # Call check integrity here rather than from user scripts |
---|
| 552 | # self.check_integrity() |
---|
[3804] | 553 | |
---|
[7276] | 554 | msg = 'Attribute self.beta_w must be in the interval [0, 2]' |
---|
[5162] | 555 | assert 0 <= self.beta_w <= 2.0, msg |
---|
[3804] | 556 | |
---|
[4769] | 557 | # Initial update of vertex and edge values before any STORAGE |
---|
[7276] | 558 | # and or visualisation. |
---|
[4769] | 559 | # This is done again in the initialisation of the Generic_Domain |
---|
[7276] | 560 | # evolve loop but we do it here to ensure the values are ok for storage. |
---|
[3804] | 561 | self.distribute_to_vertices_and_edges() |
---|
| 562 | |
---|
| 563 | if self.store is True and self.time == 0.0: |
---|
| 564 | self.initialise_storage() |
---|
| 565 | |
---|
[4769] | 566 | # Call basic machinery from parent class |
---|
[7276] | 567 | for t in Generic_Domain.evolve(self, yieldstep=yieldstep, |
---|
| 568 | finaltime=finaltime, duration=duration, |
---|
[3804] | 569 | skip_initial_step=skip_initial_step): |
---|
[4769] | 570 | # Store model data, e.g. for subsequent visualisation |
---|
[3804] | 571 | if self.store is True: |
---|
[7340] | 572 | self.store_timestep() |
---|
[3804] | 573 | |
---|
[4769] | 574 | # Pass control on to outer loop for more specific actions |
---|
[3804] | 575 | yield(t) |
---|
| 576 | |
---|
[7870] | 577 | |
---|
[3804] | 578 | def initialise_storage(self): |
---|
| 579 | """Create and initialise self.writer object for storing data. |
---|
| 580 | Also, save x,y and bed elevation |
---|
| 581 | """ |
---|
[7342] | 582 | |
---|
[4769] | 583 | # Initialise writer |
---|
[7340] | 584 | self.writer = SWW_file(self) |
---|
[3804] | 585 | |
---|
[4769] | 586 | # Store vertices and connectivity |
---|
[3804] | 587 | self.writer.store_connectivity() |
---|
| 588 | |
---|
[7870] | 589 | |
---|
[7340] | 590 | def store_timestep(self): |
---|
| 591 | """Store time dependent quantities and time. |
---|
[3804] | 592 | |
---|
| 593 | Precondition: |
---|
[7340] | 594 | self.writer has been initialised |
---|
[3804] | 595 | """ |
---|
[7276] | 596 | |
---|
[7340] | 597 | self.writer.store_timestep() |
---|
[3804] | 598 | |
---|
[7870] | 599 | |
---|
[4836] | 600 | def timestepping_statistics(self, |
---|
| 601 | track_speeds=False, |
---|
[7276] | 602 | triangle_id=None): |
---|
[4827] | 603 | """Return string with time stepping statistics for printing or logging |
---|
[3804] | 604 | |
---|
[4827] | 605 | Optional boolean keyword track_speeds decides whether to report |
---|
| 606 | location of smallest timestep as well as a histogram and percentile |
---|
| 607 | report. |
---|
| 608 | """ |
---|
| 609 | |
---|
[7276] | 610 | from anuga.config import epsilon, g |
---|
[4827] | 611 | |
---|
| 612 | # Call basic machinery from parent class |
---|
[7276] | 613 | msg = Generic_Domain.timestepping_statistics(self, track_speeds, |
---|
[4836] | 614 | triangle_id) |
---|
[4827] | 615 | |
---|
| 616 | if track_speeds is True: |
---|
| 617 | # qwidth determines the text field used for quantities |
---|
| 618 | qwidth = self.qwidth |
---|
[7276] | 619 | |
---|
[4836] | 620 | # Selected triangle |
---|
[4827] | 621 | k = self.k |
---|
| 622 | |
---|
| 623 | # Report some derived quantities at vertices, edges and centroid |
---|
| 624 | # specific to the shallow water wave equation |
---|
| 625 | z = self.quantities['elevation'] |
---|
[7276] | 626 | w = self.quantities['stage'] |
---|
[4827] | 627 | |
---|
| 628 | Vw = w.get_values(location='vertices', indices=[k])[0] |
---|
| 629 | Ew = w.get_values(location='edges', indices=[k])[0] |
---|
| 630 | Cw = w.get_values(location='centroids', indices=[k]) |
---|
| 631 | |
---|
| 632 | Vz = z.get_values(location='vertices', indices=[k])[0] |
---|
| 633 | Ez = z.get_values(location='edges', indices=[k])[0] |
---|
[7276] | 634 | Cz = z.get_values(location='centroids', indices=[k]) |
---|
[4827] | 635 | |
---|
| 636 | name = 'depth' |
---|
| 637 | Vh = Vw-Vz |
---|
| 638 | Eh = Ew-Ez |
---|
| 639 | Ch = Cw-Cz |
---|
[7276] | 640 | |
---|
[7870] | 641 | message = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
| 642 | % (name.ljust(qwidth), Vh[0], Vh[1], Vh[2]) |
---|
[7276] | 643 | |
---|
[7870] | 644 | message += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
| 645 | % (name.ljust(qwidth), Eh[0], Eh[1], Eh[2]) |
---|
[7276] | 646 | |
---|
[7870] | 647 | message += ' %s: centroid_value = %.4f\n'\ |
---|
| 648 | % (name.ljust(qwidth), Ch[0]) |
---|
[7276] | 649 | |
---|
[7870] | 650 | msg += message |
---|
[4827] | 651 | |
---|
| 652 | uh = self.quantities['xmomentum'] |
---|
| 653 | vh = self.quantities['ymomentum'] |
---|
| 654 | |
---|
| 655 | Vuh = uh.get_values(location='vertices', indices=[k])[0] |
---|
| 656 | Euh = uh.get_values(location='edges', indices=[k])[0] |
---|
| 657 | Cuh = uh.get_values(location='centroids', indices=[k]) |
---|
[7276] | 658 | |
---|
[4827] | 659 | Vvh = vh.get_values(location='vertices', indices=[k])[0] |
---|
| 660 | Evh = vh.get_values(location='edges', indices=[k])[0] |
---|
| 661 | Cvh = vh.get_values(location='centroids', indices=[k]) |
---|
| 662 | |
---|
| 663 | # Speeds in each direction |
---|
| 664 | Vu = Vuh/(Vh + epsilon) |
---|
| 665 | Eu = Euh/(Eh + epsilon) |
---|
[7276] | 666 | Cu = Cuh/(Ch + epsilon) |
---|
[4827] | 667 | name = 'U' |
---|
[7870] | 668 | message = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n' \ |
---|
| 669 | % (name.ljust(qwidth), Vu[0], Vu[1], Vu[2]) |
---|
[7276] | 670 | |
---|
[7870] | 671 | message += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n' \ |
---|
| 672 | % (name.ljust(qwidth), Eu[0], Eu[1], Eu[2]) |
---|
[7276] | 673 | |
---|
[7870] | 674 | message += ' %s: centroid_value = %.4f\n' \ |
---|
| 675 | % (name.ljust(qwidth), Cu[0]) |
---|
[7276] | 676 | |
---|
[7870] | 677 | msg += message |
---|
[4827] | 678 | |
---|
| 679 | Vv = Vvh/(Vh + epsilon) |
---|
| 680 | Ev = Evh/(Eh + epsilon) |
---|
[7276] | 681 | Cv = Cvh/(Ch + epsilon) |
---|
[4827] | 682 | name = 'V' |
---|
[7870] | 683 | message = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n' \ |
---|
| 684 | % (name.ljust(qwidth), Vv[0], Vv[1], Vv[2]) |
---|
[7276] | 685 | |
---|
[7870] | 686 | message += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n' \ |
---|
| 687 | % (name.ljust(qwidth), Ev[0], Ev[1], Ev[2]) |
---|
[7276] | 688 | |
---|
[7870] | 689 | message += ' %s: centroid_value = %.4f\n'\ |
---|
[7276] | 690 | %(name.ljust(qwidth), Cv[0]) |
---|
| 691 | |
---|
[7870] | 692 | msg += message |
---|
[4827] | 693 | |
---|
| 694 | # Froude number in each direction |
---|
| 695 | name = 'Froude (x)' |
---|
[6157] | 696 | Vfx = Vu/(num.sqrt(g*Vh) + epsilon) |
---|
| 697 | Efx = Eu/(num.sqrt(g*Eh) + epsilon) |
---|
| 698 | Cfx = Cu/(num.sqrt(g*Ch) + epsilon) |
---|
[7276] | 699 | |
---|
[7870] | 700 | message = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
| 701 | % (name.ljust(qwidth), Vfx[0], Vfx[1], Vfx[2]) |
---|
[7276] | 702 | |
---|
[7870] | 703 | message += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
| 704 | % (name.ljust(qwidth), Efx[0], Efx[1], Efx[2]) |
---|
[7276] | 705 | |
---|
[7870] | 706 | message += ' %s: centroid_value = %.4f\n'\ |
---|
| 707 | % (name.ljust(qwidth), Cfx[0]) |
---|
[7276] | 708 | |
---|
[7870] | 709 | msg += message |
---|
[4827] | 710 | |
---|
| 711 | name = 'Froude (y)' |
---|
[6157] | 712 | Vfy = Vv/(num.sqrt(g*Vh) + epsilon) |
---|
| 713 | Efy = Ev/(num.sqrt(g*Eh) + epsilon) |
---|
| 714 | Cfy = Cv/(num.sqrt(g*Ch) + epsilon) |
---|
[7276] | 715 | |
---|
[7870] | 716 | message = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
| 717 | % (name.ljust(qwidth), Vfy[0], Vfy[1], Vfy[2]) |
---|
[7276] | 718 | |
---|
[7870] | 719 | message += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
| 720 | % (name.ljust(qwidth), Efy[0], Efy[1], Efy[2]) |
---|
[7276] | 721 | |
---|
[7870] | 722 | message += ' %s: centroid_value = %.4f\n'\ |
---|
| 723 | % (name.ljust(qwidth), Cfy[0]) |
---|
[4827] | 724 | |
---|
[7870] | 725 | msg += message |
---|
[4827] | 726 | |
---|
| 727 | return msg |
---|
[7276] | 728 | |
---|
[4827] | 729 | |
---|
| 730 | |
---|
[6654] | 731 | def compute_boundary_flows(self): |
---|
| 732 | """Compute boundary flows at current timestep. |
---|
[6647] | 733 | |
---|
[6648] | 734 | Quantities computed are: |
---|
| 735 | Total inflow across boundary |
---|
| 736 | Total outflow across boundary |
---|
[6654] | 737 | Flow across each tagged boundary segment |
---|
[6648] | 738 | """ |
---|
[6647] | 739 | |
---|
[6648] | 740 | # Run through boundary array and compute for each segment |
---|
| 741 | # the normal momentum ((uh, vh) dot normal) times segment length. |
---|
[7870] | 742 | # Based on sign accumulate this into boundary_inflow and |
---|
| 743 | # boundary_outflow. |
---|
[6647] | 744 | |
---|
[6653] | 745 | # Compute flows along boundary |
---|
| 746 | |
---|
[6654] | 747 | uh = self.get_quantity('xmomentum').get_values(location='edges') |
---|
| 748 | vh = self.get_quantity('ymomentum').get_values(location='edges') |
---|
[6653] | 749 | |
---|
| 750 | # Loop through edges that lie on the boundary and calculate |
---|
| 751 | # flows |
---|
[6654] | 752 | boundary_flows = {} |
---|
| 753 | total_boundary_inflow = 0.0 |
---|
| 754 | total_boundary_outflow = 0.0 |
---|
[6653] | 755 | for vol_id, edge_id in self.boundary: |
---|
[6654] | 756 | # Compute normal flow across edge. Since normal vector points |
---|
| 757 | # away from triangle, a positive sign means that water |
---|
| 758 | # flows *out* from this triangle. |
---|
| 759 | |
---|
| 760 | momentum = [uh[vol_id, edge_id], vh[vol_id, edge_id]] |
---|
| 761 | normal = self.mesh.get_normal(vol_id, edge_id) |
---|
| 762 | length = self.mesh.get_edgelength(vol_id, edge_id) |
---|
| 763 | normal_flow = num.dot(momentum, normal)*length |
---|
| 764 | |
---|
| 765 | # Reverse sign so that + is taken to mean inflow |
---|
| 766 | # and - means outflow. This is more intuitive. |
---|
| 767 | edge_flow = -normal_flow |
---|
| 768 | |
---|
| 769 | # Tally up inflows and outflows separately |
---|
| 770 | if edge_flow > 0: |
---|
| 771 | # Flow is inflow |
---|
[7870] | 772 | total_boundary_inflow += edge_flow |
---|
[6654] | 773 | else: |
---|
| 774 | # Flow is outflow |
---|
| 775 | total_boundary_outflow += edge_flow |
---|
[6653] | 776 | |
---|
[6654] | 777 | # Tally up flows by boundary tag |
---|
| 778 | tag = self.boundary[(vol_id, edge_id)] |
---|
| 779 | |
---|
| 780 | if tag not in boundary_flows: |
---|
| 781 | boundary_flows[tag] = 0.0 |
---|
| 782 | boundary_flows[tag] += edge_flow |
---|
| 783 | |
---|
| 784 | |
---|
| 785 | return boundary_flows, total_boundary_inflow, total_boundary_outflow |
---|
[6653] | 786 | |
---|
[6654] | 787 | |
---|
| 788 | def compute_forcing_flows(self): |
---|
| 789 | """Compute flows in and out of domain due to forcing terms. |
---|
| 790 | |
---|
| 791 | Quantities computed are: |
---|
| 792 | |
---|
[6653] | 793 | |
---|
[6654] | 794 | Total inflow through forcing terms |
---|
| 795 | Total outflow through forcing terms |
---|
| 796 | Current total volume in domain |
---|
| 797 | |
---|
| 798 | """ |
---|
| 799 | |
---|
| 800 | #FIXME(Ole): We need to separate what part of explicit_update was |
---|
| 801 | # due to the normal flux calculations and what is due to forcing terms. |
---|
| 802 | |
---|
| 803 | pass |
---|
| 804 | |
---|
| 805 | |
---|
| 806 | def compute_total_volume(self): |
---|
| 807 | """Compute total volume (m^3) of water in entire domain |
---|
| 808 | """ |
---|
| 809 | |
---|
| 810 | area = self.mesh.get_areas() |
---|
| 811 | |
---|
| 812 | stage = self.get_quantity('stage').get_values(location='centroids') |
---|
[7870] | 813 | elevation = \ |
---|
| 814 | self.get_quantity('elevation').get_values(location='centroids') |
---|
[6654] | 815 | depth = stage-elevation |
---|
| 816 | |
---|
| 817 | return num.sum(depth*area) |
---|
| 818 | |
---|
| 819 | |
---|
| 820 | def volumetric_balance_statistics(self): |
---|
| 821 | """Create volumetric balance report suitable for printing or logging. |
---|
| 822 | """ |
---|
| 823 | |
---|
[7276] | 824 | (boundary_flows, total_boundary_inflow, |
---|
| 825 | total_boundary_outflow) = self.compute_boundary_flows() |
---|
| 826 | |
---|
[7870] | 827 | message = '---------------------------\n' |
---|
| 828 | message += 'Volumetric balance report:\n' |
---|
| 829 | message += '--------------------------\n' |
---|
| 830 | message += 'Total boundary inflow [m^3/s]: %.2f\n' % total_boundary_inflow |
---|
| 831 | message += 'Total boundary outflow [m^3/s]: %.2f\n' % total_boundary_outflow |
---|
| 832 | message += 'Net boundary flow by tags [m^3/s]\n' |
---|
[6654] | 833 | for tag in boundary_flows: |
---|
[7870] | 834 | message += ' %s [m^3/s]: %.2f\n' % (tag, boundary_flows[tag]) |
---|
[6654] | 835 | |
---|
[7870] | 836 | message += 'Total net boundary flow [m^3/s]: %.2f\n' % \ |
---|
| 837 | (total_boundary_inflow + total_boundary_outflow) |
---|
| 838 | message += 'Total volume in domain [m^3]: %.2f\n' % \ |
---|
| 839 | self.compute_total_volume() |
---|
[6654] | 840 | |
---|
[7870] | 841 | # The go through explicit forcing update and record the rate of change |
---|
| 842 | # for stage and |
---|
| 843 | # record into forcing_inflow and forcing_outflow. Finally compute |
---|
| 844 | # integral of depth to obtain total volume of domain. |
---|
[6654] | 845 | |
---|
| 846 | # FIXME(Ole): This part is not yet done. |
---|
| 847 | |
---|
[7870] | 848 | return message |
---|
[6654] | 849 | |
---|
[7276] | 850 | ################################################################################ |
---|
| 851 | # End of class Shallow Water Domain |
---|
| 852 | ################################################################################ |
---|
[3804] | 853 | |
---|
[4769] | 854 | #----------------- |
---|
[3804] | 855 | # Flux computation |
---|
[4769] | 856 | #----------------- |
---|
[3804] | 857 | |
---|
[7276] | 858 | ## @brief Compute fluxes and timestep suitable for all volumes in domain. |
---|
| 859 | # @param domain The domain to calculate fluxes for. |
---|
[3804] | 860 | def compute_fluxes(domain): |
---|
[7276] | 861 | """Compute fluxes and timestep suitable for all volumes in domain. |
---|
[3804] | 862 | |
---|
| 863 | Compute total flux for each conserved quantity using "flux_function" |
---|
| 864 | |
---|
| 865 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
| 866 | Resulting flux is then scaled by area and stored in |
---|
| 867 | explicit_update for each of the three conserved quantities |
---|
| 868 | stage, xmomentum and ymomentum |
---|
| 869 | |
---|
| 870 | The maximal allowable speed computed by the flux_function for each volume |
---|
| 871 | is converted to a timestep that must not be exceeded. The minimum of |
---|
| 872 | those is computed as the next overall timestep. |
---|
| 873 | |
---|
| 874 | Post conditions: |
---|
| 875 | domain.explicit_update is reset to computed flux values |
---|
| 876 | domain.timestep is set to the largest step satisfying all volumes. |
---|
[4769] | 877 | |
---|
| 878 | This wrapper calls the underlying C version of compute fluxes |
---|
[3804] | 879 | """ |
---|
| 880 | |
---|
| 881 | import sys |
---|
[7276] | 882 | from shallow_water_ext import compute_fluxes_ext_central \ |
---|
| 883 | as compute_fluxes_ext |
---|
[3804] | 884 | |
---|
[4769] | 885 | # Shortcuts |
---|
[3804] | 886 | Stage = domain.quantities['stage'] |
---|
| 887 | Xmom = domain.quantities['xmomentum'] |
---|
| 888 | Ymom = domain.quantities['ymomentum'] |
---|
| 889 | Bed = domain.quantities['elevation'] |
---|
| 890 | |
---|
| 891 | timestep = float(sys.maxint) |
---|
| 892 | |
---|
[4769] | 893 | flux_timestep = compute_fluxes_ext(timestep, |
---|
| 894 | domain.epsilon, |
---|
| 895 | domain.H0, |
---|
| 896 | domain.g, |
---|
| 897 | domain.neighbours, |
---|
| 898 | domain.neighbour_edges, |
---|
| 899 | domain.normals, |
---|
| 900 | domain.edgelengths, |
---|
| 901 | domain.radii, |
---|
| 902 | domain.areas, |
---|
| 903 | domain.tri_full_flag, |
---|
| 904 | Stage.edge_values, |
---|
| 905 | Xmom.edge_values, |
---|
| 906 | Ymom.edge_values, |
---|
| 907 | Bed.edge_values, |
---|
| 908 | Stage.boundary_values, |
---|
| 909 | Xmom.boundary_values, |
---|
| 910 | Ymom.boundary_values, |
---|
| 911 | Stage.explicit_update, |
---|
| 912 | Xmom.explicit_update, |
---|
| 913 | Ymom.explicit_update, |
---|
| 914 | domain.already_computed_flux, |
---|
| 915 | domain.max_speed, |
---|
| 916 | int(domain.optimise_dry_cells)) |
---|
[3804] | 917 | |
---|
[4769] | 918 | domain.flux_timestep = flux_timestep |
---|
[3804] | 919 | |
---|
[7276] | 920 | ################################################################################ |
---|
[4769] | 921 | # Module functions for gradient limiting |
---|
[7276] | 922 | ################################################################################ |
---|
[3804] | 923 | |
---|
[7276] | 924 | ## |
---|
| 925 | # @brief Wrapper for C version of extrapolate_second_order_sw. |
---|
| 926 | # @param domain The domain to operate on. |
---|
| 927 | # @note MH090605 The following method belongs to the shallow_water domain class |
---|
| 928 | # see comments in the corresponding method in shallow_water_ext.c |
---|
| 929 | def extrapolate_second_order_sw(domain): |
---|
| 930 | """Wrapper calling C version of extrapolate_second_order_sw""" |
---|
[3804] | 931 | |
---|
[7276] | 932 | from shallow_water_ext import extrapolate_second_order_sw as extrapol2 |
---|
[3804] | 933 | |
---|
[4710] | 934 | # Shortcuts |
---|
[3804] | 935 | Stage = domain.quantities['stage'] |
---|
| 936 | Xmom = domain.quantities['xmomentum'] |
---|
| 937 | Ymom = domain.quantities['ymomentum'] |
---|
| 938 | Elevation = domain.quantities['elevation'] |
---|
[4710] | 939 | |
---|
[4769] | 940 | extrapol2(domain, |
---|
| 941 | domain.surrogate_neighbours, |
---|
| 942 | domain.number_of_boundaries, |
---|
| 943 | domain.centroid_coordinates, |
---|
| 944 | Stage.centroid_values, |
---|
| 945 | Xmom.centroid_values, |
---|
| 946 | Ymom.centroid_values, |
---|
| 947 | Elevation.centroid_values, |
---|
| 948 | domain.vertex_coordinates, |
---|
| 949 | Stage.vertex_values, |
---|
| 950 | Xmom.vertex_values, |
---|
| 951 | Ymom.vertex_values, |
---|
| 952 | Elevation.vertex_values, |
---|
[5315] | 953 | int(domain.optimise_dry_cells)) |
---|
[3804] | 954 | |
---|
[7276] | 955 | ## |
---|
| 956 | # @brief Distribution from centroids to vertices specific to the SWW eqn. |
---|
| 957 | # @param domain The domain to operate on. |
---|
[5306] | 958 | def distribute_using_vertex_limiter(domain): |
---|
[7276] | 959 | """Distribution from centroids to vertices specific to the SWW equation. |
---|
[3804] | 960 | |
---|
| 961 | It will ensure that h (w-z) is always non-negative even in the |
---|
| 962 | presence of steep bed-slopes by taking a weighted average between shallow |
---|
| 963 | and deep cases. |
---|
| 964 | |
---|
| 965 | In addition, all conserved quantities get distributed as per either a |
---|
| 966 | constant (order==1) or a piecewise linear function (order==2). |
---|
| 967 | |
---|
| 968 | FIXME: more explanation about removal of artificial variability etc |
---|
| 969 | |
---|
| 970 | Precondition: |
---|
| 971 | All quantities defined at centroids and bed elevation defined at |
---|
| 972 | vertices. |
---|
| 973 | |
---|
| 974 | Postcondition |
---|
| 975 | Conserved quantities defined at vertices |
---|
| 976 | """ |
---|
| 977 | |
---|
[4769] | 978 | # Remove very thin layers of water |
---|
[3804] | 979 | protect_against_infinitesimal_and_negative_heights(domain) |
---|
| 980 | |
---|
[4769] | 981 | # Extrapolate all conserved quantities |
---|
[5162] | 982 | if domain.optimised_gradient_limiter: |
---|
[4769] | 983 | # MH090605 if second order, |
---|
| 984 | # perform the extrapolation and limiting on |
---|
| 985 | # all of the conserved quantities |
---|
[3804] | 986 | |
---|
| 987 | if (domain._order_ == 1): |
---|
| 988 | for name in domain.conserved_quantities: |
---|
| 989 | Q = domain.quantities[name] |
---|
| 990 | Q.extrapolate_first_order() |
---|
| 991 | elif domain._order_ == 2: |
---|
| 992 | domain.extrapolate_second_order_sw() |
---|
| 993 | else: |
---|
[7870] | 994 | raise Exception('Unknown order') |
---|
[3804] | 995 | else: |
---|
[4769] | 996 | # Old code: |
---|
[3804] | 997 | for name in domain.conserved_quantities: |
---|
| 998 | Q = domain.quantities[name] |
---|
[4701] | 999 | |
---|
[3804] | 1000 | if domain._order_ == 1: |
---|
| 1001 | Q.extrapolate_first_order() |
---|
| 1002 | elif domain._order_ == 2: |
---|
[5306] | 1003 | Q.extrapolate_second_order_and_limit_by_vertex() |
---|
[3804] | 1004 | else: |
---|
[7870] | 1005 | raise Exception('Unknown order') |
---|
[3804] | 1006 | |
---|
[5290] | 1007 | # Take bed elevation into account when water heights are small |
---|
[3804] | 1008 | balance_deep_and_shallow(domain) |
---|
| 1009 | |
---|
[5290] | 1010 | # Compute edge values by interpolation |
---|
[3804] | 1011 | for name in domain.conserved_quantities: |
---|
| 1012 | Q = domain.quantities[name] |
---|
| 1013 | Q.interpolate_from_vertices_to_edges() |
---|
| 1014 | |
---|
[7276] | 1015 | ## |
---|
| 1016 | # @brief Distribution from centroids to edges specific to the SWW eqn. |
---|
| 1017 | # @param domain The domain to operate on. |
---|
[5306] | 1018 | def distribute_using_edge_limiter(domain): |
---|
[7276] | 1019 | """Distribution from centroids to edges specific to the SWW eqn. |
---|
[5306] | 1020 | |
---|
| 1021 | It will ensure that h (w-z) is always non-negative even in the |
---|
| 1022 | presence of steep bed-slopes by taking a weighted average between shallow |
---|
| 1023 | and deep cases. |
---|
| 1024 | |
---|
| 1025 | In addition, all conserved quantities get distributed as per either a |
---|
| 1026 | constant (order==1) or a piecewise linear function (order==2). |
---|
| 1027 | |
---|
| 1028 | |
---|
| 1029 | Precondition: |
---|
| 1030 | All quantities defined at centroids and bed elevation defined at |
---|
| 1031 | vertices. |
---|
| 1032 | |
---|
| 1033 | Postcondition |
---|
| 1034 | Conserved quantities defined at vertices |
---|
| 1035 | """ |
---|
| 1036 | |
---|
| 1037 | # Remove very thin layers of water |
---|
| 1038 | protect_against_infinitesimal_and_negative_heights(domain) |
---|
| 1039 | |
---|
| 1040 | for name in domain.conserved_quantities: |
---|
| 1041 | Q = domain.quantities[name] |
---|
| 1042 | if domain._order_ == 1: |
---|
| 1043 | Q.extrapolate_first_order() |
---|
| 1044 | elif domain._order_ == 2: |
---|
| 1045 | Q.extrapolate_second_order_and_limit_by_edge() |
---|
| 1046 | else: |
---|
[7870] | 1047 | raise Exception('Unknown order') |
---|
[5306] | 1048 | |
---|
| 1049 | balance_deep_and_shallow(domain) |
---|
| 1050 | |
---|
| 1051 | # Compute edge values by interpolation |
---|
| 1052 | for name in domain.conserved_quantities: |
---|
| 1053 | Q = domain.quantities[name] |
---|
| 1054 | Q.interpolate_from_vertices_to_edges() |
---|
| 1055 | |
---|
[7276] | 1056 | ## |
---|
| 1057 | # @brief Protect against infinitesimal heights and associated high velocities. |
---|
| 1058 | # @param domain The domain to operate on. |
---|
[3804] | 1059 | def protect_against_infinitesimal_and_negative_heights(domain): |
---|
[7276] | 1060 | """Protect against infinitesimal heights and associated high velocities""" |
---|
[3804] | 1061 | |
---|
[7276] | 1062 | from shallow_water_ext import protect |
---|
| 1063 | |
---|
[4769] | 1064 | # Shortcuts |
---|
[3804] | 1065 | wc = domain.quantities['stage'].centroid_values |
---|
| 1066 | zc = domain.quantities['elevation'].centroid_values |
---|
| 1067 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
| 1068 | ymomc = domain.quantities['ymomentum'].centroid_values |
---|
| 1069 | |
---|
| 1070 | protect(domain.minimum_allowed_height, domain.maximum_allowed_speed, |
---|
| 1071 | domain.epsilon, wc, zc, xmomc, ymomc) |
---|
| 1072 | |
---|
[7276] | 1073 | ## |
---|
| 1074 | # @brief Wrapper for C function balance_deep_and_shallow_c(). |
---|
| 1075 | # @param domain The domain to operate on. |
---|
[3804] | 1076 | def balance_deep_and_shallow(domain): |
---|
| 1077 | """Compute linear combination between stage as computed by |
---|
| 1078 | gradient-limiters limiting using w, and stage computed by |
---|
| 1079 | gradient-limiters limiting using h (h-limiter). |
---|
| 1080 | The former takes precedence when heights are large compared to the |
---|
| 1081 | bed slope while the latter takes precedence when heights are |
---|
| 1082 | relatively small. Anything in between is computed as a balanced |
---|
| 1083 | linear combination in order to avoid numerical disturbances which |
---|
| 1084 | would otherwise appear as a result of hard switching between |
---|
| 1085 | modes. |
---|
| 1086 | |
---|
[4769] | 1087 | Wrapper for C implementation |
---|
[3804] | 1088 | """ |
---|
| 1089 | |
---|
[7276] | 1090 | from shallow_water_ext import balance_deep_and_shallow \ |
---|
| 1091 | as balance_deep_and_shallow_c |
---|
[5175] | 1092 | |
---|
[4733] | 1093 | # Shortcuts |
---|
[3804] | 1094 | wc = domain.quantities['stage'].centroid_values |
---|
| 1095 | zc = domain.quantities['elevation'].centroid_values |
---|
| 1096 | wv = domain.quantities['stage'].vertex_values |
---|
| 1097 | zv = domain.quantities['elevation'].vertex_values |
---|
| 1098 | |
---|
[4733] | 1099 | # Momentums at centroids |
---|
[3804] | 1100 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
| 1101 | ymomc = domain.quantities['ymomentum'].centroid_values |
---|
| 1102 | |
---|
[4733] | 1103 | # Momentums at vertices |
---|
[3804] | 1104 | xmomv = domain.quantities['xmomentum'].vertex_values |
---|
| 1105 | ymomv = domain.quantities['ymomentum'].vertex_values |
---|
| 1106 | |
---|
[5442] | 1107 | balance_deep_and_shallow_c(domain, |
---|
[7276] | 1108 | wc, zc, wv, zv, wc, |
---|
[5442] | 1109 | xmomc, ymomc, xmomv, ymomv) |
---|
[3804] | 1110 | |
---|
| 1111 | |
---|
| 1112 | |
---|
[7276] | 1113 | ################################################################################ |
---|
[4769] | 1114 | # Standard forcing terms |
---|
[7276] | 1115 | ################################################################################ |
---|
[4769] | 1116 | |
---|
[7276] | 1117 | ## |
---|
| 1118 | # @brief Apply gravitational pull in the presence of bed slope. |
---|
| 1119 | # @param domain The domain to apply gravity to. |
---|
| 1120 | # @note Wrapper for C function gravity_c(). |
---|
[3804] | 1121 | def gravity(domain): |
---|
| 1122 | """Apply gravitational pull in the presence of bed slope |
---|
[4769] | 1123 | Wrapper calls underlying C implementation |
---|
[3804] | 1124 | """ |
---|
| 1125 | |
---|
[7276] | 1126 | from shallow_water_ext import gravity as gravity_c |
---|
| 1127 | |
---|
[7519] | 1128 | xmom_update = domain.quantities['xmomentum'].explicit_update |
---|
| 1129 | ymom_update = domain.quantities['ymomentum'].explicit_update |
---|
[3804] | 1130 | |
---|
[4687] | 1131 | stage = domain.quantities['stage'] |
---|
| 1132 | elevation = domain.quantities['elevation'] |
---|
[3804] | 1133 | |
---|
[7870] | 1134 | height = stage.centroid_values - elevation.centroid_values |
---|
| 1135 | elevation = elevation.vertex_values |
---|
[4687] | 1136 | |
---|
[7870] | 1137 | point = domain.get_vertex_coordinates() |
---|
[3804] | 1138 | |
---|
[7870] | 1139 | gravity_c(domain.g, height, elevation, point, xmom_update, ymom_update) |
---|
[3804] | 1140 | |
---|
[7276] | 1141 | ## |
---|
| 1142 | # @brief Apply friction to a surface (implicit). |
---|
| 1143 | # @param domain The domain to apply Manning friction to. |
---|
| 1144 | # @note Wrapper for C function manning_friction_c(). |
---|
[4769] | 1145 | def manning_friction_implicit(domain): |
---|
[7276] | 1146 | """Apply (Manning) friction to water momentum |
---|
[4769] | 1147 | Wrapper for c version |
---|
[3804] | 1148 | """ |
---|
| 1149 | |
---|
[7519] | 1150 | from shallow_water_ext import manning_friction_old |
---|
| 1151 | from shallow_water_ext import manning_friction_new |
---|
[3804] | 1152 | |
---|
| 1153 | xmom = domain.quantities['xmomentum'] |
---|
| 1154 | ymom = domain.quantities['ymomentum'] |
---|
| 1155 | |
---|
[7519] | 1156 | x = domain.get_vertex_coordinates() |
---|
| 1157 | |
---|
[3804] | 1158 | w = domain.quantities['stage'].centroid_values |
---|
[7519] | 1159 | z = domain.quantities['elevation'].vertex_values |
---|
[3804] | 1160 | |
---|
| 1161 | uh = xmom.centroid_values |
---|
| 1162 | vh = ymom.centroid_values |
---|
| 1163 | eta = domain.quantities['friction'].centroid_values |
---|
| 1164 | |
---|
| 1165 | xmom_update = xmom.semi_implicit_update |
---|
| 1166 | ymom_update = ymom.semi_implicit_update |
---|
| 1167 | |
---|
| 1168 | eps = domain.minimum_allowed_height |
---|
| 1169 | g = domain.g |
---|
| 1170 | |
---|
[7519] | 1171 | if domain.use_new_mannings: |
---|
[7870] | 1172 | manning_friction_new(g, eps, x, w, uh, vh, z, eta, xmom_update, \ |
---|
| 1173 | ymom_update) |
---|
[7519] | 1174 | else: |
---|
[7870] | 1175 | manning_friction_old(g, eps, w, uh, vh, z, eta, xmom_update, \ |
---|
| 1176 | ymom_update) |
---|
[7519] | 1177 | |
---|
[3804] | 1178 | |
---|
[7276] | 1179 | ## |
---|
| 1180 | # @brief Apply friction to a surface (explicit). |
---|
| 1181 | # @param domain The domain to apply Manning friction to. |
---|
| 1182 | # @note Wrapper for C function manning_friction_c(). |
---|
[4769] | 1183 | def manning_friction_explicit(domain): |
---|
[7276] | 1184 | """Apply (Manning) friction to water momentum |
---|
[4769] | 1185 | Wrapper for c version |
---|
[3804] | 1186 | """ |
---|
| 1187 | |
---|
[7519] | 1188 | from shallow_water_ext import manning_friction_old |
---|
| 1189 | from shallow_water_ext import manning_friction_new |
---|
[3804] | 1190 | |
---|
| 1191 | xmom = domain.quantities['xmomentum'] |
---|
| 1192 | ymom = domain.quantities['ymomentum'] |
---|
| 1193 | |
---|
[7519] | 1194 | x = domain.get_vertex_coordinates() |
---|
| 1195 | |
---|
[3804] | 1196 | w = domain.quantities['stage'].centroid_values |
---|
[7519] | 1197 | z = domain.quantities['elevation'].vertex_values |
---|
[3804] | 1198 | |
---|
| 1199 | uh = xmom.centroid_values |
---|
| 1200 | vh = ymom.centroid_values |
---|
| 1201 | eta = domain.quantities['friction'].centroid_values |
---|
| 1202 | |
---|
| 1203 | xmom_update = xmom.explicit_update |
---|
| 1204 | ymom_update = ymom.explicit_update |
---|
| 1205 | |
---|
| 1206 | eps = domain.minimum_allowed_height |
---|
| 1207 | |
---|
[7519] | 1208 | if domain.use_new_mannings: |
---|
[7870] | 1209 | manning_friction_new(domain.g, eps, x, w, uh, vh, z, eta, xmom_update, \ |
---|
| 1210 | ymom_update) |
---|
[7519] | 1211 | else: |
---|
[7870] | 1212 | manning_friction_old(domain.g, eps, w, uh, vh, z, eta, xmom_update, \ |
---|
| 1213 | ymom_update) |
---|
[3804] | 1214 | |
---|
[7519] | 1215 | |
---|
| 1216 | |
---|
[7870] | 1217 | # FIXME (Ole): This was implemented for use with one of the analytical solutions |
---|
[7276] | 1218 | ## |
---|
| 1219 | # @brief Apply linear friction to a surface. |
---|
| 1220 | # @param domain The domain to apply Manning friction to. |
---|
| 1221 | # @note Is this still used (30 Oct 2007)? |
---|
[3804] | 1222 | def linear_friction(domain): |
---|
| 1223 | """Apply linear friction to water momentum |
---|
| 1224 | |
---|
| 1225 | Assumes quantity: 'linear_friction' to be present |
---|
| 1226 | """ |
---|
| 1227 | |
---|
| 1228 | w = domain.quantities['stage'].centroid_values |
---|
| 1229 | z = domain.quantities['elevation'].centroid_values |
---|
| 1230 | h = w-z |
---|
| 1231 | |
---|
| 1232 | uh = domain.quantities['xmomentum'].centroid_values |
---|
| 1233 | vh = domain.quantities['ymomentum'].centroid_values |
---|
| 1234 | tau = domain.quantities['linear_friction'].centroid_values |
---|
| 1235 | |
---|
| 1236 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
| 1237 | ymom_update = domain.quantities['ymomentum'].semi_implicit_update |
---|
| 1238 | |
---|
[7870] | 1239 | num_tris = len(domain) |
---|
[3804] | 1240 | eps = domain.minimum_allowed_height |
---|
| 1241 | |
---|
[7870] | 1242 | for k in range(num_tris): |
---|
[3804] | 1243 | if tau[k] >= eps: |
---|
| 1244 | if h[k] >= eps: |
---|
| 1245 | S = -tau[k]/h[k] |
---|
| 1246 | |
---|
| 1247 | #Update momentum |
---|
| 1248 | xmom_update[k] += S*uh[k] |
---|
| 1249 | ymom_update[k] += S*vh[k] |
---|
| 1250 | |
---|
[6644] | 1251 | def depth_dependent_friction(domain, default_friction, |
---|
| 1252 | surface_roughness_data, |
---|
| 1253 | verbose=False): |
---|
[7870] | 1254 | """Returns an array of friction values for each wet element adjusted for |
---|
| 1255 | depth. |
---|
[6644] | 1256 | |
---|
| 1257 | Inputs: |
---|
| 1258 | domain - computational domain object |
---|
| 1259 | default_friction - depth independent bottom friction |
---|
[7870] | 1260 | surface_roughness_data - N x 5 array of n0, d1, n1, d2, n2 values |
---|
| 1261 | for each friction region. |
---|
[6644] | 1262 | |
---|
| 1263 | Outputs: |
---|
[7870] | 1264 | wet_friction - Array that can be used directly to update friction as |
---|
| 1265 | follows: |
---|
[6644] | 1266 | domain.set_quantity('friction', wet_friction) |
---|
| 1267 | |
---|
| 1268 | |
---|
| 1269 | |
---|
| 1270 | """ |
---|
| 1271 | |
---|
[7870] | 1272 | default_n0 = 0 # James - this was missing, don't know what it should be |
---|
[6644] | 1273 | |
---|
[7870] | 1274 | # Create a temp array to store updated depth dependent |
---|
| 1275 | # friction for wet elements |
---|
| 1276 | # EHR this is outwardly inneficient but not obvious how to avoid |
---|
| 1277 | # recreating each call?????? |
---|
| 1278 | |
---|
| 1279 | wet_friction = num.zeros(len(domain), num.float) |
---|
| 1280 | wet_friction[:] = default_n0 # Initially assign default_n0 to all array so |
---|
| 1281 | # sure have no zeros values |
---|
[6644] | 1282 | |
---|
[7870] | 1283 | # create depth instance for this timestep |
---|
| 1284 | depth = domain.create_quantity_from_expression('stage - elevation') |
---|
[6644] | 1285 | # Recompute depth as vector |
---|
[7870] | 1286 | d_vals = depth.get_values(location='centroids') |
---|
[6644] | 1287 | |
---|
| 1288 | # rebuild the 'friction' values adjusted for depth at this instant |
---|
[7870] | 1289 | # loop for each wet element in domain |
---|
| 1290 | |
---|
| 1291 | for i in domain.get_wet_elements(): |
---|
[6644] | 1292 | # Get roughness data for each element |
---|
[7870] | 1293 | d1 = float(surface_roughness_data[i, 1]) |
---|
| 1294 | n1 = float(surface_roughness_data[i, 2]) |
---|
| 1295 | d2 = float(surface_roughness_data[i, 3]) |
---|
| 1296 | n2 = float(surface_roughness_data[i, 4]) |
---|
[6644] | 1297 | |
---|
| 1298 | |
---|
| 1299 | # Recompute friction values from depth for this element |
---|
| 1300 | |
---|
[7870] | 1301 | if d_vals[i] <= d1: |
---|
| 1302 | ddf = n1 |
---|
| 1303 | elif d_vals[i] >= d2: |
---|
| 1304 | ddf = n2 |
---|
[6644] | 1305 | else: |
---|
[7870] | 1306 | ddf = n1 + ((n2-n1)/(d2-d1))*(d_vals[i]-d1) |
---|
[6644] | 1307 | |
---|
| 1308 | # check sanity of result |
---|
[7870] | 1309 | if (ddf < 0.010 or \ |
---|
| 1310 | ddf > 9999.0) : |
---|
| 1311 | log.critical('>>>> WARNING: computed depth_dependent friction ' |
---|
[7317] | 1312 | 'out of range, ddf%f, n1=%f, n2=%f' |
---|
[7870] | 1313 | % (ddf, n1, n2)) |
---|
[6644] | 1314 | |
---|
| 1315 | # update depth dependent friction for that wet element |
---|
[7870] | 1316 | wet_friction[i] = ddf |
---|
[6644] | 1317 | |
---|
[7870] | 1318 | # EHR add code to show range of 'friction across domain at this instant as |
---|
| 1319 | # sanity check????????? |
---|
[6644] | 1320 | |
---|
| 1321 | if verbose : |
---|
[7870] | 1322 | # return array of domain nvals |
---|
| 1323 | nvals = domain.get_quantity('friction').get_values(location='centroids') |
---|
| 1324 | n_min = min(nvals) |
---|
| 1325 | n_max = max(nvals) |
---|
[6644] | 1326 | |
---|
[7317] | 1327 | log.critical(' ++++ calculate_depth_dependent_friction - ' |
---|
| 1328 | 'Updated friction - range %7.3f to %7.3f' |
---|
| 1329 | % (n_min, n_max)) |
---|
[6644] | 1330 | |
---|
| 1331 | return wet_friction |
---|
| 1332 | |
---|
| 1333 | |
---|
| 1334 | |
---|
[7276] | 1335 | ################################################################################ |
---|
[4733] | 1336 | # Initialise module |
---|
[7276] | 1337 | ################################################################################ |
---|
[3804] | 1338 | |
---|
[7870] | 1339 | def _raise_compile_exception(): |
---|
| 1340 | """ Raise exception if compiler not available. """ |
---|
[7276] | 1341 | msg = 'C implementations could not be accessed by %s.\n ' % __file__ |
---|
[4769] | 1342 | msg += 'Make sure compile_all.py has been run as described in ' |
---|
| 1343 | msg += 'the ANUGA installation guide.' |
---|
[7870] | 1344 | raise Exception(msg) |
---|
[3804] | 1345 | |
---|
[7870] | 1346 | from anuga.utilities import compile |
---|
| 1347 | if not compile.can_use_C_extension('shallow_water_ext.c'): |
---|
| 1348 | _raise_compile_exception() |
---|
[3804] | 1349 | |
---|
| 1350 | if __name__ == "__main__": |
---|
| 1351 | pass |
---|