1 | import anuga |
---|
2 | import math |
---|
3 | import types |
---|
4 | |
---|
5 | class Boyd_pipe_operator(anuga.Structure_operator): |
---|
6 | """Culvert flow - transfer water from one location to another via a circular pipe culvert. |
---|
7 | Sets up the geometry of problem |
---|
8 | |
---|
9 | This is the base class for culverts. Inherit from this class (and overwrite |
---|
10 | compute_discharge method for specific subclasses) |
---|
11 | |
---|
12 | Input: Two points, pipe_size (diameter), |
---|
13 | mannings_rougness, |
---|
14 | """ |
---|
15 | |
---|
16 | def __init__(self, |
---|
17 | domain, |
---|
18 | end_point0, |
---|
19 | end_point1, |
---|
20 | losses, |
---|
21 | diameter=None, |
---|
22 | apron=None, |
---|
23 | manning=0.013, |
---|
24 | enquiry_gap=0.2, |
---|
25 | use_momentum_jet=True, |
---|
26 | use_velocity_head=True, |
---|
27 | description=None, |
---|
28 | label=None, |
---|
29 | structure_type='boyd_pipe', |
---|
30 | logging=False, |
---|
31 | verbose=False): |
---|
32 | |
---|
33 | |
---|
34 | |
---|
35 | anuga.Structure_operator.__init__(self, |
---|
36 | domain, |
---|
37 | end_point0, |
---|
38 | end_point1, |
---|
39 | width=diameter, |
---|
40 | height=None, |
---|
41 | apron=apron, |
---|
42 | manning=manning, |
---|
43 | enquiry_gap=enquiry_gap, |
---|
44 | description=description, |
---|
45 | label=label, |
---|
46 | structure_type=structure_type, |
---|
47 | logging=logging, |
---|
48 | verbose=verbose) |
---|
49 | |
---|
50 | |
---|
51 | if type(losses) == types.DictType: |
---|
52 | self.sum_loss = sum(losses.values()) |
---|
53 | elif type(losses) == types.ListType: |
---|
54 | self.sum_loss = sum(losses) |
---|
55 | else: |
---|
56 | self.sum_loss = losses |
---|
57 | |
---|
58 | self.use_momentum_jet = use_momentum_jet |
---|
59 | self.use_velocity_head = use_velocity_head |
---|
60 | |
---|
61 | self.culvert_length = self.get_culvert_length() |
---|
62 | self.culvert_diameter = self.get_culvert_diameter() |
---|
63 | |
---|
64 | self.max_velocity = 10.0 |
---|
65 | |
---|
66 | self.inlets = self.get_inlets() |
---|
67 | |
---|
68 | # Stats |
---|
69 | |
---|
70 | self.discharge = 0.0 |
---|
71 | self.velocity = 0.0 |
---|
72 | |
---|
73 | self.case = 'N/A' |
---|
74 | |
---|
75 | |
---|
76 | def discharge_routine(self): |
---|
77 | |
---|
78 | local_debug ='false' |
---|
79 | |
---|
80 | #import pdb |
---|
81 | #pdb.set_trace() |
---|
82 | |
---|
83 | if self.inflow.get_enquiry_height() > 0.01: #this value was 0.01: Remember this needs to be compared to the Invert Lvl |
---|
84 | if local_debug =='true': |
---|
85 | anuga.log.critical('Specific E & Deltat Tot E = %s, %s' |
---|
86 | % (str(self.inflow.get_enquiry_specific_energy()), |
---|
87 | str(self.delta_total_energy))) |
---|
88 | anuga.log.critical('culvert type = %s' % str(culvert_type)) |
---|
89 | # Water has risen above inlet |
---|
90 | |
---|
91 | |
---|
92 | msg = 'Specific energy at inlet is negative' |
---|
93 | assert self.inflow.get_enquiry_specific_energy() >= 0.0, msg |
---|
94 | |
---|
95 | if self.use_velocity_head : |
---|
96 | self.driving_energy = self.inflow.get_enquiry_specific_energy() |
---|
97 | else: |
---|
98 | self.driving_energy = self.inflow.get_enquiry_height() |
---|
99 | """ |
---|
100 | For a circular pipe the Boyd method reviews 3 conditions |
---|
101 | 1. Whether the Pipe Inlet is Unsubmerged (acting as weir flow into the inlet) |
---|
102 | 2. Whether the Pipe Inlet is Fully Submerged (acting as an Orifice) |
---|
103 | 3. Whether the energy loss in the pipe results in the Pipe being controlled by Channel Flow of the Pipe |
---|
104 | |
---|
105 | For these conditions we also would like to assess the pipe flow characteristics as it leaves the pipe |
---|
106 | """ |
---|
107 | |
---|
108 | diameter = self.culvert_diameter |
---|
109 | |
---|
110 | local_debug ='false' |
---|
111 | if self.inflow.get_average_height() > 0.01: #this should test against invert |
---|
112 | if local_debug =='true': |
---|
113 | anuga.log.critical('Specific E & Deltat Tot E = %s, %s' |
---|
114 | % (str(self.inflow.get_average_specific_energy()), |
---|
115 | str(self.delta_total_energy))) |
---|
116 | anuga.log.critical('culvert type = %s' % str(culvert_type)) |
---|
117 | # Water has risen above inlet |
---|
118 | |
---|
119 | |
---|
120 | msg = 'Specific energy at inlet is negative' |
---|
121 | assert self.inflow.get_average_specific_energy() >= 0.0, msg |
---|
122 | |
---|
123 | # Calculate flows for inlet control for circular pipe |
---|
124 | Q_inlet_unsubmerged = 0.421*anuga.g**0.5*diameter**0.87*self.inflow.get_average_specific_energy()**1.63 # Inlet Ctrl Inlet Unsubmerged |
---|
125 | Q_inlet_submerged = 0.530*anuga.g**0.5*diameter**1.87*self.inflow.get_average_specific_energy()**0.63 # Inlet Ctrl Inlet Submerged |
---|
126 | # Note for to SUBMERGED TO OCCUR self.inflow.get_average_specific_energy() should be > 1.2 x diameter.... Should Check !!! |
---|
127 | |
---|
128 | |
---|
129 | Q = min(Q_inlet_unsubmerged, Q_inlet_submerged) |
---|
130 | |
---|
131 | # THE LOWEST Value will Control Calcs From here |
---|
132 | # Calculate Critical Depth Based on the Adopted Flow as an Estimate |
---|
133 | dcrit1 = diameter/1.26*(Q/anuga.g**0.5*diameter**2.5)**(1/3.75) |
---|
134 | dcrit2 = diameter/0.95*(Q/anuga.g**0.5*diameter**2.5)**(1/1.95) |
---|
135 | # From Boyd Paper ESTIMATE of Dcrit has 2 criteria as |
---|
136 | if dcrit1/diameter > 0.85: |
---|
137 | outlet_culvert_depth = dcrit2 |
---|
138 | else: |
---|
139 | outlet_culvert_depth = dcrit1 |
---|
140 | #outlet_culvert_depth = min(outlet_culvert_depth, diameter) |
---|
141 | # Now determine Hydraulic Radius Parameters Area & Wetted Perimeter |
---|
142 | if outlet_culvert_depth >= diameter: |
---|
143 | outlet_culvert_depth = diameter # Once again the pipe is flowing full not partfull |
---|
144 | flow_area = (diameter/2)**2 * math.pi # Cross sectional area of flow in the culvert |
---|
145 | perimeter = diameter * math.pi |
---|
146 | flow_width= diameter |
---|
147 | self.case = 'Inlet CTRL Outlet submerged Circular PIPE FULL' |
---|
148 | if local_debug == 'true': |
---|
149 | anuga.log.critical('Inlet CTRL Outlet submerged Circular ' |
---|
150 | 'PIPE FULL') |
---|
151 | else: |
---|
152 | #alpha = anuga.acos(1 - outlet_culvert_depth/diameter) # Where did this Come From ????/ |
---|
153 | alpha = anuga.acos(1-2*outlet_culvert_depth/diameter)*2 |
---|
154 | #flow_area = diameter**2 * (alpha - sin(alpha)*cos(alpha)) # Pipe is Running Partly Full at the INLET WHRE did this Come From ????? |
---|
155 | flow_area = diameter**2/8*(alpha - math.sin(alpha)) # Equation from GIECK 5th Ed. Pg. B3 |
---|
156 | flow_width= diameter*math.sin(alpha/2.0) |
---|
157 | perimeter = alpha*diameter/2.0 |
---|
158 | self.case = 'INLET CTRL Culvert is open channel flow we will for now assume critical depth' |
---|
159 | if local_debug =='true': |
---|
160 | anuga.log.critical('INLET CTRL Culvert is open channel flow ' |
---|
161 | 'we will for now assume critical depth') |
---|
162 | anuga.log.critical('Q Outlet Depth and ALPHA = %s, %s, %s' |
---|
163 | % (str(Q), str(outlet_culvert_depth), |
---|
164 | str(alpha))) |
---|
165 | if self.delta_total_energy < self.inflow.get_average_specific_energy(): # OUTLET CONTROL !!!! |
---|
166 | # Calculate flows for outlet control |
---|
167 | |
---|
168 | # Determine the depth at the outlet relative to the depth of flow in the Culvert |
---|
169 | if self.outflow.get_average_height() > diameter: # Outlet is submerged Assume the end of the Pipe is flowing FULL |
---|
170 | outlet_culvert_depth=diameter |
---|
171 | flow_area = (diameter/2)**2 * math.pi # Cross sectional area of flow in the culvert |
---|
172 | perimeter = diameter * math.pi |
---|
173 | flow_width= diameter |
---|
174 | self.case = 'Outlet submerged' |
---|
175 | if local_debug =='true': |
---|
176 | anuga.log.critical('Outlet submerged') |
---|
177 | else: # Culvert running PART FULL for PART OF ITS LENGTH Here really should use the Culvert Slope to calculate Actual Culvert Depth & Velocity |
---|
178 | # IF self.outflow.get_average_height() < diameter |
---|
179 | dcrit1 = diameter/1.26*(Q/anuga.g**0.5*diameter**2.5)**(1/3.75) |
---|
180 | dcrit2 = diameter/0.95*(Q/anuga.g**0.5*diameter**2.5)**(1/1.95) |
---|
181 | if dcrit1/diameter >0.85: |
---|
182 | outlet_culvert_depth= dcrit2 |
---|
183 | else: |
---|
184 | outlet_culvert_depth = dcrit1 |
---|
185 | if outlet_culvert_depth > diameter: |
---|
186 | outlet_culvert_depth = diameter # Once again the pipe is flowing full not partfull |
---|
187 | flow_area = (diameter/2)**2 * math.pi # Cross sectional area of flow in the culvert |
---|
188 | perimeter = diameter * math.pi |
---|
189 | flow_width= diameter |
---|
190 | self.case = 'Outlet unsubmerged PIPE FULL' |
---|
191 | if local_debug =='true': |
---|
192 | anuga.log.critical('Outlet unsubmerged PIPE FULL') |
---|
193 | else: |
---|
194 | alpha = anuga.acos(1-2*outlet_culvert_depth/diameter)*2 |
---|
195 | flow_area = diameter**2/8*(alpha - math.sin(alpha)) # Equation from GIECK 5th Ed. Pg. B3 |
---|
196 | flow_width= diameter*math.sin(alpha/2.0) |
---|
197 | perimeter = alpha*diameter/2.0 |
---|
198 | self.case = 'Outlet is open channel flow we will for now assume critical depth' |
---|
199 | if local_debug == 'true': |
---|
200 | anuga.log.critical('Q Outlet Depth and ALPHA = %s, %s, %s' |
---|
201 | % (str(Q), str(outlet_culvert_depth), |
---|
202 | str(alpha))) |
---|
203 | anuga.log.critical('Outlet is open channel flow we ' |
---|
204 | 'will for now assume critical depth') |
---|
205 | if local_debug == 'true': |
---|
206 | anuga.log.critical('FLOW AREA = %s' % str(flow_area)) |
---|
207 | anuga.log.critical('PERIMETER = %s' % str(perimeter)) |
---|
208 | anuga.log.critical('Q Interim = %s' % str(Q)) |
---|
209 | hyd_rad = flow_area/perimeter |
---|
210 | |
---|
211 | |
---|
212 | |
---|
213 | # Outlet control velocity using tail water |
---|
214 | if local_debug =='true': |
---|
215 | anuga.log.critical('GOT IT ALL CALCULATING Velocity') |
---|
216 | anuga.log.critical('HydRad = %s' % str(hyd_rad)) |
---|
217 | # Calculate Pipe Culvert Outlet Control Velocity.... May need initial Estimate First ?? |
---|
218 | |
---|
219 | culvert_velocity = math.sqrt(self.delta_total_energy/((self.sum_loss/2/anuga.g)+(self.manning**2*self.culvert_length)/hyd_rad**1.33333)) |
---|
220 | Q_outlet_tailwater = flow_area * culvert_velocity |
---|
221 | |
---|
222 | |
---|
223 | if local_debug =='true': |
---|
224 | anuga.log.critical('VELOCITY = %s' % str(culvert_velocity)) |
---|
225 | anuga.log.critical('Outlet Ctrl Q = %s' % str(Q_outlet_tailwater)) |
---|
226 | |
---|
227 | Q = min(Q, Q_outlet_tailwater) |
---|
228 | if local_debug =='true': |
---|
229 | anuga.log.critical('%s,%.3f,%.3f' |
---|
230 | % ('dcrit 1 , dcit2 =',dcrit1,dcrit2)) |
---|
231 | anuga.log.critical('%s,%.3f,%.3f,%.3f' |
---|
232 | % ('Q and Velocity and Depth=', Q, |
---|
233 | culvert_velocity, outlet_culvert_depth)) |
---|
234 | |
---|
235 | culv_froude=math.sqrt(Q**2*flow_width/(anuga.g*flow_area**3)) |
---|
236 | if local_debug =='true': |
---|
237 | anuga.log.critical('FLOW AREA = %s' % str(flow_area)) |
---|
238 | anuga.log.critical('PERIMETER = %s' % str(perimeter)) |
---|
239 | anuga.log.critical('Q final = %s' % str(Q)) |
---|
240 | anuga.log.critical('FROUDE = %s' % str(culv_froude)) |
---|
241 | |
---|
242 | # Determine momentum at the outlet |
---|
243 | barrel_velocity = Q/(flow_area + anuga.velocity_protection/flow_area) |
---|
244 | |
---|
245 | else: # self.inflow.get_average_height() < 0.01: |
---|
246 | Q = barrel_velocity = outlet_culvert_depth = 0.0 |
---|
247 | |
---|
248 | # Temporary flow limit |
---|
249 | if barrel_velocity > self.max_velocity: |
---|
250 | barrel_velocity = self.max_velocity |
---|
251 | Q = flow_area * barrel_velocity |
---|
252 | |
---|
253 | return Q, barrel_velocity, outlet_culvert_depth |
---|
254 | |
---|
255 | |
---|
256 | |
---|
257 | |
---|