[7980] | 1 | #! /usr/bin/python |
---|
| 2 | |
---|
| 3 | # To change this template, choose Tools | Templates |
---|
| 4 | # and open the template in the editor. |
---|
| 5 | |
---|
| 6 | __author__="steve" |
---|
| 7 | __date__ ="$30/08/2010 10:15:08 AM$" |
---|
| 8 | |
---|
| 9 | import culvert_routine |
---|
| 10 | from anuga.config import velocity_protection |
---|
| 11 | from anuga.utilities.numerical_tools import safe_acos as acos |
---|
| 12 | |
---|
| 13 | from math import pi, sqrt, sin, cos |
---|
| 14 | from anuga.config import g |
---|
| 15 | |
---|
| 16 | |
---|
| 17 | class Boyd_box_routine(culvert_routine.Culvert_routine): |
---|
| 18 | """Boyd's generalisation of the US department of transportation culvert methods |
---|
| 19 | |
---|
| 20 | WARNING THIS IS A SIMPLISTIC APPROACH and OUTLET VELOCITIES ARE LIMITED TO EITHER |
---|
| 21 | FULL PIPE OR CRITICAL DEPTH ONLY |
---|
| 22 | For Supercritical flow this is UNDERESTIMATING the Outlet Velocity |
---|
| 23 | The obtain the CORRECT velocity requires an iteration of Depth to Establish |
---|
| 24 | the Normal Depth of flow in the pipe. |
---|
| 25 | |
---|
| 26 | It is proposed to provide this in a seperate routine called |
---|
| 27 | boyd_generalised_culvert_model_complex |
---|
| 28 | |
---|
| 29 | The Boyd Method is based on methods described by the following: |
---|
| 30 | 1. |
---|
| 31 | US Dept. Transportation Federal Highway Administration (1965) |
---|
| 32 | Hydraulic Chart for Selection of Highway Culverts. |
---|
| 33 | Hydraulic Engineering Circular No. 5 US Government Printing |
---|
| 34 | 2. |
---|
| 35 | US Dept. Transportation Federal Highway Administration (1972) |
---|
| 36 | Capacity charts for the Hydraulic design of highway culverts. |
---|
| 37 | Hydraulic Engineering Circular No. 10 US Government Printing |
---|
| 38 | These documents provide around 60 charts for various configurations of culverts and inlets. |
---|
| 39 | |
---|
| 40 | Note these documents have been superceded by: |
---|
| 41 | 2005 Hydraulic Design of Highway Culverts, Hydraulic Design Series No. 5 (HDS-5), |
---|
| 42 | Which combines culvert design information previously contained in Hydraulic Engineering Circulars |
---|
| 43 | (HEC) No. 5, No. 10, and No. 13 with hydrologic, storage routing, and special culvert design information. |
---|
| 44 | HEC-5 provides 20 Charts |
---|
| 45 | HEC-10 Provides an additional 36 Charts |
---|
| 46 | HEC-13 Discusses the Design of improved more efficient inlets |
---|
| 47 | HDS-5 Provides 60 sets of Charts |
---|
| 48 | |
---|
| 49 | In 1985 Professor Michael Boyd Published "Head-Discharge Relations for Culverts", and in |
---|
| 50 | 1987 published "Generalised Head Discharge Equations for Culverts". |
---|
| 51 | These papers reviewed the previous work by the US DOT and provided a simplistic approach for 3 configurations. |
---|
| 52 | |
---|
| 53 | It may be possible to extend the same approach for additional charts in the original work, but to date this has not been done. |
---|
| 54 | The additional charts cover a range of culvert shapes and inlet configurations |
---|
| 55 | |
---|
| 56 | |
---|
| 57 | """ |
---|
| 58 | |
---|
| 59 | def __init__(self): |
---|
| 60 | |
---|
| 61 | Culvert_routine.__init__(self) |
---|
| 62 | |
---|
| 63 | |
---|
| 64 | |
---|
| 65 | def __call__(self): |
---|
| 66 | |
---|
| 67 | """ |
---|
| 68 | For a circular pipe the Boyd method reviews 3 conditions |
---|
| 69 | 1. Whether the Pipe Inlet is Unsubmerged (acting as weir flow into the inlet) |
---|
| 70 | 2. Whether the Pipe Inlet is Fully Submerged (acting as an Orifice) |
---|
| 71 | 3. Whether the energy loss in the pipe results in the Pipe being controlled by Channel Flow of the Pipe |
---|
| 72 | |
---|
| 73 | For these conditions we also would like to assess the pipe flow characteristics as it leaves the pipe |
---|
| 74 | """ |
---|
| 75 | |
---|
| 76 | diameter = self.culvert_height |
---|
| 77 | |
---|
| 78 | local_debug ='false' |
---|
| 79 | if self.inflow.get_average_height() > 0.1: #this value was 0.01: |
---|
| 80 | if local_debug =='true': |
---|
| 81 | log.critical('Specific E & Deltat Tot E = %s, %s' |
---|
| 82 | % (str(self.inflow.get_average_specific_energy()), |
---|
| 83 | str(self.delta_total_energy))) |
---|
| 84 | log.critical('culvert type = %s' % str(culvert_type)) |
---|
| 85 | # Water has risen above inlet |
---|
| 86 | |
---|
| 87 | if self.log_filename is not None: |
---|
| 88 | s = 'Specific energy = %f m' % self.inflow.get_average_specific_energy() |
---|
| 89 | log_to_file(self.log_filename, s) |
---|
| 90 | |
---|
| 91 | msg = 'Specific energy at inlet is negative' |
---|
| 92 | assert self.inflow.get_average_specific_energy() >= 0.0, msg |
---|
| 93 | |
---|
| 94 | # Calculate flows for inlet control |
---|
| 95 | Q_inlet_unsubmerged = 0.421*g**0.5*diameter**0.87*self.inflow.get_average_specific_energy()**1.63 # Inlet Ctrl Inlet Unsubmerged |
---|
| 96 | Q_inlet_submerged = 0.530*g**0.5*diameter**1.87*self.inflow.get_average_specific_energy()**0.63 # Inlet Ctrl Inlet Submerged |
---|
| 97 | # Note for to SUBMERGED TO OCCUR self.inflow.get_average_specific_energy() should be > 1.2 x diameter.... Should Check !!! |
---|
| 98 | |
---|
| 99 | if self.log_filename is not None: |
---|
| 100 | s = 'Q_inlet_unsubmerged = %.6f, Q_inlet_submerged = %.6f' % (Q_inlet_unsubmerged, Q_inlet_submerged) |
---|
| 101 | log_to_file(self.log_filename, s) |
---|
| 102 | Q = min(Q_inlet_unsubmerged, Q_inlet_submerged) |
---|
| 103 | |
---|
| 104 | # THE LOWEST Value will Control Calcs From here |
---|
| 105 | # Calculate Critical Depth Based on the Adopted Flow as an Estimate |
---|
| 106 | dcrit1 = diameter/1.26*(Q/g**0.5*diameter**2.5)**(1/3.75) |
---|
| 107 | dcrit2 = diameter/0.95*(Q/g**0.5*diameter**2.5)**(1/1.95) |
---|
| 108 | # From Boyd Paper ESTIMATE of Dcrit has 2 criteria as |
---|
| 109 | if dcrit1/diameter > 0.85: |
---|
| 110 | outlet_culvert_depth = dcrit2 |
---|
| 111 | else: |
---|
| 112 | outlet_culvert_depth = dcrit1 |
---|
| 113 | #outlet_culvert_depth = min(outlet_culvert_depth, diameter) |
---|
| 114 | # Now determine Hydraulic Radius Parameters Area & Wetted Perimeter |
---|
| 115 | if outlet_culvert_depth >= diameter: |
---|
| 116 | outlet_culvert_depth = diameter # Once again the pipe is flowing full not partfull |
---|
| 117 | flow_area = (diameter/2)**2 * pi # Cross sectional area of flow in the culvert |
---|
| 118 | perimeter = diameter * pi |
---|
| 119 | flow_width= diameter |
---|
| 120 | case = 'Inlet CTRL Outlet submerged Circular PIPE FULL' |
---|
| 121 | if local_debug == 'true': |
---|
| 122 | log.critical('Inlet CTRL Outlet submerged Circular ' |
---|
| 123 | 'PIPE FULL') |
---|
| 124 | else: |
---|
| 125 | #alpha = acos(1 - outlet_culvert_depth/diameter) # Where did this Come From ????/ |
---|
| 126 | alpha = acos(1-2*outlet_culvert_depth/diameter)*2 |
---|
| 127 | #flow_area = diameter**2 * (alpha - sin(alpha)*cos(alpha)) # Pipe is Running Partly Full at the INLET WHRE did this Come From ????? |
---|
| 128 | flow_area = diameter**2/8*(alpha - sin(alpha)) # Equation from GIECK 5th Ed. Pg. B3 |
---|
| 129 | flow_width= diameter*sin(alpha/2.0) |
---|
| 130 | perimeter = alpha*diameter/2.0 |
---|
| 131 | case = 'INLET CTRL Culvert is open channel flow we will for now assume critical depth' |
---|
| 132 | if local_debug =='true': |
---|
| 133 | log.critical('INLET CTRL Culvert is open channel flow ' |
---|
| 134 | 'we will for now assume critical depth') |
---|
| 135 | log.critical('Q Outlet Depth and ALPHA = %s, %s, %s' |
---|
| 136 | % (str(Q), str(outlet_culvert_depth), |
---|
| 137 | str(alpha))) |
---|
| 138 | if self.delta_total_energy < self.inflow.get_average_specific_energy(): # OUTLET CONTROL !!!! |
---|
| 139 | # Calculate flows for outlet control |
---|
| 140 | |
---|
| 141 | # Determine the depth at the outlet relative to the depth of flow in the Culvert |
---|
| 142 | if self.outflow.get_average_height() > diameter: # Outlet is submerged Assume the end of the Pipe is flowing FULL |
---|
| 143 | outlet_culvert_depth=diameter |
---|
| 144 | flow_area = (diameter/2)**2 * pi # Cross sectional area of flow in the culvert |
---|
| 145 | perimeter = diameter * pi |
---|
| 146 | flow_width= diameter |
---|
| 147 | case = 'Outlet submerged' |
---|
| 148 | if local_debug =='true': |
---|
| 149 | log.critical('Outlet submerged') |
---|
| 150 | else: # Culvert running PART FULL for PART OF ITS LENGTH Here really should use the Culvert Slope to calculate Actual Culvert Depth & Velocity |
---|
| 151 | # IF self.outflow.get_average_height() < diameter |
---|
| 152 | dcrit1 = diameter/1.26*(Q/g**0.5*diameter**2.5)**(1/3.75) |
---|
| 153 | dcrit2 = diameter/0.95*(Q/g**0.5*diameter**2.5)**(1/1.95) |
---|
| 154 | if dcrit1/diameter >0.85: |
---|
| 155 | outlet_culvert_depth= dcrit2 |
---|
| 156 | else: |
---|
| 157 | outlet_culvert_depth = dcrit1 |
---|
| 158 | if outlet_culvert_depth > diameter: |
---|
| 159 | outlet_culvert_depth = diameter # Once again the pipe is flowing full not partfull |
---|
| 160 | flow_area = (diameter/2)**2 * pi # Cross sectional area of flow in the culvert |
---|
| 161 | perimeter = diameter * pi |
---|
| 162 | flow_width= diameter |
---|
| 163 | case = 'Outlet unsubmerged PIPE FULL' |
---|
| 164 | if local_debug =='true': |
---|
| 165 | log.critical('Outlet unsubmerged PIPE FULL') |
---|
| 166 | else: |
---|
| 167 | alpha = acos(1-2*outlet_culvert_depth/diameter)*2 |
---|
| 168 | flow_area = diameter**2/8*(alpha - sin(alpha)) # Equation from GIECK 5th Ed. Pg. B3 |
---|
| 169 | flow_width= diameter*sin(alpha/2.0) |
---|
| 170 | perimeter = alpha*diameter/2.0 |
---|
| 171 | case = 'Outlet is open channel flow we will for now assume critical depth' |
---|
| 172 | if local_debug == 'true': |
---|
| 173 | log.critical('Q Outlet Depth and ALPHA = %s, %s, %s' |
---|
| 174 | % (str(Q), str(outlet_culvert_depth), |
---|
| 175 | str(alpha))) |
---|
| 176 | log.critical('Outlet is open channel flow we ' |
---|
| 177 | 'will for now assume critical depth') |
---|
| 178 | if local_debug == 'true': |
---|
| 179 | log.critical('FLOW AREA = %s' % str(flow_area)) |
---|
| 180 | log.critical('PERIMETER = %s' % str(perimeter)) |
---|
| 181 | log.critical('Q Interim = %s' % str(Q)) |
---|
| 182 | hyd_rad = flow_area/perimeter |
---|
| 183 | |
---|
| 184 | if self.log_filename is not None: |
---|
| 185 | s = 'hydraulic radius at outlet = %f' %hyd_rad |
---|
| 186 | log_to_file(self.log_filename, s) |
---|
| 187 | |
---|
| 188 | # Outlet control velocity using tail water |
---|
| 189 | if local_debug =='true': |
---|
| 190 | log.critical('GOT IT ALL CALCULATING Velocity') |
---|
| 191 | log.critical('HydRad = %s' % str(hyd_rad)) |
---|
| 192 | culvert_velocity = sqrt(self.delta_total_energy/((self.sum_loss/2/g)+(self.manning**2*self.culvert_length)/hyd_rad**1.33333)) |
---|
| 193 | Q_outlet_tailwater = flow_area * culvert_velocity |
---|
| 194 | if local_debug =='true': |
---|
| 195 | log.critical('VELOCITY = %s' % str(culvert_velocity)) |
---|
| 196 | log.critical('Outlet Ctrl Q = %s' % str(Q_outlet_tailwater)) |
---|
| 197 | if self.log_filename is not None: |
---|
| 198 | s = 'Q_outlet_tailwater = %.6f' %Q_outlet_tailwater |
---|
| 199 | log_to_file(self.log_filename, s) |
---|
| 200 | Q = min(Q, Q_outlet_tailwater) |
---|
| 201 | if local_debug =='true': |
---|
| 202 | log.critical('%s,%.3f,%.3f' |
---|
| 203 | % ('dcrit 1 , dcit2 =',dcrit1,dcrit2)) |
---|
| 204 | log.critical('%s,%.3f,%.3f,%.3f' |
---|
| 205 | % ('Q and Velocity and Depth=', Q, |
---|
| 206 | culvert_velocity, outlet_culvert_depth)) |
---|
| 207 | |
---|
| 208 | culv_froude=sqrt(Q**2*flow_width/(g*flow_area**3)) |
---|
| 209 | if local_debug =='true': |
---|
| 210 | log.critical('FLOW AREA = %s' % str(flow_area)) |
---|
| 211 | log.critical('PERIMETER = %s' % str(perimeter)) |
---|
| 212 | log.critical('Q final = %s' % str(Q)) |
---|
| 213 | log.critical('FROUDE = %s' % str(culv_froude)) |
---|
| 214 | |
---|
| 215 | # Determine momentum at the outlet |
---|
| 216 | barrel_velocity = Q/(flow_area + velocity_protection/flow_area) |
---|
| 217 | |
---|
| 218 | else: # self.inflow.get_average_height() < 0.01: |
---|
| 219 | Q = barrel_velocity = outlet_culvert_depth = 0.0 |
---|
| 220 | |
---|
| 221 | # Temporary flow limit |
---|
| 222 | if barrel_velocity > self.max_velocity: |
---|
| 223 | barrel_velocity = self.max_velocity |
---|
| 224 | Q = flow_area * barrel_velocity |
---|
| 225 | |
---|
| 226 | return Q, barrel_velocity, outlet_culvert_depth |
---|
| 227 | |
---|
| 228 | |
---|
| 229 | |
---|