source: trunk/anuga_core/source/anuga/structures/boyd_box_operator_Amended3.py @ 8050

Last change on this file since 8050 was 8034, checked in by habili, 13 years ago

Added in Rudy's amended boyd_box_operator

File size: 11.1 KB
Line 
1import anuga
2import math
3import types
4
5class Boyd_box_operator(anuga.Structure_operator):
6    """Culvert flow - transfer water from one rectangular box to another.
7    Sets up the geometry of problem
8   
9    This is the base class for culverts. Inherit from this class (and overwrite
10    compute_discharge method for specific subclasses)
11   
12    Input: Two points, pipe_size (either diameter or width, height),
13    mannings_rougness,
14    """
15
16
17    def __init__(self,
18                 domain,
19                 end_point0, 
20                 end_point1,
21                 losses,
22                 width,
23                 height=None,
24                 apron=None,
25                 manning=0.013,
26                 enquiry_gap=0.2,
27                 use_momentum_jet=True,
28                 use_velocity_head=True,
29                 description=None,
30                 label=None,
31                 structure_type='boyd_box',
32                 logging=False,
33                 verbose=False):
34
35                     
36        anuga.Structure_operator.__init__(self,
37                                          domain,
38                                          end_point0, 
39                                          end_point1,
40                                          width,
41                                          height,
42                                          apron,
43                                          manning,
44                                          enquiry_gap,                                                       
45                                          description,
46                                          label,
47                                          structure_type,
48                                          logging,
49                                          verbose)     
50       
51       
52        if type(losses) == types.DictType:
53            self.sum_loss = sum(losses.values())
54        elif type(losses) == types.ListType:
55            self.sum_loss = sum(losses)
56        else:
57            self.sum_loss = losses
58       
59        self.use_momentum_jet = use_momentum_jet
60        self.use_velocity_head = use_velocity_head
61       
62        self.culvert_length = self.get_culvert_length()
63        self.culvert_width = self.get_culvert_width()
64        self.culvert_height = self.get_culvert_height()
65
66        self.max_velocity = 10.0
67
68        self.inlets = self.get_inlets()
69
70
71        # Stats
72       
73        self.discharge = 0.0
74        self.velocity = 0.0
75       
76        self.case = 'N/A'
77
78   
79    def discharge_routine(self):
80
81        local_debug ='false'
82       
83        if self.inflow.get_enquiry_height() > 0.01: #this value was 0.01:  We should call this Enquiry Depth
84            if local_debug =='true':
85                anuga.log.critical('Specific E & Deltat Tot E = %s, %s'
86                             % (str(self.inflow.get_enquiry_specific_energy()),
87                                str(self.delta_total_energy)))
88                anuga.log.critical('culvert type = %s' % str(culvert_type))
89            # Water has risen above inlet
90
91
92
93            msg = 'Specific energy at inlet is negative'
94            assert self.inflow.get_enquiry_specific_energy() >= 0.0, msg
95
96            if self.use_velocity_head :
97                self.driving_energy = self.inflow.get_enquiry_specific_energy()
98            else:
99                self.driving_energy = self.inflow.get_enquiry_height()
100
101            height = self.culvert_height
102            width = self.culvert_width
103            flow_width = self.culvert_width
104           
105            # intially assume the culvert flow is controlled by the inlet
106            # check unsubmerged and submerged condition and use Min Q
107            # but ensure the correct flow area and wetted perimeter are used
108            if self.driving_energy < height:
109                # Inlet Unsubmerged
110                self.case = 'Inlet unsubmerged Box Acts as Weir'
111                Q_inlet = 0.544*anuga.g**0.5*width*self.driving_energy**1.50 # Flow based on Inlet Ctrl Inlet Unsubmerged
112                V_inlet = Q_inlet/(width*self.driving_energy)
113            elif (self.driving_energy > height) and (self.driving_energy < 1.93*height):
114                # Inlet in Transition Zone by Boyd  New equation
115                self.case = 'Inlet in Transition between Weir & Orifice'
116                Q_inlet = 0.54286*anuga.g**0.5*width*height**0.5*self.driving_energy
117                dcrit = (Q_inlet**2/anuga.g/width**2)**0.333333 # Based on Inlet Control
118                if dcrit < height:
119                    V_inlet = Q_inlet/(width*dcrit) # Full Box Velocity
120                else:
121                    V_inlet = Q_inlet/(width*height) # Full Box Velocity
122               
123            else:
124                # Inlet Submerged
125                self.case = 'Inlet Submerged Box Acts as Orifice'
126                Q_inlet = 0.702*anuga.g**0.5*width*height**0.89*self.driving_energy**0.61  # Flow based on Inlet Ctrl Inlet Submerged
127                V_inlet = Q_inlet/(width*height) # Full Box Velocity
128           
129            Q = Q_inlet
130            dcrit = (Q**2/anuga.g/width**2)**0.333333 # Based on Inlet Control
131            #
132            # May not need this .... check if same is done above  Might move this block Yet ???
133            outlet_culvert_depth = dcrit
134           
135            if outlet_culvert_depth > height:
136                outlet_culvert_depth = height  # Once again the pipe is flowing full not partfull
137                flow_area = width*height  # Cross sectional area of flow in the culvert
138                perimeter = 2*(width+height)
139                self.case = 'Inlet CTRL Outlet unsubmerged PIPE PART FULL'
140            else:
141                flow_area = width * outlet_culvert_depth
142                perimeter = width+2*outlet_culvert_depth
143                self.case = 'INLET CTRL Culvert is open channel flow we will for now assume critical depth'
144            # Initial Estimate of Flow for Outlet Control using energy slope
145            #( may need to include Culvert Bed Slope Comparison)
146            hyd_rad = flow_area/perimeter
147           
148           
149            # NEED TO DETERMINE INTERNAL BARREL VELOCITY  Could you Direct Step Method or Standard Step to compute Profile & Friction loss more accurately
150            # For Now Assume Normal Depth in the Pipe if Part full
151            #culvert_velocity = math.sqrt(self.delta_total_energy/((self.sum_loss/2/anuga.g)+(self.manning**2*self.culvert_length)/hyd_rad**1.33333))
152            # Calculate Culvert velocity Based on the greater of the Pipe Slope, or the Slope of the Energy Line
153            if pipe_slope > energy_line_slope:
154                slope = pipe_slope
155            else:
156                slope = energy_line_slope
157           
158            # Here need to iterate Depth or use Table
159            while Qpartfull < Q:
160                for i in numpy.arange(0.01, self.get_culvert_height(), 0.01):
161                    partfull_Area= partfull_depth*width
162                    partfull_Perimeter= width+2*partfull_depth
163                    partfull_Hyd_Rad = partfull_Area/Partfull_Perimeter
164                    Vpartfull = Partfull_Hyd_Rad**(2/3)*slope**0.5/self.manning
165                    Qpartfull = Vpartfull*partfull_Area
166                    if partfull_depth < dcrit:
167                        flow_type = 'Super-critical in Barrel'
168                    elif partfull_depth > dcrit:
169                        flow_type = 'Sub-critical in Barrel'
170                    else: #partfull = dcrit
171                        flow_type = 'Critical Depth in Barrel'
172           
173            #culvert_velocity = math.sqrt(self.delta_total_energy/((self.manning**2*self.culvert_length)/hyd_rad**1.33333)) # Based only on Friction Loss
174            #Q_outlet_tailwater = flow_area * culvert_velocity
175           
176           
177            if self.delta_total_energy < self.driving_energy:  # wE SHOULD DO THIS ANYWAY NOT ONLY FOR THIS CONDITION OTHER WISE MIGHT MISS oUTLET CONTROL SOMETIMES
178                # Calculate flows for outlet control
179
180                # Determine the depth at the outlet relative to the depth of flow in the Culvert
181                if self.outflow.get_enquiry_height() > height:        # The Outlet is Submerged
182                    outlet_culvert_depth=height
183                    flow_area=width*height       # Cross sectional area of flow in the culvert
184                    perimeter=2.0*(width+height)
185                    self.case = 'Outlet submerged Culvert Flowing Full'
186                else:   # Here really should use the Culvert Slope to calculate Actual Culvert Depth & Velocity
187                    dcrit = (Q**2/anuga.g/width**2)**0.333333
188                    outlet_culvert_depth=dcrit   # For purpose of calculation assume the outlet depth = Critical Depth
189                    if outlet_culvert_depth > height:
190                        outlet_culvert_depth=height
191                        flow_area=width*height
192                        perimeter=2.0*(width+height)
193                        self.case = 'Outlet is Flowing Full'
194                    else:
195                        flow_area=width*outlet_culvert_depth
196                        perimeter=(width+2.0*outlet_culvert_depth)
197                        self.case = 'Outlet is open channel flow'
198
199                hyd_rad = flow_area/perimeter
200
201
202
203                # Rename this next one  V_outlet
204                culvert_velocity = math.sqrt(self.delta_total_energy/((self.sum_loss/2/anuga.g)+(self.manning**2*self.culvert_length)/hyd_rad**1.33333))
205                Q_outlet_tailwater = flow_area * culvert_velocity
206               
207                 # Final Outlet control velocity using tail water
208                # Determine HEad Loss based on Inlet, Barrel and Outlet Velocities
209               
210
211                #FIXME SR: Is this code used?
212                Inlet_Loss = Vinlet**2/(2*g)* Inlet_Loss_Coeff
213                Barrel_Loss = self.culvert.length*Vpartfull**2/(partfull_Hyd_Rad**(4/3))
214                Bend_Loss = Vpartfull**2/(2*g)* Bend_Loss_Coeff
215                #Other_Loss ???
216                Exit_Loss = culvert_velocity**2/(2*g)*Exit_Loss_Coeff
217                Total_Loss = Inlet_Loss+Barrel_Loss+Bend_Loss+Exit_Loss
218
219 
220                Q = min(Q, Q_outlet_tailwater)
221            else:
222                pass
223                #FIXME(Ole): What about inlet control?
224
225            culv_froude=math.sqrt(Q**2*flow_width/(anuga.g*flow_area**3))
226            if local_debug =='true':
227                anuga.log.critical('FLOW AREA = %s' % str(flow_area))
228                anuga.log.critical('PERIMETER = %s' % str(perimeter))
229                anuga.log.critical('Q final = %s' % str(Q))
230                anuga.log.critical('FROUDE = %s' % str(culv_froude))
231
232            # Determine momentum at the outlet
233            barrel_velocity = Q/(flow_area + anuga.velocity_protection/flow_area)
234
235        # END CODE BLOCK for DEPTH  > Required depth for CULVERT Flow
236
237        else: # self.inflow.get_enquiry_height() < 0.01:
238            Q = barrel_velocity = outlet_culvert_depth = 0.0
239
240        # Temporary flow limit
241        if barrel_velocity > self.max_velocity:
242            barrel_velocity = self.max_velocity
243            Q = flow_area * barrel_velocity
244
245        return Q, barrel_velocity, outlet_culvert_depth
246       
Note: See TracBrowser for help on using the repository browser.