1 | """ |
---|
2 | Finite-volume computations of the shallow water wave equation. |
---|
3 | |
---|
4 | Title: ANGUA shallow_water_domain - 2D triangular domains for finite-volume |
---|
5 | computations of the shallow water wave equation. |
---|
6 | |
---|
7 | |
---|
8 | Author: Ole Nielsen, Ole.Nielsen@ga.gov.au |
---|
9 | Stephen Roberts, Stephen.Roberts@anu.edu.au |
---|
10 | Duncan Gray, Duncan.Gray@ga.gov.au |
---|
11 | |
---|
12 | CreationDate: 2004 |
---|
13 | |
---|
14 | Description: |
---|
15 | This module contains a specialisation of class Domain from |
---|
16 | module domain.py consisting of methods specific to the |
---|
17 | Shallow Water Wave Equation |
---|
18 | |
---|
19 | U_t + E_x + G_y = S |
---|
20 | |
---|
21 | where |
---|
22 | |
---|
23 | U = [w, uh, vh] |
---|
24 | E = [uh, u^2h + gh^2/2, uvh] |
---|
25 | G = [vh, uvh, v^2h + gh^2/2] |
---|
26 | S represents source terms forcing the system |
---|
27 | (e.g. gravity, friction, wind stress, ...) |
---|
28 | |
---|
29 | and _t, _x, _y denote the derivative with respect to t, x and y |
---|
30 | respectively. |
---|
31 | |
---|
32 | |
---|
33 | The quantities are |
---|
34 | |
---|
35 | symbol variable name explanation |
---|
36 | x x horizontal distance from origin [m] |
---|
37 | y y vertical distance from origin [m] |
---|
38 | z elevation elevation of bed on which flow is modelled [m] |
---|
39 | h height water height above z [m] |
---|
40 | w stage absolute water level, w = z+h [m] |
---|
41 | u speed in the x direction [m/s] |
---|
42 | v speed in the y direction [m/s] |
---|
43 | uh xmomentum momentum in the x direction [m^2/s] |
---|
44 | vh ymomentum momentum in the y direction [m^2/s] |
---|
45 | |
---|
46 | eta mannings friction coefficient [to appear] |
---|
47 | nu wind stress coefficient [to appear] |
---|
48 | |
---|
49 | The conserved quantities are w, uh, vh |
---|
50 | |
---|
51 | Reference: |
---|
52 | Catastrophic Collapse of Water Supply Reservoirs in Urban Areas, |
---|
53 | Christopher Zoppou and Stephen Roberts, |
---|
54 | Journal of Hydraulic Engineering, vol. 127, No. 7 July 1999 |
---|
55 | |
---|
56 | Hydrodynamic modelling of coastal inundation. |
---|
57 | Nielsen, O., S. Roberts, D. Gray, A. McPherson and A. Hitchman |
---|
58 | In Zerger, A. and Argent, R.M. (eds) MODSIM 2005 International Congress on |
---|
59 | Modelling and Simulation. Modelling and Simulation Society of Australia and |
---|
60 | New Zealand, December 2005, pp. 518-523. ISBN: 0-9758400-2-9. |
---|
61 | http://www.mssanz.org.au/modsim05/papers/nielsen.pdf |
---|
62 | |
---|
63 | |
---|
64 | SeeAlso: |
---|
65 | TRAC administration of ANUGA (User Manuals etc) at |
---|
66 | https://datamining.anu.edu.au/anuga and Subversion repository at |
---|
67 | $HeadURL: https://datamining.anu.edu.au/svn/anuga/trunk/anuga_core/source/ |
---|
68 | anuga/shallow_water/shallow_water_domain.py $ |
---|
69 | |
---|
70 | Constraints: See GPL license in the user guide |
---|
71 | Version: 1.0 ($Revision: 7870 $) |
---|
72 | ModifiedBy: |
---|
73 | $Author: hudson $ |
---|
74 | $Date: 2010-06-23 04:33:54 +0000 (Wed, 23 Jun 2010) $ |
---|
75 | """ |
---|
76 | |
---|
77 | |
---|
78 | import numpy as num |
---|
79 | |
---|
80 | from anuga.abstract_2d_finite_volumes.generic_domain \ |
---|
81 | import Generic_Domain |
---|
82 | |
---|
83 | from anuga.shallow_water.forcing import Cross_section |
---|
84 | from anuga.utilities.numerical_tools import mean |
---|
85 | from anuga.file.sww import SWW_file |
---|
86 | |
---|
87 | import anuga.utilities.log as log |
---|
88 | |
---|
89 | import types |
---|
90 | |
---|
91 | class Domain(Generic_Domain): |
---|
92 | """ Class for a shallow water domain.""" |
---|
93 | def __init__(self, |
---|
94 | coordinates=None, |
---|
95 | vertices=None, |
---|
96 | boundary=None, |
---|
97 | tagged_elements=None, |
---|
98 | geo_reference=None, |
---|
99 | use_inscribed_circle=False, |
---|
100 | mesh_filename=None, |
---|
101 | use_cache=False, |
---|
102 | verbose=False, |
---|
103 | conserved_quantities = None, |
---|
104 | evolved_quantities = None, |
---|
105 | other_quantities = None, |
---|
106 | full_send_dict=None, |
---|
107 | ghost_recv_dict=None, |
---|
108 | processor=0, |
---|
109 | numproc=1, |
---|
110 | number_of_full_nodes=None, |
---|
111 | number_of_full_triangles=None): |
---|
112 | """ |
---|
113 | Instantiate a shallow water domain. |
---|
114 | coordinates - vertex locations for the mesh |
---|
115 | vertices - vertex indices for the mesh |
---|
116 | boundary - boundaries of the mesh |
---|
117 | # @param tagged_elements |
---|
118 | # @param geo_reference |
---|
119 | # @param use_inscribed_circle |
---|
120 | # @param mesh_filename |
---|
121 | # @param use_cache |
---|
122 | # @param verbose |
---|
123 | # @param evolved_quantities |
---|
124 | # @param full_send_dict |
---|
125 | # @param ghost_recv_dict |
---|
126 | # @param processor |
---|
127 | # @param numproc |
---|
128 | # @param number_of_full_nodes |
---|
129 | # @param number_of_full_triangles |
---|
130 | """ |
---|
131 | |
---|
132 | # Define quantities for the shallow_water domain |
---|
133 | if conserved_quantities == None: |
---|
134 | conserved_quantities = ['stage', 'xmomentum', 'ymomentum'] |
---|
135 | |
---|
136 | if evolved_quantities == None: |
---|
137 | evolved_quantities = ['stage', 'xmomentum', 'ymomentum'] |
---|
138 | |
---|
139 | if other_quantities == None: |
---|
140 | other_quantities = ['elevation', 'friction'] |
---|
141 | |
---|
142 | Generic_Domain.__init__(self, |
---|
143 | coordinates, |
---|
144 | vertices, |
---|
145 | boundary, |
---|
146 | conserved_quantities, |
---|
147 | evolved_quantities, |
---|
148 | other_quantities, |
---|
149 | tagged_elements, |
---|
150 | geo_reference, |
---|
151 | use_inscribed_circle, |
---|
152 | mesh_filename, |
---|
153 | use_cache, |
---|
154 | verbose, |
---|
155 | full_send_dict, |
---|
156 | ghost_recv_dict, |
---|
157 | processor, |
---|
158 | numproc, |
---|
159 | number_of_full_nodes=number_of_full_nodes, |
---|
160 | number_of_full_triangles=number_of_full_triangles) |
---|
161 | |
---|
162 | self.set_defaults() |
---|
163 | |
---|
164 | |
---|
165 | self.forcing_terms.append(manning_friction_implicit) |
---|
166 | self.forcing_terms.append(gravity) |
---|
167 | |
---|
168 | # Stored output |
---|
169 | self.store = True |
---|
170 | self.set_store_vertices_uniquely(False) |
---|
171 | |
---|
172 | self.quantities_to_be_stored = {'elevation': 1, |
---|
173 | 'stage': 2, |
---|
174 | 'xmomentum': 2, |
---|
175 | 'ymomentum': 2} |
---|
176 | |
---|
177 | |
---|
178 | def set_defaults(self): |
---|
179 | """Set the default values in this routine. That way we can inherit class |
---|
180 | and just over redefine the defaults for the new class |
---|
181 | """ |
---|
182 | |
---|
183 | from anuga.config import minimum_storable_height |
---|
184 | from anuga.config import minimum_allowed_height, maximum_allowed_speed |
---|
185 | from anuga.config import g, beta_w, beta_w_dry, \ |
---|
186 | beta_uh, beta_uh_dry, beta_vh, beta_vh_dry, tight_slope_limiters |
---|
187 | from anuga.config import alpha_balance |
---|
188 | from anuga.config import optimise_dry_cells |
---|
189 | from anuga.config import optimised_gradient_limiter |
---|
190 | from anuga.config import use_edge_limiter |
---|
191 | from anuga.config import use_centroid_velocities |
---|
192 | |
---|
193 | self.set_minimum_allowed_height(minimum_allowed_height) |
---|
194 | self.maximum_allowed_speed = maximum_allowed_speed |
---|
195 | |
---|
196 | self.g = g |
---|
197 | self.beta_w = beta_w |
---|
198 | self.beta_w_dry = beta_w_dry |
---|
199 | self.beta_uh = beta_uh |
---|
200 | self.beta_uh_dry = beta_uh_dry |
---|
201 | self.beta_vh = beta_vh |
---|
202 | self.beta_vh_dry = beta_vh_dry |
---|
203 | self.alpha_balance = alpha_balance |
---|
204 | |
---|
205 | self.tight_slope_limiters = tight_slope_limiters |
---|
206 | self.optimise_dry_cells = optimise_dry_cells |
---|
207 | |
---|
208 | |
---|
209 | self.set_new_mannings_function(False) |
---|
210 | |
---|
211 | self.minimum_storable_height = minimum_storable_height |
---|
212 | |
---|
213 | # Limiters |
---|
214 | self.use_edge_limiter = use_edge_limiter |
---|
215 | self.optimised_gradient_limiter = optimised_gradient_limiter |
---|
216 | self.use_centroid_velocities = use_centroid_velocities |
---|
217 | |
---|
218 | |
---|
219 | def set_new_mannings_function(self, flag=True): |
---|
220 | """Cludge to allow unit test to pass, but to |
---|
221 | also introduce new mannings friction function |
---|
222 | which takes into account the slope of the bed. |
---|
223 | The flag is tested in the python wrapper |
---|
224 | mannings_friction_implicit |
---|
225 | """ |
---|
226 | if flag: |
---|
227 | self.use_new_mannings = True |
---|
228 | else: |
---|
229 | self.use_new_mannings = False |
---|
230 | |
---|
231 | |
---|
232 | def set_use_edge_limiter(self, flag=True): |
---|
233 | """Cludge to allow unit test to pass, but to |
---|
234 | also introduce new edge limiting. The flag is |
---|
235 | tested in distribute_to_vertices_and_edges |
---|
236 | """ |
---|
237 | if flag: |
---|
238 | self.use_edge_limiter = True |
---|
239 | else: |
---|
240 | self.use_edge_limiter = False |
---|
241 | |
---|
242 | |
---|
243 | def set_all_limiters(self, beta): |
---|
244 | """Shorthand to assign one constant value [0,1] to all limiters. |
---|
245 | 0 Corresponds to first order, where as larger values make use of |
---|
246 | the second order scheme. |
---|
247 | """ |
---|
248 | |
---|
249 | self.beta_w = beta |
---|
250 | self.beta_w_dry = beta |
---|
251 | self.quantities['stage'].beta = beta |
---|
252 | |
---|
253 | self.beta_uh = beta |
---|
254 | self.beta_uh_dry = beta |
---|
255 | self.quantities['xmomentum'].beta = beta |
---|
256 | |
---|
257 | self.beta_vh = beta |
---|
258 | self.beta_vh_dry = beta |
---|
259 | self.quantities['ymomentum'].beta = beta |
---|
260 | |
---|
261 | |
---|
262 | def set_store_vertices_uniquely(self, flag, reduction=None): |
---|
263 | """Decide whether vertex values should be stored uniquely as |
---|
264 | computed in the model (True) or whether they should be reduced to one |
---|
265 | value per vertex using self.reduction (False). |
---|
266 | """ |
---|
267 | |
---|
268 | # FIXME (Ole): how about using the word "continuous vertex values" or |
---|
269 | # "continuous stage surface" |
---|
270 | self.smooth = not flag |
---|
271 | |
---|
272 | # Reduction operation for get_vertex_values |
---|
273 | if reduction is None: |
---|
274 | self.reduction = mean |
---|
275 | #self.reduction = min #Looks better near steep slopes |
---|
276 | |
---|
277 | ## |
---|
278 | # @brief Set the minimum depth that will be written to an SWW file. |
---|
279 | # @param minimum_storable_height The minimum stored height (in m). |
---|
280 | def set_minimum_storable_height(self, minimum_storable_height): |
---|
281 | """Set the minimum depth that will be recognised when writing |
---|
282 | to an sww file. This is useful for removing thin water layers |
---|
283 | that seems to be caused by friction creep. |
---|
284 | |
---|
285 | The minimum allowed sww depth is in meters. |
---|
286 | """ |
---|
287 | |
---|
288 | self.minimum_storable_height = minimum_storable_height |
---|
289 | |
---|
290 | ## |
---|
291 | # @brief |
---|
292 | # @param minimum_allowed_height |
---|
293 | def set_minimum_allowed_height(self, minimum_allowed_height): |
---|
294 | """Set minimum depth that will be recognised in the numerical scheme. |
---|
295 | |
---|
296 | The minimum allowed depth is in meters. |
---|
297 | |
---|
298 | The parameter H0 (Minimal height for flux computation) |
---|
299 | is also set by this function |
---|
300 | """ |
---|
301 | |
---|
302 | #FIXME (Ole): rename H0 to minimum_allowed_height_in_flux_computation |
---|
303 | |
---|
304 | #FIXME (Ole): Maybe use histogram to identify isolated extreme speeds |
---|
305 | #and deal with them adaptively similarly to how we used to use 1 order |
---|
306 | #steps to recover. |
---|
307 | |
---|
308 | self.minimum_allowed_height = minimum_allowed_height |
---|
309 | self.H0 = minimum_allowed_height |
---|
310 | |
---|
311 | ## |
---|
312 | # @brief |
---|
313 | # @param maximum_allowed_speed |
---|
314 | def set_maximum_allowed_speed(self, maximum_allowed_speed): |
---|
315 | """Set the maximum particle speed that is allowed in water |
---|
316 | shallower than minimum_allowed_height. This is useful for |
---|
317 | controlling speeds in very thin layers of water and at the same time |
---|
318 | allow some movement avoiding pooling of water. |
---|
319 | """ |
---|
320 | |
---|
321 | self.maximum_allowed_speed = maximum_allowed_speed |
---|
322 | |
---|
323 | ## |
---|
324 | # @brief |
---|
325 | # @param points_file_block_line_size |
---|
326 | def set_points_file_block_line_size(self, points_file_block_line_size): |
---|
327 | """Set the minimum depth that will be recognised when writing |
---|
328 | to an sww file. This is useful for removing thin water layers |
---|
329 | that seems to be caused by friction creep. |
---|
330 | |
---|
331 | The minimum allowed sww depth is in meters. |
---|
332 | """ |
---|
333 | self.points_file_block_line_size = points_file_block_line_size |
---|
334 | |
---|
335 | |
---|
336 | # FIXME: Probably obsolete in its curren form |
---|
337 | ## |
---|
338 | # @brief Set the quantities that will be written to an SWW file. |
---|
339 | # @param q The quantities to be written. |
---|
340 | # @note Param 'q' may be None, single quantity or list of quantity strings. |
---|
341 | # @note If 'q' is None, no quantities will be stored in the SWW file. |
---|
342 | def set_quantities_to_be_stored(self, q): |
---|
343 | """Specify which quantities will be stored in the sww file |
---|
344 | |
---|
345 | q must be either: |
---|
346 | - a dictionary with quantity names |
---|
347 | - a list of quantity names (for backwards compatibility) |
---|
348 | - None |
---|
349 | |
---|
350 | The format of the dictionary is as follows |
---|
351 | |
---|
352 | quantity_name: flag where flag must be either 1 or 2. |
---|
353 | If flag is 1, the quantity is considered static and will be |
---|
354 | stored once at the beginning of the simulation in a 1D array. |
---|
355 | |
---|
356 | If flag is 2, the quantity is considered time dependent and |
---|
357 | it will be stored at each yieldstep by appending it to the |
---|
358 | appropriate 2D array in the sww file. |
---|
359 | |
---|
360 | If q is None, storage will be switched off altogether. |
---|
361 | |
---|
362 | Once the simulation has started and thw sww file opened, |
---|
363 | this function will have no effect. |
---|
364 | |
---|
365 | The format, where q is a list of names is for backwards compatibility |
---|
366 | only. |
---|
367 | It will take the specified quantities to be time dependent and assume |
---|
368 | 'elevation' to be static regardless. |
---|
369 | """ |
---|
370 | |
---|
371 | if q is None: |
---|
372 | self.quantities_to_be_stored = {} |
---|
373 | self.store = False |
---|
374 | return |
---|
375 | |
---|
376 | # Check correctness |
---|
377 | for quantity_name in q: |
---|
378 | msg = ('Quantity %s is not a valid conserved quantity' |
---|
379 | % quantity_name) |
---|
380 | assert quantity_name in self.quantities, msg |
---|
381 | |
---|
382 | assert type(q) == types.DictType |
---|
383 | self.quantities_to_be_stored = q |
---|
384 | |
---|
385 | ## |
---|
386 | # @brief |
---|
387 | # @param indices |
---|
388 | def get_wet_elements(self, indices=None): |
---|
389 | """Return indices for elements where h > minimum_allowed_height |
---|
390 | |
---|
391 | Optional argument: |
---|
392 | indices is the set of element ids that the operation applies to. |
---|
393 | |
---|
394 | Usage: |
---|
395 | indices = get_wet_elements() |
---|
396 | |
---|
397 | Note, centroid values are used for this operation |
---|
398 | """ |
---|
399 | |
---|
400 | # Water depth below which it is considered to be 0 in the model |
---|
401 | # FIXME (Ole): Allow this to be specified as a keyword argument as well |
---|
402 | from anuga.config import minimum_allowed_height |
---|
403 | |
---|
404 | elevation = self.get_quantity('elevation').\ |
---|
405 | get_values(location='centroids', indices=indices) |
---|
406 | stage = self.get_quantity('stage').\ |
---|
407 | get_values(location='centroids', indices=indices) |
---|
408 | depth = stage - elevation |
---|
409 | |
---|
410 | # Select indices for which depth > 0 |
---|
411 | wet_indices = num.compress(depth > minimum_allowed_height, |
---|
412 | num.arange(len(depth))) |
---|
413 | return wet_indices |
---|
414 | |
---|
415 | ## |
---|
416 | # @brief |
---|
417 | # @param indices |
---|
418 | def get_maximum_inundation_elevation(self, indices=None): |
---|
419 | """Return highest elevation where h > 0 |
---|
420 | |
---|
421 | Optional argument: |
---|
422 | indices is the set of element ids that the operation applies to. |
---|
423 | |
---|
424 | Usage: |
---|
425 | q = get_maximum_inundation_elevation() |
---|
426 | |
---|
427 | Note, centroid values are used for this operation |
---|
428 | """ |
---|
429 | |
---|
430 | wet_elements = self.get_wet_elements(indices) |
---|
431 | return self.get_quantity('elevation').\ |
---|
432 | get_maximum_value(indices=wet_elements) |
---|
433 | |
---|
434 | ## |
---|
435 | # @brief |
---|
436 | # @param indices |
---|
437 | def get_maximum_inundation_location(self, indices=None): |
---|
438 | """Return location of highest elevation where h > 0 |
---|
439 | |
---|
440 | Optional argument: |
---|
441 | indices is the set of element ids that the operation applies to. |
---|
442 | |
---|
443 | Usage: |
---|
444 | q = get_maximum_inundation_location() |
---|
445 | |
---|
446 | Note, centroid values are used for this operation |
---|
447 | """ |
---|
448 | |
---|
449 | wet_elements = self.get_wet_elements(indices) |
---|
450 | return self.get_quantity('elevation').\ |
---|
451 | get_maximum_location(indices=wet_elements) |
---|
452 | |
---|
453 | |
---|
454 | def get_flow_through_cross_section(self, polyline, verbose=False): |
---|
455 | """Get the total flow through an arbitrary poly line. |
---|
456 | |
---|
457 | This is a run-time equivalent of the function with same name |
---|
458 | in sww_interrogate.py |
---|
459 | |
---|
460 | Input: |
---|
461 | polyline: Representation of desired cross section - it may contain |
---|
462 | multiple sections allowing for complex shapes. Assume |
---|
463 | absolute UTM coordinates. |
---|
464 | Format [[x0, y0], [x1, y1], ...] |
---|
465 | |
---|
466 | Output: |
---|
467 | Q: Total flow [m^3/s] across given segments. |
---|
468 | """ |
---|
469 | |
---|
470 | |
---|
471 | cross_section = Cross_section(self, polyline, verbose) |
---|
472 | |
---|
473 | return cross_section.get_flow_through_cross_section() |
---|
474 | |
---|
475 | |
---|
476 | def get_energy_through_cross_section(self, polyline, |
---|
477 | kind='total', |
---|
478 | verbose=False): |
---|
479 | """Obtain average energy head [m] across specified cross section. |
---|
480 | |
---|
481 | Inputs: |
---|
482 | polyline: Representation of desired cross section - it may contain |
---|
483 | multiple sections allowing for complex shapes. Assume |
---|
484 | absolute UTM coordinates. |
---|
485 | Format [[x0, y0], [x1, y1], ...] |
---|
486 | kind: Select which energy to compute. |
---|
487 | Options are 'specific' and 'total' (default) |
---|
488 | |
---|
489 | Output: |
---|
490 | E: Average energy [m] across given segments for all stored times. |
---|
491 | |
---|
492 | The average velocity is computed for each triangle intersected by |
---|
493 | the polyline and averaged weighted by segment lengths. |
---|
494 | |
---|
495 | The typical usage of this function would be to get average energy of |
---|
496 | flow in a channel, and the polyline would then be a cross section |
---|
497 | perpendicular to the flow. |
---|
498 | |
---|
499 | #FIXME (Ole) - need name for this energy reflecting that its dimension |
---|
500 | is [m]. |
---|
501 | """ |
---|
502 | |
---|
503 | |
---|
504 | |
---|
505 | cross_section = Cross_section(self, polyline, verbose) |
---|
506 | |
---|
507 | return cross_section.get_energy_through_cross_section(kind) |
---|
508 | |
---|
509 | |
---|
510 | def check_integrity(self): |
---|
511 | """ Run integrity checks on shallow water domain. """ |
---|
512 | Generic_Domain.check_integrity(self) |
---|
513 | |
---|
514 | #Check that we are solving the shallow water wave equation |
---|
515 | msg = 'First conserved quantity must be "stage"' |
---|
516 | assert self.conserved_quantities[0] == 'stage', msg |
---|
517 | msg = 'Second conserved quantity must be "xmomentum"' |
---|
518 | assert self.conserved_quantities[1] == 'xmomentum', msg |
---|
519 | msg = 'Third conserved quantity must be "ymomentum"' |
---|
520 | assert self.conserved_quantities[2] == 'ymomentum', msg |
---|
521 | |
---|
522 | def extrapolate_second_order_sw(self): |
---|
523 | """Call correct module function |
---|
524 | (either from this module or C-extension)""" |
---|
525 | extrapolate_second_order_sw(self) |
---|
526 | |
---|
527 | def compute_fluxes(self): |
---|
528 | """Call correct module function |
---|
529 | (either from this module or C-extension)""" |
---|
530 | compute_fluxes(self) |
---|
531 | |
---|
532 | def distribute_to_vertices_and_edges(self): |
---|
533 | """ Call correct module function """ |
---|
534 | if self.use_edge_limiter: |
---|
535 | distribute_using_edge_limiter(self) |
---|
536 | else: |
---|
537 | distribute_using_vertex_limiter(self) |
---|
538 | |
---|
539 | |
---|
540 | |
---|
541 | def evolve(self, |
---|
542 | yieldstep=None, |
---|
543 | finaltime=None, |
---|
544 | duration=None, |
---|
545 | skip_initial_step=False): |
---|
546 | """Specialisation of basic evolve method from parent class. |
---|
547 | |
---|
548 | Evolve the model by 1 step. |
---|
549 | """ |
---|
550 | |
---|
551 | # Call check integrity here rather than from user scripts |
---|
552 | # self.check_integrity() |
---|
553 | |
---|
554 | msg = 'Attribute self.beta_w must be in the interval [0, 2]' |
---|
555 | assert 0 <= self.beta_w <= 2.0, msg |
---|
556 | |
---|
557 | # Initial update of vertex and edge values before any STORAGE |
---|
558 | # and or visualisation. |
---|
559 | # This is done again in the initialisation of the Generic_Domain |
---|
560 | # evolve loop but we do it here to ensure the values are ok for storage. |
---|
561 | self.distribute_to_vertices_and_edges() |
---|
562 | |
---|
563 | if self.store is True and self.time == 0.0: |
---|
564 | self.initialise_storage() |
---|
565 | |
---|
566 | # Call basic machinery from parent class |
---|
567 | for t in Generic_Domain.evolve(self, yieldstep=yieldstep, |
---|
568 | finaltime=finaltime, duration=duration, |
---|
569 | skip_initial_step=skip_initial_step): |
---|
570 | # Store model data, e.g. for subsequent visualisation |
---|
571 | if self.store is True: |
---|
572 | self.store_timestep() |
---|
573 | |
---|
574 | # Pass control on to outer loop for more specific actions |
---|
575 | yield(t) |
---|
576 | |
---|
577 | |
---|
578 | def initialise_storage(self): |
---|
579 | """Create and initialise self.writer object for storing data. |
---|
580 | Also, save x,y and bed elevation |
---|
581 | """ |
---|
582 | |
---|
583 | # Initialise writer |
---|
584 | self.writer = SWW_file(self) |
---|
585 | |
---|
586 | # Store vertices and connectivity |
---|
587 | self.writer.store_connectivity() |
---|
588 | |
---|
589 | |
---|
590 | def store_timestep(self): |
---|
591 | """Store time dependent quantities and time. |
---|
592 | |
---|
593 | Precondition: |
---|
594 | self.writer has been initialised |
---|
595 | """ |
---|
596 | |
---|
597 | self.writer.store_timestep() |
---|
598 | |
---|
599 | |
---|
600 | def timestepping_statistics(self, |
---|
601 | track_speeds=False, |
---|
602 | triangle_id=None): |
---|
603 | """Return string with time stepping statistics for printing or logging |
---|
604 | |
---|
605 | Optional boolean keyword track_speeds decides whether to report |
---|
606 | location of smallest timestep as well as a histogram and percentile |
---|
607 | report. |
---|
608 | """ |
---|
609 | |
---|
610 | from anuga.config import epsilon, g |
---|
611 | |
---|
612 | # Call basic machinery from parent class |
---|
613 | msg = Generic_Domain.timestepping_statistics(self, track_speeds, |
---|
614 | triangle_id) |
---|
615 | |
---|
616 | if track_speeds is True: |
---|
617 | # qwidth determines the text field used for quantities |
---|
618 | qwidth = self.qwidth |
---|
619 | |
---|
620 | # Selected triangle |
---|
621 | k = self.k |
---|
622 | |
---|
623 | # Report some derived quantities at vertices, edges and centroid |
---|
624 | # specific to the shallow water wave equation |
---|
625 | z = self.quantities['elevation'] |
---|
626 | w = self.quantities['stage'] |
---|
627 | |
---|
628 | Vw = w.get_values(location='vertices', indices=[k])[0] |
---|
629 | Ew = w.get_values(location='edges', indices=[k])[0] |
---|
630 | Cw = w.get_values(location='centroids', indices=[k]) |
---|
631 | |
---|
632 | Vz = z.get_values(location='vertices', indices=[k])[0] |
---|
633 | Ez = z.get_values(location='edges', indices=[k])[0] |
---|
634 | Cz = z.get_values(location='centroids', indices=[k]) |
---|
635 | |
---|
636 | name = 'depth' |
---|
637 | Vh = Vw-Vz |
---|
638 | Eh = Ew-Ez |
---|
639 | Ch = Cw-Cz |
---|
640 | |
---|
641 | message = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
642 | % (name.ljust(qwidth), Vh[0], Vh[1], Vh[2]) |
---|
643 | |
---|
644 | message += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
645 | % (name.ljust(qwidth), Eh[0], Eh[1], Eh[2]) |
---|
646 | |
---|
647 | message += ' %s: centroid_value = %.4f\n'\ |
---|
648 | % (name.ljust(qwidth), Ch[0]) |
---|
649 | |
---|
650 | msg += message |
---|
651 | |
---|
652 | uh = self.quantities['xmomentum'] |
---|
653 | vh = self.quantities['ymomentum'] |
---|
654 | |
---|
655 | Vuh = uh.get_values(location='vertices', indices=[k])[0] |
---|
656 | Euh = uh.get_values(location='edges', indices=[k])[0] |
---|
657 | Cuh = uh.get_values(location='centroids', indices=[k]) |
---|
658 | |
---|
659 | Vvh = vh.get_values(location='vertices', indices=[k])[0] |
---|
660 | Evh = vh.get_values(location='edges', indices=[k])[0] |
---|
661 | Cvh = vh.get_values(location='centroids', indices=[k]) |
---|
662 | |
---|
663 | # Speeds in each direction |
---|
664 | Vu = Vuh/(Vh + epsilon) |
---|
665 | Eu = Euh/(Eh + epsilon) |
---|
666 | Cu = Cuh/(Ch + epsilon) |
---|
667 | name = 'U' |
---|
668 | message = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n' \ |
---|
669 | % (name.ljust(qwidth), Vu[0], Vu[1], Vu[2]) |
---|
670 | |
---|
671 | message += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n' \ |
---|
672 | % (name.ljust(qwidth), Eu[0], Eu[1], Eu[2]) |
---|
673 | |
---|
674 | message += ' %s: centroid_value = %.4f\n' \ |
---|
675 | % (name.ljust(qwidth), Cu[0]) |
---|
676 | |
---|
677 | msg += message |
---|
678 | |
---|
679 | Vv = Vvh/(Vh + epsilon) |
---|
680 | Ev = Evh/(Eh + epsilon) |
---|
681 | Cv = Cvh/(Ch + epsilon) |
---|
682 | name = 'V' |
---|
683 | message = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n' \ |
---|
684 | % (name.ljust(qwidth), Vv[0], Vv[1], Vv[2]) |
---|
685 | |
---|
686 | message += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n' \ |
---|
687 | % (name.ljust(qwidth), Ev[0], Ev[1], Ev[2]) |
---|
688 | |
---|
689 | message += ' %s: centroid_value = %.4f\n'\ |
---|
690 | %(name.ljust(qwidth), Cv[0]) |
---|
691 | |
---|
692 | msg += message |
---|
693 | |
---|
694 | # Froude number in each direction |
---|
695 | name = 'Froude (x)' |
---|
696 | Vfx = Vu/(num.sqrt(g*Vh) + epsilon) |
---|
697 | Efx = Eu/(num.sqrt(g*Eh) + epsilon) |
---|
698 | Cfx = Cu/(num.sqrt(g*Ch) + epsilon) |
---|
699 | |
---|
700 | message = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
701 | % (name.ljust(qwidth), Vfx[0], Vfx[1], Vfx[2]) |
---|
702 | |
---|
703 | message += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
704 | % (name.ljust(qwidth), Efx[0], Efx[1], Efx[2]) |
---|
705 | |
---|
706 | message += ' %s: centroid_value = %.4f\n'\ |
---|
707 | % (name.ljust(qwidth), Cfx[0]) |
---|
708 | |
---|
709 | msg += message |
---|
710 | |
---|
711 | name = 'Froude (y)' |
---|
712 | Vfy = Vv/(num.sqrt(g*Vh) + epsilon) |
---|
713 | Efy = Ev/(num.sqrt(g*Eh) + epsilon) |
---|
714 | Cfy = Cv/(num.sqrt(g*Ch) + epsilon) |
---|
715 | |
---|
716 | message = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
717 | % (name.ljust(qwidth), Vfy[0], Vfy[1], Vfy[2]) |
---|
718 | |
---|
719 | message += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
720 | % (name.ljust(qwidth), Efy[0], Efy[1], Efy[2]) |
---|
721 | |
---|
722 | message += ' %s: centroid_value = %.4f\n'\ |
---|
723 | % (name.ljust(qwidth), Cfy[0]) |
---|
724 | |
---|
725 | msg += message |
---|
726 | |
---|
727 | return msg |
---|
728 | |
---|
729 | |
---|
730 | |
---|
731 | def compute_boundary_flows(self): |
---|
732 | """Compute boundary flows at current timestep. |
---|
733 | |
---|
734 | Quantities computed are: |
---|
735 | Total inflow across boundary |
---|
736 | Total outflow across boundary |
---|
737 | Flow across each tagged boundary segment |
---|
738 | """ |
---|
739 | |
---|
740 | # Run through boundary array and compute for each segment |
---|
741 | # the normal momentum ((uh, vh) dot normal) times segment length. |
---|
742 | # Based on sign accumulate this into boundary_inflow and |
---|
743 | # boundary_outflow. |
---|
744 | |
---|
745 | # Compute flows along boundary |
---|
746 | |
---|
747 | uh = self.get_quantity('xmomentum').get_values(location='edges') |
---|
748 | vh = self.get_quantity('ymomentum').get_values(location='edges') |
---|
749 | |
---|
750 | # Loop through edges that lie on the boundary and calculate |
---|
751 | # flows |
---|
752 | boundary_flows = {} |
---|
753 | total_boundary_inflow = 0.0 |
---|
754 | total_boundary_outflow = 0.0 |
---|
755 | for vol_id, edge_id in self.boundary: |
---|
756 | # Compute normal flow across edge. Since normal vector points |
---|
757 | # away from triangle, a positive sign means that water |
---|
758 | # flows *out* from this triangle. |
---|
759 | |
---|
760 | momentum = [uh[vol_id, edge_id], vh[vol_id, edge_id]] |
---|
761 | normal = self.mesh.get_normal(vol_id, edge_id) |
---|
762 | length = self.mesh.get_edgelength(vol_id, edge_id) |
---|
763 | normal_flow = num.dot(momentum, normal)*length |
---|
764 | |
---|
765 | # Reverse sign so that + is taken to mean inflow |
---|
766 | # and - means outflow. This is more intuitive. |
---|
767 | edge_flow = -normal_flow |
---|
768 | |
---|
769 | # Tally up inflows and outflows separately |
---|
770 | if edge_flow > 0: |
---|
771 | # Flow is inflow |
---|
772 | total_boundary_inflow += edge_flow |
---|
773 | else: |
---|
774 | # Flow is outflow |
---|
775 | total_boundary_outflow += edge_flow |
---|
776 | |
---|
777 | # Tally up flows by boundary tag |
---|
778 | tag = self.boundary[(vol_id, edge_id)] |
---|
779 | |
---|
780 | if tag not in boundary_flows: |
---|
781 | boundary_flows[tag] = 0.0 |
---|
782 | boundary_flows[tag] += edge_flow |
---|
783 | |
---|
784 | |
---|
785 | return boundary_flows, total_boundary_inflow, total_boundary_outflow |
---|
786 | |
---|
787 | |
---|
788 | def compute_forcing_flows(self): |
---|
789 | """Compute flows in and out of domain due to forcing terms. |
---|
790 | |
---|
791 | Quantities computed are: |
---|
792 | |
---|
793 | |
---|
794 | Total inflow through forcing terms |
---|
795 | Total outflow through forcing terms |
---|
796 | Current total volume in domain |
---|
797 | |
---|
798 | """ |
---|
799 | |
---|
800 | #FIXME(Ole): We need to separate what part of explicit_update was |
---|
801 | # due to the normal flux calculations and what is due to forcing terms. |
---|
802 | |
---|
803 | pass |
---|
804 | |
---|
805 | |
---|
806 | def compute_total_volume(self): |
---|
807 | """Compute total volume (m^3) of water in entire domain |
---|
808 | """ |
---|
809 | |
---|
810 | area = self.mesh.get_areas() |
---|
811 | |
---|
812 | stage = self.get_quantity('stage').get_values(location='centroids') |
---|
813 | elevation = \ |
---|
814 | self.get_quantity('elevation').get_values(location='centroids') |
---|
815 | depth = stage-elevation |
---|
816 | |
---|
817 | return num.sum(depth*area) |
---|
818 | |
---|
819 | |
---|
820 | def volumetric_balance_statistics(self): |
---|
821 | """Create volumetric balance report suitable for printing or logging. |
---|
822 | """ |
---|
823 | |
---|
824 | (boundary_flows, total_boundary_inflow, |
---|
825 | total_boundary_outflow) = self.compute_boundary_flows() |
---|
826 | |
---|
827 | message = '---------------------------\n' |
---|
828 | message += 'Volumetric balance report:\n' |
---|
829 | message += '--------------------------\n' |
---|
830 | message += 'Total boundary inflow [m^3/s]: %.2f\n' % total_boundary_inflow |
---|
831 | message += 'Total boundary outflow [m^3/s]: %.2f\n' % total_boundary_outflow |
---|
832 | message += 'Net boundary flow by tags [m^3/s]\n' |
---|
833 | for tag in boundary_flows: |
---|
834 | message += ' %s [m^3/s]: %.2f\n' % (tag, boundary_flows[tag]) |
---|
835 | |
---|
836 | message += 'Total net boundary flow [m^3/s]: %.2f\n' % \ |
---|
837 | (total_boundary_inflow + total_boundary_outflow) |
---|
838 | message += 'Total volume in domain [m^3]: %.2f\n' % \ |
---|
839 | self.compute_total_volume() |
---|
840 | |
---|
841 | # The go through explicit forcing update and record the rate of change |
---|
842 | # for stage and |
---|
843 | # record into forcing_inflow and forcing_outflow. Finally compute |
---|
844 | # integral of depth to obtain total volume of domain. |
---|
845 | |
---|
846 | # FIXME(Ole): This part is not yet done. |
---|
847 | |
---|
848 | return message |
---|
849 | |
---|
850 | ################################################################################ |
---|
851 | # End of class Shallow Water Domain |
---|
852 | ################################################################################ |
---|
853 | |
---|
854 | #----------------- |
---|
855 | # Flux computation |
---|
856 | #----------------- |
---|
857 | |
---|
858 | ## @brief Compute fluxes and timestep suitable for all volumes in domain. |
---|
859 | # @param domain The domain to calculate fluxes for. |
---|
860 | def compute_fluxes(domain): |
---|
861 | """Compute fluxes and timestep suitable for all volumes in domain. |
---|
862 | |
---|
863 | Compute total flux for each conserved quantity using "flux_function" |
---|
864 | |
---|
865 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
866 | Resulting flux is then scaled by area and stored in |
---|
867 | explicit_update for each of the three conserved quantities |
---|
868 | stage, xmomentum and ymomentum |
---|
869 | |
---|
870 | The maximal allowable speed computed by the flux_function for each volume |
---|
871 | is converted to a timestep that must not be exceeded. The minimum of |
---|
872 | those is computed as the next overall timestep. |
---|
873 | |
---|
874 | Post conditions: |
---|
875 | domain.explicit_update is reset to computed flux values |
---|
876 | domain.timestep is set to the largest step satisfying all volumes. |
---|
877 | |
---|
878 | This wrapper calls the underlying C version of compute fluxes |
---|
879 | """ |
---|
880 | |
---|
881 | import sys |
---|
882 | from shallow_water_ext import compute_fluxes_ext_central \ |
---|
883 | as compute_fluxes_ext |
---|
884 | |
---|
885 | # Shortcuts |
---|
886 | Stage = domain.quantities['stage'] |
---|
887 | Xmom = domain.quantities['xmomentum'] |
---|
888 | Ymom = domain.quantities['ymomentum'] |
---|
889 | Bed = domain.quantities['elevation'] |
---|
890 | |
---|
891 | timestep = float(sys.maxint) |
---|
892 | |
---|
893 | flux_timestep = compute_fluxes_ext(timestep, |
---|
894 | domain.epsilon, |
---|
895 | domain.H0, |
---|
896 | domain.g, |
---|
897 | domain.neighbours, |
---|
898 | domain.neighbour_edges, |
---|
899 | domain.normals, |
---|
900 | domain.edgelengths, |
---|
901 | domain.radii, |
---|
902 | domain.areas, |
---|
903 | domain.tri_full_flag, |
---|
904 | Stage.edge_values, |
---|
905 | Xmom.edge_values, |
---|
906 | Ymom.edge_values, |
---|
907 | Bed.edge_values, |
---|
908 | Stage.boundary_values, |
---|
909 | Xmom.boundary_values, |
---|
910 | Ymom.boundary_values, |
---|
911 | Stage.explicit_update, |
---|
912 | Xmom.explicit_update, |
---|
913 | Ymom.explicit_update, |
---|
914 | domain.already_computed_flux, |
---|
915 | domain.max_speed, |
---|
916 | int(domain.optimise_dry_cells)) |
---|
917 | |
---|
918 | domain.flux_timestep = flux_timestep |
---|
919 | |
---|
920 | ################################################################################ |
---|
921 | # Module functions for gradient limiting |
---|
922 | ################################################################################ |
---|
923 | |
---|
924 | ## |
---|
925 | # @brief Wrapper for C version of extrapolate_second_order_sw. |
---|
926 | # @param domain The domain to operate on. |
---|
927 | # @note MH090605 The following method belongs to the shallow_water domain class |
---|
928 | # see comments in the corresponding method in shallow_water_ext.c |
---|
929 | def extrapolate_second_order_sw(domain): |
---|
930 | """Wrapper calling C version of extrapolate_second_order_sw""" |
---|
931 | |
---|
932 | from shallow_water_ext import extrapolate_second_order_sw as extrapol2 |
---|
933 | |
---|
934 | # Shortcuts |
---|
935 | Stage = domain.quantities['stage'] |
---|
936 | Xmom = domain.quantities['xmomentum'] |
---|
937 | Ymom = domain.quantities['ymomentum'] |
---|
938 | Elevation = domain.quantities['elevation'] |
---|
939 | |
---|
940 | extrapol2(domain, |
---|
941 | domain.surrogate_neighbours, |
---|
942 | domain.number_of_boundaries, |
---|
943 | domain.centroid_coordinates, |
---|
944 | Stage.centroid_values, |
---|
945 | Xmom.centroid_values, |
---|
946 | Ymom.centroid_values, |
---|
947 | Elevation.centroid_values, |
---|
948 | domain.vertex_coordinates, |
---|
949 | Stage.vertex_values, |
---|
950 | Xmom.vertex_values, |
---|
951 | Ymom.vertex_values, |
---|
952 | Elevation.vertex_values, |
---|
953 | int(domain.optimise_dry_cells)) |
---|
954 | |
---|
955 | ## |
---|
956 | # @brief Distribution from centroids to vertices specific to the SWW eqn. |
---|
957 | # @param domain The domain to operate on. |
---|
958 | def distribute_using_vertex_limiter(domain): |
---|
959 | """Distribution from centroids to vertices specific to the SWW equation. |
---|
960 | |
---|
961 | It will ensure that h (w-z) is always non-negative even in the |
---|
962 | presence of steep bed-slopes by taking a weighted average between shallow |
---|
963 | and deep cases. |
---|
964 | |
---|
965 | In addition, all conserved quantities get distributed as per either a |
---|
966 | constant (order==1) or a piecewise linear function (order==2). |
---|
967 | |
---|
968 | FIXME: more explanation about removal of artificial variability etc |
---|
969 | |
---|
970 | Precondition: |
---|
971 | All quantities defined at centroids and bed elevation defined at |
---|
972 | vertices. |
---|
973 | |
---|
974 | Postcondition |
---|
975 | Conserved quantities defined at vertices |
---|
976 | """ |
---|
977 | |
---|
978 | # Remove very thin layers of water |
---|
979 | protect_against_infinitesimal_and_negative_heights(domain) |
---|
980 | |
---|
981 | # Extrapolate all conserved quantities |
---|
982 | if domain.optimised_gradient_limiter: |
---|
983 | # MH090605 if second order, |
---|
984 | # perform the extrapolation and limiting on |
---|
985 | # all of the conserved quantities |
---|
986 | |
---|
987 | if (domain._order_ == 1): |
---|
988 | for name in domain.conserved_quantities: |
---|
989 | Q = domain.quantities[name] |
---|
990 | Q.extrapolate_first_order() |
---|
991 | elif domain._order_ == 2: |
---|
992 | domain.extrapolate_second_order_sw() |
---|
993 | else: |
---|
994 | raise Exception('Unknown order') |
---|
995 | else: |
---|
996 | # Old code: |
---|
997 | for name in domain.conserved_quantities: |
---|
998 | Q = domain.quantities[name] |
---|
999 | |
---|
1000 | if domain._order_ == 1: |
---|
1001 | Q.extrapolate_first_order() |
---|
1002 | elif domain._order_ == 2: |
---|
1003 | Q.extrapolate_second_order_and_limit_by_vertex() |
---|
1004 | else: |
---|
1005 | raise Exception('Unknown order') |
---|
1006 | |
---|
1007 | # Take bed elevation into account when water heights are small |
---|
1008 | balance_deep_and_shallow(domain) |
---|
1009 | |
---|
1010 | # Compute edge values by interpolation |
---|
1011 | for name in domain.conserved_quantities: |
---|
1012 | Q = domain.quantities[name] |
---|
1013 | Q.interpolate_from_vertices_to_edges() |
---|
1014 | |
---|
1015 | ## |
---|
1016 | # @brief Distribution from centroids to edges specific to the SWW eqn. |
---|
1017 | # @param domain The domain to operate on. |
---|
1018 | def distribute_using_edge_limiter(domain): |
---|
1019 | """Distribution from centroids to edges specific to the SWW eqn. |
---|
1020 | |
---|
1021 | It will ensure that h (w-z) is always non-negative even in the |
---|
1022 | presence of steep bed-slopes by taking a weighted average between shallow |
---|
1023 | and deep cases. |
---|
1024 | |
---|
1025 | In addition, all conserved quantities get distributed as per either a |
---|
1026 | constant (order==1) or a piecewise linear function (order==2). |
---|
1027 | |
---|
1028 | |
---|
1029 | Precondition: |
---|
1030 | All quantities defined at centroids and bed elevation defined at |
---|
1031 | vertices. |
---|
1032 | |
---|
1033 | Postcondition |
---|
1034 | Conserved quantities defined at vertices |
---|
1035 | """ |
---|
1036 | |
---|
1037 | # Remove very thin layers of water |
---|
1038 | protect_against_infinitesimal_and_negative_heights(domain) |
---|
1039 | |
---|
1040 | for name in domain.conserved_quantities: |
---|
1041 | Q = domain.quantities[name] |
---|
1042 | if domain._order_ == 1: |
---|
1043 | Q.extrapolate_first_order() |
---|
1044 | elif domain._order_ == 2: |
---|
1045 | Q.extrapolate_second_order_and_limit_by_edge() |
---|
1046 | else: |
---|
1047 | raise Exception('Unknown order') |
---|
1048 | |
---|
1049 | balance_deep_and_shallow(domain) |
---|
1050 | |
---|
1051 | # Compute edge values by interpolation |
---|
1052 | for name in domain.conserved_quantities: |
---|
1053 | Q = domain.quantities[name] |
---|
1054 | Q.interpolate_from_vertices_to_edges() |
---|
1055 | |
---|
1056 | ## |
---|
1057 | # @brief Protect against infinitesimal heights and associated high velocities. |
---|
1058 | # @param domain The domain to operate on. |
---|
1059 | def protect_against_infinitesimal_and_negative_heights(domain): |
---|
1060 | """Protect against infinitesimal heights and associated high velocities""" |
---|
1061 | |
---|
1062 | from shallow_water_ext import protect |
---|
1063 | |
---|
1064 | # Shortcuts |
---|
1065 | wc = domain.quantities['stage'].centroid_values |
---|
1066 | zc = domain.quantities['elevation'].centroid_values |
---|
1067 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
1068 | ymomc = domain.quantities['ymomentum'].centroid_values |
---|
1069 | |
---|
1070 | protect(domain.minimum_allowed_height, domain.maximum_allowed_speed, |
---|
1071 | domain.epsilon, wc, zc, xmomc, ymomc) |
---|
1072 | |
---|
1073 | ## |
---|
1074 | # @brief Wrapper for C function balance_deep_and_shallow_c(). |
---|
1075 | # @param domain The domain to operate on. |
---|
1076 | def balance_deep_and_shallow(domain): |
---|
1077 | """Compute linear combination between stage as computed by |
---|
1078 | gradient-limiters limiting using w, and stage computed by |
---|
1079 | gradient-limiters limiting using h (h-limiter). |
---|
1080 | The former takes precedence when heights are large compared to the |
---|
1081 | bed slope while the latter takes precedence when heights are |
---|
1082 | relatively small. Anything in between is computed as a balanced |
---|
1083 | linear combination in order to avoid numerical disturbances which |
---|
1084 | would otherwise appear as a result of hard switching between |
---|
1085 | modes. |
---|
1086 | |
---|
1087 | Wrapper for C implementation |
---|
1088 | """ |
---|
1089 | |
---|
1090 | from shallow_water_ext import balance_deep_and_shallow \ |
---|
1091 | as balance_deep_and_shallow_c |
---|
1092 | |
---|
1093 | # Shortcuts |
---|
1094 | wc = domain.quantities['stage'].centroid_values |
---|
1095 | zc = domain.quantities['elevation'].centroid_values |
---|
1096 | wv = domain.quantities['stage'].vertex_values |
---|
1097 | zv = domain.quantities['elevation'].vertex_values |
---|
1098 | |
---|
1099 | # Momentums at centroids |
---|
1100 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
1101 | ymomc = domain.quantities['ymomentum'].centroid_values |
---|
1102 | |
---|
1103 | # Momentums at vertices |
---|
1104 | xmomv = domain.quantities['xmomentum'].vertex_values |
---|
1105 | ymomv = domain.quantities['ymomentum'].vertex_values |
---|
1106 | |
---|
1107 | balance_deep_and_shallow_c(domain, |
---|
1108 | wc, zc, wv, zv, wc, |
---|
1109 | xmomc, ymomc, xmomv, ymomv) |
---|
1110 | |
---|
1111 | |
---|
1112 | |
---|
1113 | ################################################################################ |
---|
1114 | # Standard forcing terms |
---|
1115 | ################################################################################ |
---|
1116 | |
---|
1117 | ## |
---|
1118 | # @brief Apply gravitational pull in the presence of bed slope. |
---|
1119 | # @param domain The domain to apply gravity to. |
---|
1120 | # @note Wrapper for C function gravity_c(). |
---|
1121 | def gravity(domain): |
---|
1122 | """Apply gravitational pull in the presence of bed slope |
---|
1123 | Wrapper calls underlying C implementation |
---|
1124 | """ |
---|
1125 | |
---|
1126 | from shallow_water_ext import gravity as gravity_c |
---|
1127 | |
---|
1128 | xmom_update = domain.quantities['xmomentum'].explicit_update |
---|
1129 | ymom_update = domain.quantities['ymomentum'].explicit_update |
---|
1130 | |
---|
1131 | stage = domain.quantities['stage'] |
---|
1132 | elevation = domain.quantities['elevation'] |
---|
1133 | |
---|
1134 | height = stage.centroid_values - elevation.centroid_values |
---|
1135 | elevation = elevation.vertex_values |
---|
1136 | |
---|
1137 | point = domain.get_vertex_coordinates() |
---|
1138 | |
---|
1139 | gravity_c(domain.g, height, elevation, point, xmom_update, ymom_update) |
---|
1140 | |
---|
1141 | ## |
---|
1142 | # @brief Apply friction to a surface (implicit). |
---|
1143 | # @param domain The domain to apply Manning friction to. |
---|
1144 | # @note Wrapper for C function manning_friction_c(). |
---|
1145 | def manning_friction_implicit(domain): |
---|
1146 | """Apply (Manning) friction to water momentum |
---|
1147 | Wrapper for c version |
---|
1148 | """ |
---|
1149 | |
---|
1150 | from shallow_water_ext import manning_friction_old |
---|
1151 | from shallow_water_ext import manning_friction_new |
---|
1152 | |
---|
1153 | xmom = domain.quantities['xmomentum'] |
---|
1154 | ymom = domain.quantities['ymomentum'] |
---|
1155 | |
---|
1156 | x = domain.get_vertex_coordinates() |
---|
1157 | |
---|
1158 | w = domain.quantities['stage'].centroid_values |
---|
1159 | z = domain.quantities['elevation'].vertex_values |
---|
1160 | |
---|
1161 | uh = xmom.centroid_values |
---|
1162 | vh = ymom.centroid_values |
---|
1163 | eta = domain.quantities['friction'].centroid_values |
---|
1164 | |
---|
1165 | xmom_update = xmom.semi_implicit_update |
---|
1166 | ymom_update = ymom.semi_implicit_update |
---|
1167 | |
---|
1168 | eps = domain.minimum_allowed_height |
---|
1169 | g = domain.g |
---|
1170 | |
---|
1171 | if domain.use_new_mannings: |
---|
1172 | manning_friction_new(g, eps, x, w, uh, vh, z, eta, xmom_update, \ |
---|
1173 | ymom_update) |
---|
1174 | else: |
---|
1175 | manning_friction_old(g, eps, w, uh, vh, z, eta, xmom_update, \ |
---|
1176 | ymom_update) |
---|
1177 | |
---|
1178 | |
---|
1179 | ## |
---|
1180 | # @brief Apply friction to a surface (explicit). |
---|
1181 | # @param domain The domain to apply Manning friction to. |
---|
1182 | # @note Wrapper for C function manning_friction_c(). |
---|
1183 | def manning_friction_explicit(domain): |
---|
1184 | """Apply (Manning) friction to water momentum |
---|
1185 | Wrapper for c version |
---|
1186 | """ |
---|
1187 | |
---|
1188 | from shallow_water_ext import manning_friction_old |
---|
1189 | from shallow_water_ext import manning_friction_new |
---|
1190 | |
---|
1191 | xmom = domain.quantities['xmomentum'] |
---|
1192 | ymom = domain.quantities['ymomentum'] |
---|
1193 | |
---|
1194 | x = domain.get_vertex_coordinates() |
---|
1195 | |
---|
1196 | w = domain.quantities['stage'].centroid_values |
---|
1197 | z = domain.quantities['elevation'].vertex_values |
---|
1198 | |
---|
1199 | uh = xmom.centroid_values |
---|
1200 | vh = ymom.centroid_values |
---|
1201 | eta = domain.quantities['friction'].centroid_values |
---|
1202 | |
---|
1203 | xmom_update = xmom.explicit_update |
---|
1204 | ymom_update = ymom.explicit_update |
---|
1205 | |
---|
1206 | eps = domain.minimum_allowed_height |
---|
1207 | |
---|
1208 | if domain.use_new_mannings: |
---|
1209 | manning_friction_new(domain.g, eps, x, w, uh, vh, z, eta, xmom_update, \ |
---|
1210 | ymom_update) |
---|
1211 | else: |
---|
1212 | manning_friction_old(domain.g, eps, w, uh, vh, z, eta, xmom_update, \ |
---|
1213 | ymom_update) |
---|
1214 | |
---|
1215 | |
---|
1216 | |
---|
1217 | # FIXME (Ole): This was implemented for use with one of the analytical solutions |
---|
1218 | ## |
---|
1219 | # @brief Apply linear friction to a surface. |
---|
1220 | # @param domain The domain to apply Manning friction to. |
---|
1221 | # @note Is this still used (30 Oct 2007)? |
---|
1222 | def linear_friction(domain): |
---|
1223 | """Apply linear friction to water momentum |
---|
1224 | |
---|
1225 | Assumes quantity: 'linear_friction' to be present |
---|
1226 | """ |
---|
1227 | |
---|
1228 | w = domain.quantities['stage'].centroid_values |
---|
1229 | z = domain.quantities['elevation'].centroid_values |
---|
1230 | h = w-z |
---|
1231 | |
---|
1232 | uh = domain.quantities['xmomentum'].centroid_values |
---|
1233 | vh = domain.quantities['ymomentum'].centroid_values |
---|
1234 | tau = domain.quantities['linear_friction'].centroid_values |
---|
1235 | |
---|
1236 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
1237 | ymom_update = domain.quantities['ymomentum'].semi_implicit_update |
---|
1238 | |
---|
1239 | num_tris = len(domain) |
---|
1240 | eps = domain.minimum_allowed_height |
---|
1241 | |
---|
1242 | for k in range(num_tris): |
---|
1243 | if tau[k] >= eps: |
---|
1244 | if h[k] >= eps: |
---|
1245 | S = -tau[k]/h[k] |
---|
1246 | |
---|
1247 | #Update momentum |
---|
1248 | xmom_update[k] += S*uh[k] |
---|
1249 | ymom_update[k] += S*vh[k] |
---|
1250 | |
---|
1251 | def depth_dependent_friction(domain, default_friction, |
---|
1252 | surface_roughness_data, |
---|
1253 | verbose=False): |
---|
1254 | """Returns an array of friction values for each wet element adjusted for |
---|
1255 | depth. |
---|
1256 | |
---|
1257 | Inputs: |
---|
1258 | domain - computational domain object |
---|
1259 | default_friction - depth independent bottom friction |
---|
1260 | surface_roughness_data - N x 5 array of n0, d1, n1, d2, n2 values |
---|
1261 | for each friction region. |
---|
1262 | |
---|
1263 | Outputs: |
---|
1264 | wet_friction - Array that can be used directly to update friction as |
---|
1265 | follows: |
---|
1266 | domain.set_quantity('friction', wet_friction) |
---|
1267 | |
---|
1268 | |
---|
1269 | |
---|
1270 | """ |
---|
1271 | |
---|
1272 | default_n0 = 0 # James - this was missing, don't know what it should be |
---|
1273 | |
---|
1274 | # Create a temp array to store updated depth dependent |
---|
1275 | # friction for wet elements |
---|
1276 | # EHR this is outwardly inneficient but not obvious how to avoid |
---|
1277 | # recreating each call?????? |
---|
1278 | |
---|
1279 | wet_friction = num.zeros(len(domain), num.float) |
---|
1280 | wet_friction[:] = default_n0 # Initially assign default_n0 to all array so |
---|
1281 | # sure have no zeros values |
---|
1282 | |
---|
1283 | # create depth instance for this timestep |
---|
1284 | depth = domain.create_quantity_from_expression('stage - elevation') |
---|
1285 | # Recompute depth as vector |
---|
1286 | d_vals = depth.get_values(location='centroids') |
---|
1287 | |
---|
1288 | # rebuild the 'friction' values adjusted for depth at this instant |
---|
1289 | # loop for each wet element in domain |
---|
1290 | |
---|
1291 | for i in domain.get_wet_elements(): |
---|
1292 | # Get roughness data for each element |
---|
1293 | d1 = float(surface_roughness_data[i, 1]) |
---|
1294 | n1 = float(surface_roughness_data[i, 2]) |
---|
1295 | d2 = float(surface_roughness_data[i, 3]) |
---|
1296 | n2 = float(surface_roughness_data[i, 4]) |
---|
1297 | |
---|
1298 | |
---|
1299 | # Recompute friction values from depth for this element |
---|
1300 | |
---|
1301 | if d_vals[i] <= d1: |
---|
1302 | ddf = n1 |
---|
1303 | elif d_vals[i] >= d2: |
---|
1304 | ddf = n2 |
---|
1305 | else: |
---|
1306 | ddf = n1 + ((n2-n1)/(d2-d1))*(d_vals[i]-d1) |
---|
1307 | |
---|
1308 | # check sanity of result |
---|
1309 | if (ddf < 0.010 or \ |
---|
1310 | ddf > 9999.0) : |
---|
1311 | log.critical('>>>> WARNING: computed depth_dependent friction ' |
---|
1312 | 'out of range, ddf%f, n1=%f, n2=%f' |
---|
1313 | % (ddf, n1, n2)) |
---|
1314 | |
---|
1315 | # update depth dependent friction for that wet element |
---|
1316 | wet_friction[i] = ddf |
---|
1317 | |
---|
1318 | # EHR add code to show range of 'friction across domain at this instant as |
---|
1319 | # sanity check????????? |
---|
1320 | |
---|
1321 | if verbose : |
---|
1322 | # return array of domain nvals |
---|
1323 | nvals = domain.get_quantity('friction').get_values(location='centroids') |
---|
1324 | n_min = min(nvals) |
---|
1325 | n_max = max(nvals) |
---|
1326 | |
---|
1327 | log.critical(' ++++ calculate_depth_dependent_friction - ' |
---|
1328 | 'Updated friction - range %7.3f to %7.3f' |
---|
1329 | % (n_min, n_max)) |
---|
1330 | |
---|
1331 | return wet_friction |
---|
1332 | |
---|
1333 | |
---|
1334 | |
---|
1335 | ################################################################################ |
---|
1336 | # Initialise module |
---|
1337 | ################################################################################ |
---|
1338 | |
---|
1339 | def _raise_compile_exception(): |
---|
1340 | """ Raise exception if compiler not available. """ |
---|
1341 | msg = 'C implementations could not be accessed by %s.\n ' % __file__ |
---|
1342 | msg += 'Make sure compile_all.py has been run as described in ' |
---|
1343 | msg += 'the ANUGA installation guide.' |
---|
1344 | raise Exception(msg) |
---|
1345 | |
---|
1346 | from anuga.utilities import compile |
---|
1347 | if not compile.can_use_C_extension('shallow_water_ext.c'): |
---|
1348 | _raise_compile_exception() |
---|
1349 | |
---|
1350 | if __name__ == "__main__": |
---|
1351 | pass |
---|