[7939] | 1 | import sys |
---|
| 2 | |
---|
| 3 | from anuga.shallow_water.forcing import Inflow, General_forcing |
---|
| 4 | from anuga.culvert_flows.culvert_polygons import create_culvert_polygons |
---|
| 5 | from anuga.utilities.system_tools import log_to_file |
---|
| 6 | from anuga.geometry.polygon import inside_polygon, is_inside_polygon, plot_polygons |
---|
| 7 | |
---|
| 8 | from anuga.utilities.numerical_tools import mean |
---|
| 9 | from anuga.utilities.numerical_tools import ensure_numeric, sign |
---|
| 10 | |
---|
| 11 | from anuga.config import g, epsilon |
---|
| 12 | from anuga.config import minimum_allowed_height, velocity_protection |
---|
| 13 | import anuga.utilities.log as log |
---|
| 14 | |
---|
| 15 | import numpy as num |
---|
| 16 | from math import sqrt |
---|
| 17 | from math import sqrt |
---|
| 18 | |
---|
| 19 | class Below_interval(Exception): pass |
---|
| 20 | class Above_interval(Exception): pass |
---|
| 21 | |
---|
| 22 | # FIXME(Ole): Take a good hard look at logging here |
---|
| 23 | |
---|
| 24 | |
---|
| 25 | # FIXME(Ole): Write in C and reuse this function by similar code |
---|
| 26 | # in interpolate.py |
---|
| 27 | def interpolate_linearly(x, xvec, yvec): |
---|
| 28 | |
---|
| 29 | msg = 'Input to function interpolate_linearly could not be converted ' |
---|
| 30 | msg += 'to numerical scalar: x = %s' % str(x) |
---|
| 31 | try: |
---|
| 32 | x = float(x) |
---|
| 33 | except: |
---|
| 34 | raise Exception, msg |
---|
| 35 | |
---|
| 36 | |
---|
| 37 | # Check bounds |
---|
| 38 | if x < xvec[0]: |
---|
| 39 | msg = 'Value provided = %.2f, interpolation minimum = %.2f.'\ |
---|
| 40 | % (x, xvec[0]) |
---|
| 41 | raise Below_interval, msg |
---|
| 42 | |
---|
| 43 | if x > xvec[-1]: |
---|
| 44 | msg = 'Value provided = %.2f, interpolation maximum = %.2f.'\ |
---|
| 45 | %(x, xvec[-1]) |
---|
| 46 | raise Above_interval, msg |
---|
| 47 | |
---|
| 48 | |
---|
| 49 | # Find appropriate slot within bounds |
---|
| 50 | i = 0 |
---|
| 51 | while x > xvec[i]: i += 1 |
---|
| 52 | |
---|
| 53 | |
---|
| 54 | x0 = xvec[i-1] |
---|
| 55 | x1 = xvec[i] |
---|
| 56 | alpha = (x - x0)/(x1 - x0) |
---|
| 57 | |
---|
| 58 | y0 = yvec[i-1] |
---|
| 59 | y1 = yvec[i] |
---|
| 60 | y = alpha*y1 + (1-alpha)*y0 |
---|
| 61 | |
---|
| 62 | return y |
---|
| 63 | |
---|
| 64 | |
---|
| 65 | |
---|
| 66 | def read_culvert_description(culvert_description_filename): |
---|
| 67 | |
---|
| 68 | # Read description file |
---|
| 69 | fid = open(culvert_description_filename) |
---|
| 70 | |
---|
| 71 | read_rating_curve_data = False |
---|
| 72 | rating_curve = [] |
---|
| 73 | for i, line in enumerate(fid.readlines()): |
---|
| 74 | |
---|
| 75 | if read_rating_curve_data is True: |
---|
| 76 | fields = line.split(',') |
---|
| 77 | head_difference = float(fields[0].strip()) |
---|
| 78 | flow_rate = float(fields[1].strip()) |
---|
| 79 | barrel_velocity = float(fields[2].strip()) |
---|
| 80 | |
---|
| 81 | rating_curve.append([head_difference, flow_rate, barrel_velocity]) |
---|
| 82 | |
---|
| 83 | if i == 0: |
---|
| 84 | # Header |
---|
| 85 | continue |
---|
| 86 | if i == 1: |
---|
| 87 | # Metadata |
---|
| 88 | fields = line.split(',') |
---|
| 89 | label=fields[0].strip() |
---|
| 90 | type=fields[1].strip().lower() |
---|
| 91 | assert type in ['box', 'pipe'] |
---|
| 92 | |
---|
| 93 | width=float(fields[2].strip()) |
---|
| 94 | height=float(fields[3].strip()) |
---|
| 95 | length=float(fields[4].strip()) |
---|
| 96 | number_of_barrels=int(fields[5].strip()) |
---|
| 97 | #fields[6] refers to losses |
---|
| 98 | description=fields[7].strip() |
---|
| 99 | |
---|
| 100 | if line.strip() == '': continue # Skip blanks |
---|
| 101 | |
---|
| 102 | if line.startswith('Rating'): |
---|
| 103 | read_rating_curve_data = True |
---|
| 104 | # Flow data follows |
---|
| 105 | |
---|
| 106 | fid.close() |
---|
| 107 | |
---|
| 108 | return label, type, width, height, length, number_of_barrels, description, rating_curve |
---|
| 109 | |
---|
| 110 | |
---|
| 111 | |
---|
| 112 | |
---|
| 113 | class Culvert_flow_general: |
---|
| 114 | """Culvert flow - transfer water from one hole to another |
---|
| 115 | |
---|
| 116 | This version will work with either rating curve file or with culvert |
---|
| 117 | routine. |
---|
| 118 | |
---|
| 119 | Input: Two points, pipe_size (either diameter or width, height), |
---|
| 120 | mannings_rougness, |
---|
| 121 | """ |
---|
| 122 | |
---|
| 123 | def __init__(self, |
---|
| 124 | domain, |
---|
| 125 | culvert_description_filename=None, |
---|
| 126 | culvert_routine=None, |
---|
| 127 | end_point0=None, |
---|
| 128 | end_point1=None, |
---|
| 129 | enquiry_point0=None, |
---|
| 130 | enquiry_point1=None, |
---|
| 131 | type='box', |
---|
| 132 | width=None, |
---|
| 133 | height=None, |
---|
| 134 | length=None, |
---|
| 135 | number_of_barrels=1, |
---|
| 136 | number_of_smoothing_steps=2000, |
---|
| 137 | trigger_depth=0.01, # Depth below which no flow happens |
---|
| 138 | manning=None, # Mannings Roughness for Culvert |
---|
| 139 | sum_loss=None, |
---|
| 140 | use_velocity_head=False, # FIXME(Ole): Get rid of - always True |
---|
| 141 | use_momentum_jet=False, # FIXME(Ole): Not yet implemented |
---|
| 142 | label=None, |
---|
| 143 | description=None, |
---|
| 144 | update_interval=None, |
---|
| 145 | log_file=False, |
---|
| 146 | discharge_hydrograph=False, |
---|
| 147 | verbose=False): |
---|
| 148 | |
---|
| 149 | |
---|
| 150 | |
---|
| 151 | # Input check |
---|
| 152 | |
---|
| 153 | if height is None: height = width |
---|
| 154 | |
---|
| 155 | assert number_of_barrels >= 1 |
---|
| 156 | assert use_velocity_head is True or use_velocity_head is False |
---|
| 157 | |
---|
| 158 | #msg = 'Momentum jet not yet moved to general culvert' |
---|
| 159 | #assert use_momentum_jet is False, msg |
---|
| 160 | self.use_momentum_jet = use_momentum_jet |
---|
| 161 | |
---|
| 162 | self.culvert_routine = culvert_routine |
---|
| 163 | self.culvert_description_filename = culvert_description_filename |
---|
| 164 | if culvert_description_filename is not None: |
---|
| 165 | label, type, width, height, length, number_of_barrels, description, rating_curve = read_culvert_description(culvert_description_filename) |
---|
| 166 | self.rating_curve = ensure_numeric(rating_curve) |
---|
| 167 | |
---|
| 168 | self.height = height |
---|
| 169 | self.width = width |
---|
| 170 | |
---|
| 171 | |
---|
| 172 | self.domain = domain |
---|
| 173 | self.trigger_depth = trigger_depth |
---|
| 174 | |
---|
| 175 | if manning is None: |
---|
| 176 | self.manning = 0.012 # Default roughness for pipe |
---|
| 177 | |
---|
| 178 | if sum_loss is None: |
---|
| 179 | self.sum_loss = 0.0 |
---|
| 180 | |
---|
| 181 | |
---|
| 182 | |
---|
| 183 | # Store culvert information |
---|
| 184 | self.label = label |
---|
| 185 | self.description = description |
---|
| 186 | self.culvert_type = type |
---|
| 187 | self.number_of_barrels = number_of_barrels |
---|
| 188 | |
---|
| 189 | # Store options |
---|
| 190 | self.use_velocity_head = use_velocity_head |
---|
| 191 | |
---|
| 192 | if label is None: label = 'culvert_flow' |
---|
| 193 | label += '_' + str(id(self)) |
---|
| 194 | self.label = label |
---|
| 195 | |
---|
| 196 | # File for storing discharge_hydrograph |
---|
| 197 | if discharge_hydrograph is True: |
---|
| 198 | self.timeseries_filename = label + '_timeseries.csv' |
---|
| 199 | fid = open(self.timeseries_filename, 'w') |
---|
| 200 | fid.write('time, discharge\n') |
---|
| 201 | fid.close() |
---|
| 202 | |
---|
| 203 | # Log file for storing general textual output |
---|
| 204 | if log_file is True: |
---|
| 205 | self.log_filename = label + '.log' |
---|
| 206 | log_to_file(self.log_filename, self.label) |
---|
| 207 | log_to_file(self.log_filename, description) |
---|
| 208 | log_to_file(self.log_filename, self.culvert_type) |
---|
| 209 | else: |
---|
| 210 | self.log_filename = None |
---|
| 211 | |
---|
| 212 | |
---|
| 213 | # Create the fundamental culvert polygons from polygon |
---|
| 214 | P = create_culvert_polygons(end_point0, |
---|
| 215 | end_point1, |
---|
| 216 | width=width, |
---|
| 217 | height=height, |
---|
| 218 | number_of_barrels=number_of_barrels) |
---|
| 219 | self.culvert_polygons = P |
---|
| 220 | |
---|
| 221 | # Select enquiry points |
---|
| 222 | if enquiry_point0 is None: |
---|
| 223 | enquiry_point0 = P['enquiry_point0'] |
---|
| 224 | |
---|
| 225 | if enquiry_point1 is None: |
---|
| 226 | enquiry_point1 = P['enquiry_point1'] |
---|
| 227 | |
---|
| 228 | if verbose is True: |
---|
| 229 | pass |
---|
| 230 | #plot_polygons([[end_point0, end_point1], |
---|
| 231 | # P['exchange_polygon0'], |
---|
| 232 | # P['exchange_polygon1'], |
---|
| 233 | # [enquiry_point0, 1.005*enquiry_point0], |
---|
| 234 | # [enquiry_point1, 1.005*enquiry_point1]], |
---|
| 235 | # figname='culvert_polygon_output') |
---|
| 236 | |
---|
| 237 | |
---|
| 238 | |
---|
| 239 | self.enquiry_points = [enquiry_point0, enquiry_point1] |
---|
| 240 | self.enquiry_indices = self.get_enquiry_indices() |
---|
| 241 | self.check_culvert_inside_domain() |
---|
| 242 | |
---|
| 243 | |
---|
| 244 | # Create inflow object at each end of the culvert. |
---|
| 245 | self.openings = [] |
---|
| 246 | self.openings.append(Inflow(domain, |
---|
| 247 | polygon=P['exchange_polygon0'])) |
---|
| 248 | self.openings.append(Inflow(domain, |
---|
| 249 | polygon=P['exchange_polygon1'])) |
---|
| 250 | |
---|
| 251 | # Assume two openings for now: Referred to as 0 and 1 |
---|
| 252 | assert len(self.openings) == 2 |
---|
| 253 | |
---|
| 254 | # Establish initial values at each enquiry point |
---|
| 255 | dq = domain.quantities |
---|
| 256 | for i, opening in enumerate(self.openings): |
---|
| 257 | idx = self.enquiry_indices[i] |
---|
| 258 | elevation = dq['elevation'].get_values(location='centroids', |
---|
| 259 | indices=[idx])[0] |
---|
| 260 | stage = dq['stage'].get_values(location='centroids', |
---|
| 261 | indices=[idx])[0] |
---|
| 262 | opening.elevation = elevation |
---|
| 263 | opening.stage = stage |
---|
| 264 | opening.depth = stage-elevation |
---|
| 265 | |
---|
| 266 | |
---|
| 267 | |
---|
| 268 | # Determine initial pipe direction. |
---|
| 269 | # This may change dynamically based on the total energy difference |
---|
| 270 | # Consequently, this may be superfluous |
---|
| 271 | delta_z = self.openings[0].elevation - self.openings[1].elevation |
---|
| 272 | if delta_z > 0.0: |
---|
| 273 | self.inlet = self.openings[0] |
---|
| 274 | self.outlet = self.openings[1] |
---|
| 275 | else: |
---|
| 276 | self.outlet = self.openings[0] |
---|
| 277 | self.inlet = self.openings[1] |
---|
| 278 | |
---|
| 279 | |
---|
| 280 | # Store basic geometry |
---|
| 281 | self.end_points = [end_point0, end_point1] |
---|
| 282 | self.vector = P['vector'] |
---|
| 283 | self.length = P['length']; assert self.length > 0.0 |
---|
| 284 | if culvert_description_filename is not None: |
---|
| 285 | if not num.allclose(self.length, length, rtol=1.0e-2, atol=1.0e-2): |
---|
| 286 | msg = 'WARNING: barrel length specified in "%s" (%.2f m)'\ |
---|
| 287 | % (culvert_description_filename, |
---|
| 288 | length) |
---|
| 289 | msg += ' does not match distance between specified' |
---|
| 290 | msg += ' end points (%.2f m)' %self.length |
---|
| 291 | log.critical(msg) |
---|
| 292 | |
---|
| 293 | self.verbose = verbose |
---|
| 294 | |
---|
| 295 | # Circular index for flow averaging in culvert |
---|
| 296 | self.N = N = number_of_smoothing_steps |
---|
| 297 | self.Q_list = [0]*N |
---|
| 298 | self.i = i |
---|
| 299 | |
---|
| 300 | # For use with update_interval |
---|
| 301 | self.last_update = 0.0 |
---|
| 302 | self.update_interval = update_interval |
---|
| 303 | |
---|
| 304 | # Create objects to update momentum (a bit crude at this stage). This is used with the momentum jet. |
---|
| 305 | xmom0 = General_forcing(domain, 'xmomentum', |
---|
| 306 | polygon=P['exchange_polygon0']) |
---|
| 307 | |
---|
| 308 | xmom1 = General_forcing(domain, 'xmomentum', |
---|
| 309 | polygon=P['exchange_polygon1']) |
---|
| 310 | |
---|
| 311 | ymom0 = General_forcing(domain, 'ymomentum', |
---|
| 312 | polygon=P['exchange_polygon0']) |
---|
| 313 | |
---|
| 314 | ymom1 = General_forcing(domain, 'ymomentum', |
---|
| 315 | polygon=P['exchange_polygon1']) |
---|
| 316 | |
---|
| 317 | self.opening_momentum = [[xmom0, ymom0], [xmom1, ymom1]] |
---|
| 318 | |
---|
| 319 | |
---|
| 320 | |
---|
| 321 | # Print some diagnostics to log if requested |
---|
| 322 | if self.log_filename is not None: |
---|
| 323 | s = 'Culvert Effective Length = %.2f m' %(self.length) |
---|
| 324 | log_to_file(self.log_filename, s) |
---|
| 325 | |
---|
| 326 | s = 'Culvert Direction is %s\n' %str(self.vector) |
---|
| 327 | log_to_file(self.log_filename, s) |
---|
| 328 | |
---|
| 329 | |
---|
| 330 | |
---|
| 331 | |
---|
| 332 | |
---|
| 333 | def __call__(self, domain): |
---|
| 334 | |
---|
| 335 | # Time stuff |
---|
| 336 | time = domain.get_time() |
---|
| 337 | |
---|
| 338 | |
---|
| 339 | update = False |
---|
| 340 | if self.update_interval is None: |
---|
| 341 | # Use next timestep as has been computed in domain.py |
---|
| 342 | delta_t = domain.timestep |
---|
| 343 | update = True |
---|
| 344 | else: |
---|
| 345 | # Use update interval |
---|
| 346 | delta_t = self.update_interval |
---|
| 347 | if time - self.last_update > self.update_interval or time == 0.0: |
---|
| 348 | update = True |
---|
| 349 | |
---|
| 350 | if self.log_filename is not None: |
---|
| 351 | s = '\nTime = %.2f, delta_t = %f' %(time, delta_t) |
---|
| 352 | log_to_file(self.log_filename, s) |
---|
| 353 | |
---|
| 354 | |
---|
| 355 | if update is True: |
---|
| 356 | self.compute_rates(delta_t) |
---|
| 357 | |
---|
| 358 | |
---|
| 359 | # Execute flow term for each opening |
---|
| 360 | # This is where Inflow objects are evaluated using the last rate |
---|
| 361 | # that has been calculated |
---|
| 362 | # |
---|
| 363 | # This will take place at every internal timestep and update the domain |
---|
| 364 | for opening in self.openings: |
---|
| 365 | opening(domain) |
---|
| 366 | |
---|
| 367 | |
---|
| 368 | |
---|
| 369 | def get_enquiry_indices(self): |
---|
| 370 | """Get indices for nearest centroids to self.enquiry_points |
---|
| 371 | """ |
---|
| 372 | |
---|
| 373 | domain = self.domain |
---|
| 374 | |
---|
| 375 | enquiry_indices = [] |
---|
| 376 | for point in self.enquiry_points: |
---|
| 377 | # Find nearest centroid |
---|
| 378 | N = len(domain) |
---|
| 379 | points = domain.get_centroid_coordinates(absolute=True) |
---|
| 380 | |
---|
| 381 | # Calculate indices in exchange area for this forcing term |
---|
| 382 | |
---|
| 383 | triangle_id = min_dist = sys.maxint |
---|
| 384 | for k in range(N): |
---|
| 385 | x, y = points[k,:] # Centroid |
---|
| 386 | |
---|
| 387 | c = point |
---|
| 388 | distance = (x-c[0])**2+(y-c[1])**2 |
---|
| 389 | if distance < min_dist: |
---|
| 390 | min_dist = distance |
---|
| 391 | triangle_id = k |
---|
| 392 | |
---|
| 393 | |
---|
| 394 | if triangle_id < sys.maxint: |
---|
| 395 | msg = 'found triangle with centroid (%f, %f)'\ |
---|
| 396 | %tuple(points[triangle_id, :]) |
---|
| 397 | msg += ' for point (%f, %f)' %tuple(point) |
---|
| 398 | |
---|
| 399 | enquiry_indices.append(triangle_id) |
---|
| 400 | else: |
---|
| 401 | msg = 'Triangle not found for point (%f, %f)' %point |
---|
| 402 | raise Exception, msg |
---|
| 403 | |
---|
| 404 | return enquiry_indices |
---|
| 405 | |
---|
| 406 | |
---|
| 407 | def check_culvert_inside_domain(self): |
---|
| 408 | """Check that all polygons and enquiry points lie within the mesh. |
---|
| 409 | """ |
---|
| 410 | bounding_polygon = self.domain.get_boundary_polygon() |
---|
| 411 | P = self.culvert_polygons |
---|
| 412 | for key in P.keys(): |
---|
| 413 | if key in ['exchange_polygon0', |
---|
| 414 | 'exchange_polygon1']: |
---|
| 415 | for point in list(P[key]) + self.enquiry_points: |
---|
| 416 | msg = 'Point %s in polygon %s for culvert %s did not'\ |
---|
| 417 | %(str(point), key, self.label) |
---|
| 418 | msg += 'fall within the domain boundary.' |
---|
| 419 | assert is_inside_polygon(point, bounding_polygon), msg |
---|
| 420 | |
---|
| 421 | |
---|
| 422 | def adjust_flow_for_available_water_at_inlet(self, Q, delta_t): |
---|
| 423 | """Adjust Q downwards depending on available water at inlet |
---|
| 424 | |
---|
| 425 | This is a critical step in modelling bridges and Culverts |
---|
| 426 | the predicted flow through a structure based on an abstract |
---|
| 427 | algorithm can at times request for water that is simply not |
---|
| 428 | available due to any number of constrictions that limit the |
---|
| 429 | flow approaching the structure In order to ensure that |
---|
| 430 | there is adequate flow available certain checks are |
---|
| 431 | required There needs to be a check using the Static Water |
---|
| 432 | Volume sitting infront of the structure, In addition if the |
---|
| 433 | water is moving the available water will be larger than the |
---|
| 434 | static volume |
---|
| 435 | |
---|
| 436 | NOTE To temporarily switch this off for Debugging purposes |
---|
| 437 | rem out line in function def compute_rates below |
---|
| 438 | """ |
---|
| 439 | |
---|
| 440 | if delta_t < epsilon: |
---|
| 441 | # No need to adjust if time step is very small or zero |
---|
| 442 | # In this case the possible flow will be very large |
---|
| 443 | # anyway. |
---|
| 444 | return Q |
---|
| 445 | |
---|
| 446 | # Short hands |
---|
| 447 | domain = self.domain |
---|
| 448 | dq = domain.quantities |
---|
| 449 | time = domain.get_time() |
---|
| 450 | I = self.inlet |
---|
| 451 | idx = I.exchange_indices |
---|
| 452 | |
---|
| 453 | # Find triangle with the smallest depth |
---|
| 454 | stage = dq['stage'].get_values(location='centroids', |
---|
| 455 | indices=[idx]) |
---|
| 456 | elevation = dq['elevation'].get_values(location='centroids', |
---|
| 457 | indices=[idx]) |
---|
| 458 | depth = stage-elevation |
---|
| 459 | min_depth = min(depth.flat) # This may lead to errors if edge of area is at a higher level !!!! |
---|
| 460 | avg_depth = mean(depth.flat) # Yes, but this one violates the conservation unit tests |
---|
| 461 | |
---|
| 462 | |
---|
| 463 | |
---|
| 464 | # FIXME (Ole): If you want these, use log.critical() and |
---|
| 465 | # make the statements depend on verbose |
---|
| 466 | #print I.depth |
---|
| 467 | #print I.velocity |
---|
| 468 | #print self.width |
---|
| 469 | |
---|
| 470 | # max_Q Based on Volume Calcs |
---|
| 471 | |
---|
| 472 | |
---|
| 473 | depth_term = min_depth*I.exchange_area/delta_t |
---|
| 474 | if min_depth < 0.2: |
---|
| 475 | # Only add velocity term in shallow waters (< 20 cm) |
---|
| 476 | # This is a little ad hoc, but maybe it is reasonable |
---|
| 477 | velocity_term = self.width*min_depth*I.velocity |
---|
| 478 | else: |
---|
| 479 | velocity_term = 0.0 |
---|
| 480 | |
---|
| 481 | # This one takes approaching water into account |
---|
| 482 | max_Q = max(velocity_term, depth_term) |
---|
| 483 | |
---|
| 484 | # This one preserves Volume |
---|
| 485 | #max_Q = depth_term |
---|
| 486 | |
---|
| 487 | |
---|
| 488 | if self.verbose is True: |
---|
| 489 | log.critical('Max_Q = %f' % max_Q) |
---|
| 490 | msg = 'Width = %.2fm, Depth at inlet = %.2f m, Velocity = %.2f m/s. ' % (self.width, I.depth, I.velocity) |
---|
| 491 | msg += 'Max Q = %.2f m^3/s' %(max_Q) |
---|
| 492 | log.critical(msg) |
---|
| 493 | |
---|
| 494 | if self.log_filename is not None: |
---|
| 495 | log_to_file(self.log_filename, msg) |
---|
| 496 | # New Procedure for assessing the flow available to the Culvert |
---|
| 497 | # This routine uses the GET FLOW THROUGH CROSS SECTION |
---|
| 498 | # Need to check Several Polyline however |
---|
| 499 | # Firstly 3 sides of the exchange Poly |
---|
| 500 | # then only the Line Directly infront of the Polygon |
---|
| 501 | # Access polygon Points from self.inlet.polygon |
---|
| 502 | |
---|
| 503 | # The Following computes the flow crossing over 3 sides of the exchange polygon for the structure |
---|
| 504 | # Clearly the flow in the culvert can not be more than that flowing toward it through the exhange polygon |
---|
| 505 | |
---|
| 506 | #q1 = domain.get_flow_through_cross_section(self.culvert_polygons['exchange_polygon0'][1:3]) # First Side Segment |
---|
| 507 | #q2 = domain.get_flow_through_cross_section(self.culvert_polygons['exchange_polygon0'][2:]) # Second Face Segment |
---|
| 508 | #q3 =domain.get_flow_through_cross_section(self.culvert_polygons['exchange_polygon0'].take([3,0], axis=0)) # Third Side Segment |
---|
| 509 | # q4 = domain.get_flow_through_cross_section([self.culvert_polygons['exchange_polygon0'][1:4]][0]) |
---|
| 510 | #q4=max(q1,0.0)+max(q2,0.0)+max(q3,0.0) |
---|
| 511 | # To use only the Flow crossing the 3 sides of the Exchange Polygon use the following Line Only |
---|
| 512 | #max_Q=max(q1,q2,q3,q4) |
---|
| 513 | # Try Simple Smoothing using Average of 2 approaches |
---|
| 514 | #max_Q=(max(q1,q2,q3,q4)+max_Q)/2.0 |
---|
| 515 | # Calculate the minimum in absolute terms of |
---|
| 516 | # the requsted flow and the possible flow |
---|
| 517 | Q_reduced = sign(Q)*min(abs(Q), abs(max_Q)) |
---|
| 518 | if self.verbose is True: |
---|
| 519 | msg = 'Initial Q Reduced = %.2f m3/s. ' % (Q_reduced) |
---|
| 520 | log.critical(msg) |
---|
| 521 | |
---|
| 522 | if self.log_filename is not None: |
---|
| 523 | log_to_file(self.log_filename, msg) |
---|
| 524 | # Now Keep Rolling Average of Computed Discharge to Reduce / Remove Oscillations |
---|
| 525 | # can use delta_t if we want to averageover a time frame for example |
---|
| 526 | # N = 5.0/delta_t Will provide the average over 5 seconds |
---|
| 527 | |
---|
| 528 | self.i=(self.i+1)%self.N |
---|
| 529 | self.Q_list[self.i]=Q_reduced |
---|
| 530 | Q_reduced = sum(self.Q_list)/len(self.Q_list) |
---|
| 531 | |
---|
| 532 | if self.verbose is True: |
---|
| 533 | msg = 'Final Q Reduced = %.2f m3/s. ' % (Q_reduced) |
---|
| 534 | log.critical(msg) |
---|
| 535 | |
---|
| 536 | if self.log_filename is not None: |
---|
| 537 | log_to_file(self.log_filename, msg) |
---|
| 538 | |
---|
| 539 | |
---|
| 540 | if abs(Q_reduced) < abs(Q): |
---|
| 541 | msg = '%.2fs: Requested flow is ' % time |
---|
| 542 | msg += 'greater than what is supported by the smallest ' |
---|
| 543 | msg += 'depth at inlet exchange area:\n ' |
---|
| 544 | msg += 'inlet exchange area: %.2f '% (I.exchange_area) |
---|
| 545 | msg += 'velocity at inlet :%.2f '% (I.velocity) |
---|
| 546 | msg += 'Vel* Exch Area = : %.2f '% (I.velocity*avg_depth*self.width) |
---|
| 547 | msg += 'h_min*inlet_area/delta_t = %.2f*%.2f/%.2f '\ |
---|
| 548 | % (avg_depth, I.exchange_area, delta_t) |
---|
| 549 | msg += ' = %.2f m^3/s\n ' % Q_reduced |
---|
| 550 | msg += 'Q will be reduced from %.2f m^3/s to %.2f m^3/s.' % (Q, Q_reduced) |
---|
| 551 | msg += 'Note calculate max_Q from V %.2f m^3/s ' % (max_Q) |
---|
| 552 | if self.verbose is True: |
---|
| 553 | log.critical(msg) |
---|
| 554 | |
---|
| 555 | if self.log_filename is not None: |
---|
| 556 | log_to_file(self.log_filename, msg) |
---|
| 557 | |
---|
| 558 | return Q_reduced |
---|
| 559 | |
---|
| 560 | |
---|
| 561 | def compute_rates(self, delta_t): |
---|
| 562 | """Compute new rates for inlet and outlet |
---|
| 563 | """ |
---|
| 564 | |
---|
| 565 | # Short hands |
---|
| 566 | domain = self.domain |
---|
| 567 | dq = domain.quantities |
---|
| 568 | |
---|
| 569 | # Time stuff |
---|
| 570 | time = domain.get_time() |
---|
| 571 | self.last_update = time |
---|
| 572 | |
---|
| 573 | |
---|
| 574 | if hasattr(self, 'log_filename'): |
---|
| 575 | log_filename = self.log_filename |
---|
| 576 | |
---|
| 577 | # Compute stage, energy and velocity at the |
---|
| 578 | # enquiry points at each end of the culvert |
---|
| 579 | openings = self.openings |
---|
| 580 | for i, opening in enumerate(openings): |
---|
| 581 | idx = self.enquiry_indices[i] |
---|
| 582 | |
---|
| 583 | stage = dq['stage'].get_values(location='centroids', |
---|
| 584 | indices=[idx])[0] |
---|
| 585 | depth = h = stage-opening.elevation |
---|
| 586 | |
---|
| 587 | |
---|
| 588 | # Get velocity |
---|
| 589 | xmomentum = dq['xmomentum'].get_values(location='centroids', |
---|
| 590 | indices=[idx])[0] |
---|
| 591 | ymomentum = dq['xmomentum'].get_values(location='centroids', |
---|
| 592 | indices=[idx])[0] |
---|
| 593 | |
---|
| 594 | if h > minimum_allowed_height: |
---|
| 595 | u = xmomentum/(h + velocity_protection/h) |
---|
| 596 | v = ymomentum/(h + velocity_protection/h) |
---|
| 597 | else: |
---|
| 598 | u = v = 0.0 |
---|
| 599 | |
---|
| 600 | v_squared = u*u + v*v |
---|
| 601 | |
---|
| 602 | if self.use_velocity_head is True: |
---|
| 603 | velocity_head = 0.5*v_squared/g |
---|
| 604 | else: |
---|
| 605 | velocity_head = 0.0 |
---|
| 606 | |
---|
| 607 | opening.total_energy = velocity_head + stage |
---|
| 608 | opening.specific_energy = velocity_head + depth |
---|
| 609 | opening.stage = stage |
---|
| 610 | opening.depth = depth |
---|
| 611 | opening.velocity = sqrt(v_squared) |
---|
| 612 | |
---|
| 613 | |
---|
| 614 | # We now need to deal with each opening individually |
---|
| 615 | # Determine flow direction based on total energy difference |
---|
| 616 | delta_total_energy = openings[0].total_energy - openings[1].total_energy |
---|
| 617 | if delta_total_energy > 0: |
---|
| 618 | inlet = openings[0] |
---|
| 619 | outlet = openings[1] |
---|
| 620 | |
---|
| 621 | # FIXME: I think this whole momentum jet thing could be a bit more elegant |
---|
| 622 | inlet.momentum = self.opening_momentum[0] |
---|
| 623 | outlet.momentum = self.opening_momentum[1] |
---|
| 624 | else: |
---|
| 625 | inlet = openings[1] |
---|
| 626 | outlet = openings[0] |
---|
| 627 | |
---|
| 628 | inlet.momentum = self.opening_momentum[1] |
---|
| 629 | outlet.momentum = self.opening_momentum[0] |
---|
| 630 | |
---|
| 631 | delta_total_energy = -delta_total_energy |
---|
| 632 | |
---|
| 633 | self.inlet = inlet |
---|
| 634 | self.outlet = outlet |
---|
| 635 | |
---|
| 636 | msg = 'Total energy difference is negative' |
---|
| 637 | assert delta_total_energy >= 0.0, msg |
---|
| 638 | |
---|
| 639 | # Recompute slope and issue warning if flow is uphill |
---|
| 640 | # These values do not enter the computation |
---|
| 641 | delta_z = inlet.elevation - outlet.elevation |
---|
| 642 | culvert_slope = (delta_z/self.length) |
---|
| 643 | if culvert_slope < 0.0: |
---|
| 644 | # Adverse gradient - flow is running uphill |
---|
| 645 | # Flow will be purely controlled by uphill outlet face |
---|
| 646 | if self.verbose is True: |
---|
| 647 | log.critical('%.2fs - WARNING: Flow is running uphill.' % time) |
---|
| 648 | |
---|
| 649 | if self.log_filename is not None: |
---|
| 650 | s = 'Time=%.2f, inlet stage = %.2f, outlet stage = %.2f'\ |
---|
| 651 | %(time, self.inlet.stage, self.outlet.stage) |
---|
| 652 | log_to_file(self.log_filename, s) |
---|
| 653 | s = 'Delta total energy = %.3f' %(delta_total_energy) |
---|
| 654 | log_to_file(log_filename, s) |
---|
| 655 | |
---|
| 656 | |
---|
| 657 | # Determine controlling energy (driving head) for culvert |
---|
| 658 | if inlet.specific_energy > delta_total_energy: |
---|
| 659 | # Outlet control |
---|
| 660 | driving_head = delta_total_energy |
---|
| 661 | else: |
---|
| 662 | # Inlet control |
---|
| 663 | driving_head = inlet.specific_energy |
---|
| 664 | |
---|
| 665 | |
---|
| 666 | |
---|
| 667 | if self.inlet.depth <= self.trigger_depth: |
---|
| 668 | Q = 0.0 |
---|
| 669 | else: |
---|
| 670 | # Calculate discharge for one barrel and |
---|
| 671 | # set inlet.rate and outlet.rate |
---|
| 672 | |
---|
| 673 | if self.culvert_description_filename is not None: |
---|
| 674 | try: |
---|
| 675 | Q = interpolate_linearly(driving_head, |
---|
| 676 | self.rating_curve[:,0], |
---|
| 677 | self.rating_curve[:,1]) |
---|
| 678 | except Below_interval, e: |
---|
| 679 | Q = self.rating_curve[0,1] |
---|
| 680 | msg = '%.2fs: ' % time |
---|
| 681 | msg += 'Delta head smaller than rating curve minimum: ' |
---|
| 682 | msg += str(e) |
---|
| 683 | msg += '\n ' |
---|
| 684 | msg += 'I will use minimum discharge %.2f m^3/s ' % Q |
---|
| 685 | msg += 'for culvert "%s"' % self.label |
---|
| 686 | |
---|
| 687 | if hasattr(self, 'log_filename'): |
---|
| 688 | log_to_file(self.log_filename, msg) |
---|
| 689 | except Above_interval, e: |
---|
| 690 | Q = self.rating_curve[-1,1] |
---|
| 691 | msg = '%.2fs: ' % time |
---|
| 692 | msg += 'Delta head greater than rating curve maximum: ' |
---|
| 693 | msg += str(e) |
---|
| 694 | msg += '\n ' |
---|
| 695 | msg += 'I will use maximum discharge %.2f m^3/s ' % Q |
---|
| 696 | msg += 'for culvert "%s"' % self.label |
---|
| 697 | |
---|
| 698 | if self.log_filename is not None: |
---|
| 699 | log_to_file(self.log_filename, msg) |
---|
| 700 | else: |
---|
| 701 | # User culvert routine |
---|
| 702 | Q, barrel_velocity, culvert_outlet_depth =\ |
---|
| 703 | self.culvert_routine(inlet.depth, |
---|
| 704 | outlet.depth, |
---|
| 705 | inlet.velocity, |
---|
| 706 | outlet.velocity, |
---|
| 707 | inlet.specific_energy, |
---|
| 708 | delta_total_energy, |
---|
| 709 | g, |
---|
| 710 | culvert_length=self.length, |
---|
| 711 | culvert_width=self.width, |
---|
| 712 | culvert_height=self.height, |
---|
| 713 | culvert_type=self.culvert_type, |
---|
| 714 | manning=self.manning, |
---|
| 715 | sum_loss=self.sum_loss, |
---|
| 716 | log_filename=self.log_filename) |
---|
| 717 | |
---|
| 718 | |
---|
| 719 | |
---|
| 720 | # Adjust discharge for multiple barrels |
---|
| 721 | Q *= self.number_of_barrels |
---|
| 722 | |
---|
| 723 | # Adjust discharge for available water at the inlet |
---|
| 724 | Q = self.adjust_flow_for_available_water_at_inlet(Q, delta_t) |
---|
| 725 | |
---|
| 726 | self.inlet.rate = -Q |
---|
| 727 | self.outlet.rate = Q |
---|
| 728 | |
---|
| 729 | |
---|
| 730 | # Momentum jet stuff |
---|
| 731 | if self.use_momentum_jet is True: |
---|
| 732 | |
---|
| 733 | |
---|
| 734 | # Compute barrel momentum |
---|
| 735 | barrel_momentum = barrel_velocity*culvert_outlet_depth |
---|
| 736 | |
---|
| 737 | if self.log_filename is not None: |
---|
| 738 | s = 'Barrel velocity = %f' %barrel_velocity |
---|
| 739 | log_to_file(self.log_filename, s) |
---|
| 740 | |
---|
| 741 | # Compute momentum vector at outlet |
---|
| 742 | outlet_mom_x, outlet_mom_y = self.vector * barrel_momentum |
---|
| 743 | |
---|
| 744 | if self.log_filename is not None: |
---|
| 745 | s = 'Directional momentum = (%f, %f)' %(outlet_mom_x, outlet_mom_y) |
---|
| 746 | log_to_file(self.log_filename, s) |
---|
| 747 | |
---|
| 748 | |
---|
| 749 | # Update momentum |
---|
| 750 | if delta_t > 0.0: |
---|
| 751 | xmomentum_rate = outlet_mom_x - outlet.momentum[0].value |
---|
| 752 | xmomentum_rate /= delta_t |
---|
| 753 | |
---|
| 754 | ymomentum_rate = outlet_mom_y - outlet.momentum[1].value |
---|
| 755 | ymomentum_rate /= delta_t |
---|
| 756 | |
---|
| 757 | if self.log_filename is not None: |
---|
| 758 | s = 'X Y MOM_RATE = (%f, %f) ' %(xmomentum_rate, ymomentum_rate) |
---|
| 759 | log_to_file(self.log_filename, s) |
---|
| 760 | else: |
---|
| 761 | xmomentum_rate = ymomentum_rate = 0.0 |
---|
| 762 | |
---|
| 763 | |
---|
| 764 | # Set momentum rates for outlet jet |
---|
| 765 | outlet.momentum[0].rate = xmomentum_rate |
---|
| 766 | outlet.momentum[1].rate = ymomentum_rate |
---|
| 767 | |
---|
| 768 | # Remember this value for next step (IMPORTANT) |
---|
| 769 | outlet.momentum[0].value = outlet_mom_x |
---|
| 770 | outlet.momentum[1].value = outlet_mom_y |
---|
| 771 | |
---|
| 772 | if int(domain.time*100) % 100 == 0: |
---|
| 773 | |
---|
| 774 | if self.log_filename is not None: |
---|
| 775 | s = 'T=%.5f, Culvert Discharge = %.3f f'\ |
---|
| 776 | %(time, Q) |
---|
| 777 | s += ' Depth= %0.3f Momentum = (%0.3f, %0.3f)'\ |
---|
| 778 | %(culvert_outlet_depth, outlet_mom_x,outlet_mom_y) |
---|
| 779 | s += ' Momentum rate: (%.4f, %.4f)'\ |
---|
| 780 | %(xmomentum_rate, ymomentum_rate) |
---|
| 781 | s+='Outlet Vel= %.3f'\ |
---|
| 782 | %(barrel_velocity) |
---|
| 783 | log_to_file(self.log_filename, s) |
---|
| 784 | |
---|
| 785 | |
---|
| 786 | # Execute momentum terms |
---|
| 787 | # This is where Inflow objects are evaluated and update the domain |
---|
| 788 | self.outlet.momentum[0](domain) |
---|
| 789 | self.outlet.momentum[1](domain) |
---|
| 790 | |
---|
| 791 | |
---|
| 792 | |
---|
| 793 | # Log timeseries to file |
---|
| 794 | try: |
---|
| 795 | fid = open(self.timeseries_filename, 'a') |
---|
| 796 | except: |
---|
| 797 | pass |
---|
| 798 | else: |
---|
| 799 | fid.write('%.2f, %.2f\n' %(time, Q)) |
---|
| 800 | fid.close() |
---|
| 801 | |
---|
| 802 | # Store value of time |
---|
| 803 | self.last_time = time |
---|
| 804 | |
---|
| 805 | |
---|
| 806 | |
---|
| 807 | |
---|
| 808 | |
---|
| 809 | |
---|
| 810 | |
---|
| 811 | # OBSOLETE (Except for momentum jet in Culvert_flow_energy) |
---|
| 812 | class Culvert_flow_rating: |
---|
| 813 | """Culvert flow - transfer water from one hole to another |
---|
| 814 | |
---|
| 815 | |
---|
| 816 | Input: Two points, pipe_size (either diameter or width, height), |
---|
| 817 | mannings_rougness, |
---|
| 818 | inlet/outlet energy_loss_coefficients, internal_bend_coefficent, |
---|
| 819 | top-down_blockage_factor and bottom_up_blockage_factor |
---|
| 820 | |
---|
| 821 | """ |
---|
| 822 | |
---|
| 823 | def __init__(self, |
---|
| 824 | domain, |
---|
| 825 | culvert_description_filename=None, |
---|
| 826 | end_point0=None, |
---|
| 827 | end_point1=None, |
---|
| 828 | enquiry_point0=None, |
---|
| 829 | enquiry_point1=None, |
---|
| 830 | update_interval=None, |
---|
| 831 | log_file=False, |
---|
| 832 | discharge_hydrograph=False, |
---|
| 833 | verbose=False): |
---|
| 834 | |
---|
| 835 | |
---|
| 836 | |
---|
| 837 | label, type, width, height, length, number_of_barrels, description, rating_curve = read_culvert_description(culvert_description_filename) |
---|
| 838 | |
---|
| 839 | |
---|
| 840 | # Store culvert information |
---|
| 841 | self.label = label |
---|
| 842 | self.description = description |
---|
| 843 | self.culvert_type = type |
---|
| 844 | self.rating_curve = ensure_numeric(rating_curve) |
---|
| 845 | self.number_of_barrels = number_of_barrels |
---|
| 846 | |
---|
| 847 | if label is None: label = 'culvert_flow' |
---|
| 848 | label += '_' + str(id(self)) |
---|
| 849 | self.label = label |
---|
| 850 | |
---|
| 851 | # File for storing discharge_hydrograph |
---|
| 852 | if discharge_hydrograph is True: |
---|
| 853 | self.timeseries_filename = label + '_timeseries.csv' |
---|
| 854 | fid = open(self.timeseries_filename, 'w') |
---|
| 855 | fid.write('time, discharge\n') |
---|
| 856 | fid.close() |
---|
| 857 | |
---|
| 858 | # Log file for storing general textual output |
---|
| 859 | if log_file is True: |
---|
| 860 | self.log_filename = label + '.log' |
---|
| 861 | log_to_file(self.log_filename, self.label) |
---|
| 862 | log_to_file(self.log_filename, description) |
---|
| 863 | log_to_file(self.log_filename, self.culvert_type) |
---|
| 864 | |
---|
| 865 | |
---|
| 866 | # Create the fundamental culvert polygons from POLYGON |
---|
| 867 | #if self.culvert_type == 'circle': |
---|
| 868 | # # Redefine width and height for use with create_culvert_polygons |
---|
| 869 | # width = height = diameter |
---|
| 870 | |
---|
| 871 | P = create_culvert_polygons(end_point0, |
---|
| 872 | end_point1, |
---|
| 873 | width=width, |
---|
| 874 | height=height, |
---|
| 875 | number_of_barrels=number_of_barrels) |
---|
| 876 | |
---|
| 877 | # Select enquiry points |
---|
| 878 | if enquiry_point0 is None: |
---|
| 879 | enquiry_point0 = P['enquiry_point0'] |
---|
| 880 | |
---|
| 881 | if enquiry_point1 is None: |
---|
| 882 | enquiry_point1 = P['enquiry_point1'] |
---|
| 883 | |
---|
| 884 | if verbose is True: |
---|
| 885 | pass |
---|
| 886 | #plot_polygons([[end_point0, end_point1], |
---|
| 887 | # P['exchange_polygon0'], |
---|
| 888 | # P['exchange_polygon1'], |
---|
| 889 | # [enquiry_point0, 1.005*enquiry_point0], |
---|
| 890 | # [enquiry_point1, 1.005*enquiry_point1]], |
---|
| 891 | # figname='culvert_polygon_output') |
---|
| 892 | |
---|
| 893 | |
---|
| 894 | |
---|
| 895 | self.enquiry_points = [enquiry_point0, enquiry_point1] |
---|
| 896 | |
---|
| 897 | self.enquiry_indices = [] |
---|
| 898 | for point in self.enquiry_points: |
---|
| 899 | # Find nearest centroid |
---|
| 900 | N = len(domain) |
---|
| 901 | points = domain.get_centroid_coordinates(absolute=True) |
---|
| 902 | |
---|
| 903 | # Calculate indices in exchange area for this forcing term |
---|
| 904 | |
---|
| 905 | triangle_id = min_dist = sys.maxint |
---|
| 906 | for k in range(N): |
---|
| 907 | x, y = points[k,:] # Centroid |
---|
| 908 | |
---|
| 909 | c = point |
---|
| 910 | distance = (x-c[0])**2+(y-c[1])**2 |
---|
| 911 | if distance < min_dist: |
---|
| 912 | min_dist = distance |
---|
| 913 | triangle_id = k |
---|
| 914 | |
---|
| 915 | |
---|
| 916 | if triangle_id < sys.maxint: |
---|
| 917 | msg = 'found triangle with centroid (%f, %f)'\ |
---|
| 918 | %tuple(points[triangle_id, :]) |
---|
| 919 | msg += ' for point (%f, %f)' %tuple(point) |
---|
| 920 | |
---|
| 921 | self.enquiry_indices.append(triangle_id) |
---|
| 922 | else: |
---|
| 923 | msg = 'Triangle not found for point (%f, %f)' %point |
---|
| 924 | raise Exception, msg |
---|
| 925 | |
---|
| 926 | |
---|
| 927 | |
---|
| 928 | # Check that all polygons lie within the mesh. |
---|
| 929 | bounding_polygon = domain.get_boundary_polygon() |
---|
| 930 | for key in P.keys(): |
---|
| 931 | if key in ['exchange_polygon0', |
---|
| 932 | 'exchange_polygon1']: |
---|
| 933 | for point in list(P[key]) + self.enquiry_points: |
---|
| 934 | msg = 'Point %s in polygon %s for culvert %s did not'\ |
---|
| 935 | %(str(point), key, self.label) |
---|
| 936 | msg += 'fall within the domain boundary.' |
---|
| 937 | assert is_inside_polygon(point, bounding_polygon), msg |
---|
| 938 | |
---|
| 939 | |
---|
| 940 | # Create inflow object at each end of the culvert. |
---|
| 941 | self.openings = [] |
---|
| 942 | self.openings.append(Inflow(domain, |
---|
| 943 | polygon=P['exchange_polygon0'])) |
---|
| 944 | |
---|
| 945 | self.openings.append(Inflow(domain, |
---|
| 946 | polygon=P['exchange_polygon1'])) |
---|
| 947 | |
---|
| 948 | |
---|
| 949 | |
---|
| 950 | dq = domain.quantities |
---|
| 951 | for i, opening in enumerate(self.openings): |
---|
| 952 | elevation = dq['elevation'].get_values(location='centroids', |
---|
| 953 | indices=[self.enquiry_indices[i]]) |
---|
| 954 | opening.elevation = elevation |
---|
| 955 | opening.stage = elevation # Simple assumption that culvert is dry initially |
---|
| 956 | |
---|
| 957 | # Assume two openings for now: Referred to as 0 and 1 |
---|
| 958 | assert len(self.openings) == 2 |
---|
| 959 | |
---|
| 960 | # Determine pipe direction |
---|
| 961 | self.delta_z = delta_z = self.openings[0].elevation - self.openings[1].elevation |
---|
| 962 | if delta_z > 0.0: |
---|
| 963 | self.inlet = self.openings[0] |
---|
| 964 | self.outlet = self.openings[1] |
---|
| 965 | else: |
---|
| 966 | self.outlet = self.openings[0] |
---|
| 967 | self.inlet = self.openings[1] |
---|
| 968 | |
---|
| 969 | |
---|
| 970 | # Store basic geometry |
---|
| 971 | self.end_points = [end_point0, end_point1] |
---|
| 972 | self.vector = P['vector'] |
---|
| 973 | self.length = P['length']; assert self.length > 0.0 |
---|
| 974 | if not num.allclose(self.length, length, rtol=1.0e-2, atol=1.0e-2): |
---|
| 975 | msg = 'WARNING: barrel length specified in "%s" (%.2f m)' %(culvert_description_filename, length) |
---|
| 976 | msg += ' does not match distance between specified' |
---|
| 977 | msg += ' end points (%.2f m)' %self.length |
---|
| 978 | log.critical(msg) |
---|
| 979 | |
---|
| 980 | self.verbose = verbose |
---|
| 981 | self.last_update = 0.0 # For use with update_interval |
---|
| 982 | self.last_time = 0.0 |
---|
| 983 | self.update_interval = update_interval |
---|
| 984 | |
---|
| 985 | |
---|
| 986 | # Print something |
---|
| 987 | if hasattr(self, 'log_filename'): |
---|
| 988 | s = 'Culvert Effective Length = %.2f m' %(self.length) |
---|
| 989 | log_to_file(self.log_filename, s) |
---|
| 990 | |
---|
| 991 | s = 'Culvert Direction is %s\n' %str(self.vector) |
---|
| 992 | log_to_file(self.log_filename, s) |
---|
| 993 | |
---|
| 994 | |
---|
| 995 | |
---|
| 996 | |
---|
| 997 | |
---|
| 998 | def __call__(self, domain): |
---|
| 999 | |
---|
| 1000 | # Time stuff |
---|
| 1001 | time = domain.get_time() |
---|
| 1002 | |
---|
| 1003 | |
---|
| 1004 | update = False |
---|
| 1005 | if self.update_interval is None: |
---|
| 1006 | update = True |
---|
| 1007 | delta_t = domain.timestep # Next timestep has been computed in domain.py |
---|
| 1008 | else: |
---|
| 1009 | if time - self.last_update > self.update_interval or time == 0.0: |
---|
| 1010 | update = True |
---|
| 1011 | delta_t = self.update_interval |
---|
| 1012 | |
---|
| 1013 | s = '\nTime = %.2f, delta_t = %f' %(time, delta_t) |
---|
| 1014 | if hasattr(self, 'log_filename'): |
---|
| 1015 | log_to_file(self.log_filename, s) |
---|
| 1016 | |
---|
| 1017 | |
---|
| 1018 | if update is True: |
---|
| 1019 | self.last_update = time |
---|
| 1020 | |
---|
| 1021 | dq = domain.quantities |
---|
| 1022 | |
---|
| 1023 | # Get average water depths at each opening |
---|
| 1024 | openings = self.openings # There are two Opening [0] and [1] |
---|
| 1025 | for i, opening in enumerate(openings): |
---|
| 1026 | |
---|
| 1027 | # Compute mean values of selected quantitites in the |
---|
| 1028 | # enquiry area in front of the culvert |
---|
| 1029 | |
---|
| 1030 | stage = dq['stage'].get_values(location='centroids', |
---|
| 1031 | indices=[self.enquiry_indices[i]]) |
---|
| 1032 | |
---|
| 1033 | # Store current average stage and depth with each opening object |
---|
| 1034 | opening.depth = stage - opening.elevation |
---|
| 1035 | opening.stage = stage |
---|
| 1036 | |
---|
| 1037 | |
---|
| 1038 | |
---|
| 1039 | ################# End of the FOR loop ################################################ |
---|
| 1040 | |
---|
| 1041 | # We now need to deal with each opening individually |
---|
| 1042 | |
---|
| 1043 | # Determine flow direction based on total energy difference |
---|
| 1044 | |
---|
| 1045 | delta_w = self.inlet.stage - self.outlet.stage |
---|
| 1046 | |
---|
| 1047 | if hasattr(self, 'log_filename'): |
---|
| 1048 | s = 'Time=%.2f, inlet stage = %.2f, outlet stage = %.2f' %(time, |
---|
| 1049 | self.inlet.stage, |
---|
| 1050 | self.outlet.stage) |
---|
| 1051 | log_to_file(self.log_filename, s) |
---|
| 1052 | |
---|
| 1053 | |
---|
| 1054 | if self.inlet.depth <= 0.01: |
---|
| 1055 | Q = 0.0 |
---|
| 1056 | else: |
---|
| 1057 | # Calculate discharge for one barrel and set inlet.rate and outlet.rate |
---|
| 1058 | |
---|
| 1059 | try: |
---|
| 1060 | Q = interpolate_linearly(delta_w, self.rating_curve[:,0], self.rating_curve[:,1]) |
---|
| 1061 | except Below_interval, e: |
---|
| 1062 | Q = self.rating_curve[0,1] |
---|
| 1063 | msg = '%.2fs: Delta head smaller than rating curve minimum: ' %time |
---|
| 1064 | msg += str(e) |
---|
| 1065 | msg += '\n I will use minimum discharge %.2f m^3/s for culvert "%s"'\ |
---|
| 1066 | %(Q, self.label) |
---|
| 1067 | if hasattr(self, 'log_filename'): |
---|
| 1068 | log_to_file(self.log_filename, msg) |
---|
| 1069 | except Above_interval, e: |
---|
| 1070 | Q = self.rating_curve[-1,1] |
---|
| 1071 | msg = '%.2fs: Delta head greater than rating curve maximum: ' %time |
---|
| 1072 | msg += str(e) |
---|
| 1073 | msg += '\n I will use maximum discharge %.2f m^3/s for culvert "%s"'\ |
---|
| 1074 | %(Q, self.label) |
---|
| 1075 | if hasattr(self, 'log_filename'): |
---|
| 1076 | log_to_file(self.log_filename, msg) |
---|
| 1077 | |
---|
| 1078 | |
---|
| 1079 | |
---|
| 1080 | |
---|
| 1081 | # Adjust discharge for multiple barrels |
---|
| 1082 | Q *= self.number_of_barrels |
---|
| 1083 | |
---|
| 1084 | |
---|
| 1085 | # Adjust Q downwards depending on available water at inlet |
---|
| 1086 | stage = self.inlet.get_quantity_values(quantity_name='stage') |
---|
| 1087 | elevation = self.inlet.get_quantity_values(quantity_name='elevation') |
---|
| 1088 | depth = stage-elevation |
---|
| 1089 | |
---|
| 1090 | |
---|
| 1091 | V = 0 |
---|
| 1092 | for i, d in enumerate(depth): |
---|
| 1093 | V += d * domain.areas[i] |
---|
| 1094 | |
---|
| 1095 | dt = delta_t |
---|
| 1096 | if Q*dt > V: |
---|
| 1097 | |
---|
| 1098 | Q_reduced = 0.9*V/dt # Reduce with safety factor |
---|
| 1099 | |
---|
| 1100 | msg = '%.2fs: Computed extraction for this time interval (Q*dt) is ' % time |
---|
| 1101 | msg += 'greater than current volume (V) at inlet.\n' |
---|
| 1102 | msg += ' Q will be reduced from %.2f m^3/s to %.2f m^3/s.' % (Q, Q_reduced) |
---|
| 1103 | |
---|
| 1104 | if self.verbose is True: |
---|
| 1105 | log.critical(msg) |
---|
| 1106 | if hasattr(self, 'log_filename'): |
---|
| 1107 | log_to_file(self.log_filename, msg) |
---|
| 1108 | |
---|
| 1109 | Q = Q_reduced |
---|
| 1110 | |
---|
| 1111 | self.inlet.rate = -Q |
---|
| 1112 | self.outlet.rate = Q |
---|
| 1113 | |
---|
| 1114 | # Log timeseries to file |
---|
| 1115 | try: |
---|
| 1116 | fid = open(self.timeseries_filename, 'a') |
---|
| 1117 | except: |
---|
| 1118 | pass |
---|
| 1119 | else: |
---|
| 1120 | fid.write('%.2f, %.2f\n' %(time, Q)) |
---|
| 1121 | fid.close() |
---|
| 1122 | |
---|
| 1123 | # Store value of time |
---|
| 1124 | self.last_time = time |
---|
| 1125 | |
---|
| 1126 | |
---|
| 1127 | |
---|
| 1128 | # Execute flow term for each opening |
---|
| 1129 | # This is where Inflow objects are evaluated using the last rate that has been calculated |
---|
| 1130 | # |
---|
| 1131 | # This will take place at every internal timestep and update the domain |
---|
| 1132 | for opening in self.openings: |
---|
| 1133 | opening(domain) |
---|
| 1134 | |
---|
| 1135 | |
---|
| 1136 | |
---|
| 1137 | |
---|
| 1138 | |
---|
| 1139 | |
---|
| 1140 | class Culvert_flow_energy: |
---|
| 1141 | """Culvert flow - transfer water from one hole to another |
---|
| 1142 | |
---|
| 1143 | Using Momentum as Calculated by Culvert Flow !! |
---|
| 1144 | Could be Several Methods Investigated to do This !!! |
---|
| 1145 | |
---|
| 1146 | 2008_May_08 |
---|
| 1147 | To Ole: |
---|
| 1148 | OK so here we need to get the Polygon Creating code to create |
---|
| 1149 | polygons for the culvert Based on |
---|
| 1150 | the two input Points (X0,Y0) and (X1,Y1) - need to be passed |
---|
| 1151 | to create polygon |
---|
| 1152 | |
---|
| 1153 | The two centers are now passed on to create_polygon. |
---|
| 1154 | |
---|
| 1155 | |
---|
| 1156 | Input: Two points, pipe_size (either diameter or width, height), |
---|
| 1157 | mannings_rougness, |
---|
| 1158 | inlet/outlet energy_loss_coefficients, internal_bend_coefficent, |
---|
| 1159 | top-down_blockage_factor and bottom_up_blockage_factor |
---|
| 1160 | |
---|
| 1161 | |
---|
| 1162 | And the Delta H enquiry should be change from Openings in line 412 |
---|
| 1163 | to the enquiry Polygons infront of the culvert |
---|
| 1164 | At the moment this script uses only Depth, later we can change it to |
---|
| 1165 | Energy... |
---|
| 1166 | |
---|
| 1167 | Once we have Delta H can calculate a Flow Rate and from Flow Rate |
---|
| 1168 | an Outlet Velocity |
---|
| 1169 | The Outlet Velocity x Outlet Depth = Momentum to be applied at the Outlet... |
---|
| 1170 | |
---|
| 1171 | Invert levels are optional. If left out they will default to the |
---|
| 1172 | elevation at the opening. |
---|
| 1173 | |
---|
| 1174 | """ |
---|
| 1175 | |
---|
| 1176 | def __init__(self, |
---|
| 1177 | domain, |
---|
| 1178 | label=None, |
---|
| 1179 | description=None, |
---|
| 1180 | end_point0=None, |
---|
| 1181 | end_point1=None, |
---|
| 1182 | width=None, |
---|
| 1183 | height=None, |
---|
| 1184 | diameter=None, |
---|
| 1185 | manning=None, # Mannings Roughness for Culvert |
---|
| 1186 | invert_level0=None, # Invert level at opening 0 |
---|
| 1187 | invert_level1=None, # Invert level at opening 1 |
---|
| 1188 | loss_exit=None, |
---|
| 1189 | loss_entry=None, |
---|
| 1190 | loss_bend=None, |
---|
| 1191 | loss_special=None, |
---|
| 1192 | blockage_topdwn=None, |
---|
| 1193 | blockage_bottup=None, |
---|
| 1194 | culvert_routine=None, |
---|
| 1195 | number_of_barrels=1, |
---|
| 1196 | enquiry_point0=None, |
---|
| 1197 | enquiry_point1=None, |
---|
| 1198 | update_interval=None, |
---|
| 1199 | verbose=False): |
---|
| 1200 | |
---|
| 1201 | # Input check |
---|
| 1202 | if diameter is not None: |
---|
| 1203 | self.culvert_type = 'circle' |
---|
| 1204 | self.diameter = diameter |
---|
| 1205 | if height is not None or width is not None: |
---|
| 1206 | msg = 'Either diameter or width&height must be specified, ' |
---|
| 1207 | msg += 'but not both.' |
---|
| 1208 | raise Exception, msg |
---|
| 1209 | else: |
---|
| 1210 | if height is not None: |
---|
| 1211 | if width is None: |
---|
| 1212 | self.culvert_type = 'square' |
---|
| 1213 | width = height |
---|
| 1214 | else: |
---|
| 1215 | self.culvert_type = 'rectangle' |
---|
| 1216 | elif width is not None: |
---|
| 1217 | if height is None: |
---|
| 1218 | self.culvert_type = 'square' |
---|
| 1219 | height = width |
---|
| 1220 | else: |
---|
| 1221 | msg = 'Either diameter or width&height must be specified.' |
---|
| 1222 | raise Exception, msg |
---|
| 1223 | |
---|
| 1224 | if height == width: |
---|
| 1225 | self.culvert_type = 'square' |
---|
| 1226 | |
---|
| 1227 | self.height = height |
---|
| 1228 | self.width = width |
---|
| 1229 | |
---|
| 1230 | |
---|
| 1231 | assert self.culvert_type in ['circle', 'square', 'rectangle'] |
---|
| 1232 | |
---|
| 1233 | assert number_of_barrels >= 1 |
---|
| 1234 | self.number_of_barrels = number_of_barrels |
---|
| 1235 | |
---|
| 1236 | |
---|
| 1237 | # Set defaults |
---|
| 1238 | if manning is None: manning = 0.012 # Default roughness for pipe |
---|
| 1239 | if loss_exit is None: loss_exit = 1.00 |
---|
| 1240 | if loss_entry is None: loss_entry = 0.50 |
---|
| 1241 | if loss_bend is None: loss_bend=0.00 |
---|
| 1242 | if loss_special is None: loss_special=0.00 |
---|
| 1243 | if blockage_topdwn is None: blockage_topdwn=0.00 |
---|
| 1244 | if blockage_bottup is None: blockage_bottup=0.00 |
---|
| 1245 | if culvert_routine is None: |
---|
| 1246 | culvert_routine=boyd_generalised_culvert_model |
---|
| 1247 | |
---|
| 1248 | if label is None: label = 'culvert_flow' |
---|
| 1249 | label += '_' + str(id(self)) |
---|
| 1250 | self.label = label |
---|
| 1251 | |
---|
| 1252 | # File for storing culvert quantities |
---|
| 1253 | self.timeseries_filename = label + '_timeseries.csv' |
---|
| 1254 | fid = open(self.timeseries_filename, 'w') |
---|
| 1255 | fid.write('time, E0, E1, Velocity, Discharge\n') |
---|
| 1256 | fid.close() |
---|
| 1257 | |
---|
| 1258 | # Log file for storing general textual output |
---|
| 1259 | self.log_filename = label + '.log' |
---|
| 1260 | log_to_file(self.log_filename, self.label) |
---|
| 1261 | log_to_file(self.log_filename, description) |
---|
| 1262 | log_to_file(self.log_filename, self.culvert_type) |
---|
| 1263 | |
---|
| 1264 | |
---|
| 1265 | # Create the fundamental culvert polygons from POLYGON |
---|
| 1266 | if self.culvert_type == 'circle': |
---|
| 1267 | # Redefine width and height for use with create_culvert_polygons |
---|
| 1268 | width = height = diameter |
---|
| 1269 | |
---|
| 1270 | P = create_culvert_polygons(end_point0, |
---|
| 1271 | end_point1, |
---|
| 1272 | width=width, |
---|
| 1273 | height=height, |
---|
| 1274 | number_of_barrels=number_of_barrels) |
---|
| 1275 | |
---|
| 1276 | # Select enquiry points |
---|
| 1277 | if enquiry_point0 is None: |
---|
| 1278 | enquiry_point0 = P['enquiry_point0'] |
---|
| 1279 | |
---|
| 1280 | if enquiry_point1 is None: |
---|
| 1281 | enquiry_point1 = P['enquiry_point1'] |
---|
| 1282 | |
---|
| 1283 | if verbose is True: |
---|
| 1284 | pass |
---|
| 1285 | #plot_polygons([[end_point0, end_point1], |
---|
| 1286 | # P['exchange_polygon0'], |
---|
| 1287 | # P['exchange_polygon1'], |
---|
| 1288 | # [enquiry_point0, 1.005*enquiry_point0], |
---|
| 1289 | # [enquiry_point1, 1.005*enquiry_point1]], |
---|
| 1290 | # figname='culvert_polygon_output') |
---|
| 1291 | |
---|
| 1292 | |
---|
| 1293 | self.enquiry_points = [enquiry_point0, enquiry_point1] |
---|
| 1294 | |
---|
| 1295 | |
---|
| 1296 | self.enquiry_indices = [] |
---|
| 1297 | for point in self.enquiry_points: |
---|
| 1298 | # Find nearest centroid |
---|
| 1299 | N = len(domain) |
---|
| 1300 | points = domain.get_centroid_coordinates(absolute=True) |
---|
| 1301 | |
---|
| 1302 | # Calculate indices in exchange area for this forcing term |
---|
| 1303 | |
---|
| 1304 | triangle_id = min_dist = sys.maxint |
---|
| 1305 | for k in range(N): |
---|
| 1306 | x, y = points[k,:] # Centroid |
---|
| 1307 | |
---|
| 1308 | c = point |
---|
| 1309 | distance = (x-c[0])**2+(y-c[1])**2 |
---|
| 1310 | if distance < min_dist: |
---|
| 1311 | min_dist = distance |
---|
| 1312 | triangle_id = k |
---|
| 1313 | |
---|
| 1314 | |
---|
| 1315 | if triangle_id < sys.maxint: |
---|
| 1316 | msg = 'found triangle with centroid (%f, %f)'\ |
---|
| 1317 | %tuple(points[triangle_id, :]) |
---|
| 1318 | msg += ' for point (%f, %f)' %tuple(point) |
---|
| 1319 | |
---|
| 1320 | self.enquiry_indices.append(triangle_id) |
---|
| 1321 | else: |
---|
| 1322 | msg = 'Triangle not found for point (%f, %f)' %point |
---|
| 1323 | raise Exception, msg |
---|
| 1324 | |
---|
| 1325 | |
---|
| 1326 | |
---|
| 1327 | |
---|
| 1328 | |
---|
| 1329 | |
---|
| 1330 | # Check that all polygons lie within the mesh. |
---|
| 1331 | bounding_polygon = domain.get_boundary_polygon() |
---|
| 1332 | for key in P.keys(): |
---|
| 1333 | if key in ['exchange_polygon0', |
---|
| 1334 | 'exchange_polygon1']: |
---|
| 1335 | for point in P[key]: |
---|
| 1336 | |
---|
| 1337 | msg = 'Point %s in polygon %s for culvert %s did not'\ |
---|
| 1338 | %(str(point), key, self.label) |
---|
| 1339 | msg += 'fall within the domain boundary.' |
---|
| 1340 | assert is_inside_polygon(point, bounding_polygon), msg |
---|
| 1341 | |
---|
| 1342 | |
---|
| 1343 | # Create inflow object at each end of the culvert. |
---|
| 1344 | self.openings = [] |
---|
| 1345 | self.openings.append(Inflow(domain, |
---|
| 1346 | polygon=P['exchange_polygon0'])) |
---|
| 1347 | |
---|
| 1348 | self.openings.append(Inflow(domain, |
---|
| 1349 | polygon=P['exchange_polygon1'])) |
---|
| 1350 | |
---|
| 1351 | |
---|
| 1352 | # Assume two openings for now: Referred to as 0 and 1 |
---|
| 1353 | assert len(self.openings) == 2 |
---|
| 1354 | |
---|
| 1355 | # Store basic geometry |
---|
| 1356 | self.end_points = [end_point0, end_point1] |
---|
| 1357 | self.invert_levels = [invert_level0, invert_level1] |
---|
| 1358 | #self.enquiry_polygons = [P['enquiry_polygon0'], P['enquiry_polygon1']] |
---|
| 1359 | #self.enquiry_polylines = [P['enquiry_polygon0'][:2], |
---|
| 1360 | # P['enquiry_polygon1'][:2]] |
---|
| 1361 | self.vector = P['vector'] |
---|
| 1362 | self.length = P['length']; assert self.length > 0.0 |
---|
| 1363 | self.verbose = verbose |
---|
| 1364 | self.last_time = 0.0 |
---|
| 1365 | self.last_update = 0.0 # For use with update_interval |
---|
| 1366 | self.update_interval = update_interval |
---|
| 1367 | |
---|
| 1368 | |
---|
| 1369 | # Store hydraulic parameters |
---|
| 1370 | self.manning = manning |
---|
| 1371 | self.loss_exit = loss_exit |
---|
| 1372 | self.loss_entry = loss_entry |
---|
| 1373 | self.loss_bend = loss_bend |
---|
| 1374 | self.loss_special = loss_special |
---|
| 1375 | self.sum_loss = loss_exit + loss_entry + loss_bend + loss_special |
---|
| 1376 | self.blockage_topdwn = blockage_topdwn |
---|
| 1377 | self.blockage_bottup = blockage_bottup |
---|
| 1378 | |
---|
| 1379 | # Store culvert routine |
---|
| 1380 | self.culvert_routine = culvert_routine |
---|
| 1381 | |
---|
| 1382 | |
---|
| 1383 | # Create objects to update momentum (a bit crude at this stage) |
---|
| 1384 | xmom0 = General_forcing(domain, 'xmomentum', |
---|
| 1385 | polygon=P['exchange_polygon0']) |
---|
| 1386 | |
---|
| 1387 | xmom1 = General_forcing(domain, 'xmomentum', |
---|
| 1388 | polygon=P['exchange_polygon1']) |
---|
| 1389 | |
---|
| 1390 | ymom0 = General_forcing(domain, 'ymomentum', |
---|
| 1391 | polygon=P['exchange_polygon0']) |
---|
| 1392 | |
---|
| 1393 | ymom1 = General_forcing(domain, 'ymomentum', |
---|
| 1394 | polygon=P['exchange_polygon1']) |
---|
| 1395 | |
---|
| 1396 | self.opening_momentum = [ [xmom0, ymom0], [xmom1, ymom1] ] |
---|
| 1397 | |
---|
| 1398 | |
---|
| 1399 | # Print something |
---|
| 1400 | s = 'Culvert Effective Length = %.2f m' %(self.length) |
---|
| 1401 | log_to_file(self.log_filename, s) |
---|
| 1402 | |
---|
| 1403 | s = 'Culvert Direction is %s\n' %str(self.vector) |
---|
| 1404 | log_to_file(self.log_filename, s) |
---|
| 1405 | |
---|
| 1406 | |
---|
| 1407 | def __call__(self, domain): |
---|
| 1408 | |
---|
| 1409 | log_filename = self.log_filename |
---|
| 1410 | |
---|
| 1411 | # Time stuff |
---|
| 1412 | time = domain.get_time() |
---|
| 1413 | |
---|
| 1414 | # Short hand |
---|
| 1415 | dq = domain.quantities |
---|
| 1416 | |
---|
| 1417 | |
---|
| 1418 | update = False |
---|
| 1419 | if self.update_interval is None: |
---|
| 1420 | update = True |
---|
| 1421 | delta_t = domain.timestep # Next timestep has been computed in domain.py |
---|
| 1422 | else: |
---|
| 1423 | if time - self.last_update > self.update_interval or time == 0.0: |
---|
| 1424 | update = True |
---|
| 1425 | delta_t = self.update_interval |
---|
| 1426 | |
---|
| 1427 | s = '\nTime = %.2f, delta_t = %f' %(time, delta_t) |
---|
| 1428 | if hasattr(self, 'log_filename'): |
---|
| 1429 | log_to_file(log_filename, s) |
---|
| 1430 | |
---|
| 1431 | |
---|
| 1432 | if update is True: |
---|
| 1433 | self.last_update = time |
---|
| 1434 | |
---|
| 1435 | msg = 'Time did not advance' |
---|
| 1436 | if time > 0.0: assert delta_t > 0.0, msg |
---|
| 1437 | |
---|
| 1438 | |
---|
| 1439 | # Get average water depths at each opening |
---|
| 1440 | openings = self.openings # There are two Opening [0] and [1] |
---|
| 1441 | for i, opening in enumerate(openings): |
---|
| 1442 | |
---|
| 1443 | # Compute mean values of selected quantitites in the |
---|
| 1444 | # exchange area in front of the culvert |
---|
| 1445 | |
---|
| 1446 | stage = opening.get_quantity_values(quantity_name='stage') |
---|
| 1447 | w = mean(stage) # Average stage |
---|
| 1448 | |
---|
| 1449 | # Use invert level instead of elevation if specified |
---|
| 1450 | invert_level = self.invert_levels[i] |
---|
| 1451 | if invert_level is not None: |
---|
| 1452 | z = invert_level |
---|
| 1453 | else: |
---|
| 1454 | elevation = opening.get_quantity_values(quantity_name='elevation') |
---|
| 1455 | z = mean(elevation) # Average elevation |
---|
| 1456 | |
---|
| 1457 | # Estimated depth above the culvert inlet |
---|
| 1458 | d = w - z # Used for calculations involving depth |
---|
| 1459 | if d < 0.0: |
---|
| 1460 | # This is possible since w and z are taken at different locations |
---|
| 1461 | #msg = 'D < 0.0: %f' %d |
---|
| 1462 | #raise msg |
---|
| 1463 | d = 0.0 |
---|
| 1464 | |
---|
| 1465 | |
---|
| 1466 | # Ratio of depth to culvert height. |
---|
| 1467 | # If ratio > 1 then culvert is running full |
---|
| 1468 | if self.culvert_type == 'circle': |
---|
| 1469 | ratio = d/self.diameter |
---|
| 1470 | else: |
---|
| 1471 | ratio = d/self.height |
---|
| 1472 | opening.ratio = ratio |
---|
| 1473 | |
---|
| 1474 | |
---|
| 1475 | # Average measures of energy in front of this opening |
---|
| 1476 | |
---|
| 1477 | id = [self.enquiry_indices[i]] |
---|
| 1478 | stage = dq['stage'].get_values(location='centroids', |
---|
| 1479 | indices=id) |
---|
| 1480 | elevation = dq['elevation'].get_values(location='centroids', |
---|
| 1481 | indices=id) |
---|
| 1482 | xmomentum = dq['xmomentum'].get_values(location='centroids', |
---|
| 1483 | indices=id) |
---|
| 1484 | ymomentum = dq['xmomentum'].get_values(location='centroids', |
---|
| 1485 | indices=id) |
---|
| 1486 | depth = stage-elevation |
---|
| 1487 | if depth > 0.0: |
---|
| 1488 | u = xmomentum/(depth + velocity_protection/depth) |
---|
| 1489 | v = ymomentum/(depth + velocity_protection/depth) |
---|
| 1490 | else: |
---|
| 1491 | u = v = 0.0 |
---|
| 1492 | |
---|
| 1493 | |
---|
| 1494 | opening.total_energy = 0.5*(u*u + v*v)/g + stage |
---|
| 1495 | |
---|
| 1496 | # Store current average stage and depth with each opening object |
---|
| 1497 | opening.depth = d |
---|
| 1498 | opening.depth_trigger = d # Use this for now |
---|
| 1499 | opening.stage = w |
---|
| 1500 | opening.elevation = z |
---|
| 1501 | |
---|
| 1502 | |
---|
| 1503 | ################# End of the FOR loop ################################################ |
---|
| 1504 | |
---|
| 1505 | # We now need to deal with each opening individually |
---|
| 1506 | |
---|
| 1507 | # Determine flow direction based on total energy difference |
---|
| 1508 | delta_Et = openings[0].total_energy - openings[1].total_energy |
---|
| 1509 | |
---|
| 1510 | if delta_Et > 0: |
---|
| 1511 | inlet = openings[0] |
---|
| 1512 | outlet = openings[1] |
---|
| 1513 | |
---|
| 1514 | inlet.momentum = self.opening_momentum[0] |
---|
| 1515 | outlet.momentum = self.opening_momentum[1] |
---|
| 1516 | |
---|
| 1517 | else: |
---|
| 1518 | inlet = openings[1] |
---|
| 1519 | outlet = openings[0] |
---|
| 1520 | |
---|
| 1521 | inlet.momentum = self.opening_momentum[1] |
---|
| 1522 | outlet.momentum = self.opening_momentum[0] |
---|
| 1523 | |
---|
| 1524 | delta_Et = -delta_Et |
---|
| 1525 | |
---|
| 1526 | self.inlet = inlet |
---|
| 1527 | self.outlet = outlet |
---|
| 1528 | |
---|
| 1529 | msg = 'Total energy difference is negative' |
---|
| 1530 | assert delta_Et > 0.0, msg |
---|
| 1531 | |
---|
| 1532 | delta_h = inlet.stage - outlet.stage |
---|
| 1533 | delta_z = inlet.elevation - outlet.elevation |
---|
| 1534 | culvert_slope = (delta_z/self.length) |
---|
| 1535 | |
---|
| 1536 | if culvert_slope < 0.0: |
---|
| 1537 | # Adverse gradient - flow is running uphill |
---|
| 1538 | # Flow will be purely controlled by uphill outlet face |
---|
| 1539 | if self.verbose is True: |
---|
| 1540 | log.critical('WARNING: Flow is running uphill. Watch Out! ' |
---|
| 1541 | 'inlet.elevation=%s, outlet.elevation%s' |
---|
| 1542 | % (str(inlet.elevation), str(outlet.elevation))) |
---|
| 1543 | |
---|
| 1544 | |
---|
| 1545 | s = 'Delta total energy = %.3f' %(delta_Et) |
---|
| 1546 | log_to_file(log_filename, s) |
---|
| 1547 | |
---|
| 1548 | |
---|
| 1549 | # Calculate discharge for one barrel and set inlet.rate and outlet.rate |
---|
| 1550 | Q, barrel_velocity, culvert_outlet_depth = self.culvert_routine(self, inlet, outlet, delta_Et, g) |
---|
| 1551 | |
---|
| 1552 | # Adjust discharge for multiple barrels |
---|
| 1553 | Q *= self.number_of_barrels |
---|
| 1554 | |
---|
| 1555 | # Compute barrel momentum |
---|
| 1556 | barrel_momentum = barrel_velocity*culvert_outlet_depth |
---|
| 1557 | |
---|
| 1558 | s = 'Barrel velocity = %f' %barrel_velocity |
---|
| 1559 | log_to_file(log_filename, s) |
---|
| 1560 | |
---|
| 1561 | # Compute momentum vector at outlet |
---|
| 1562 | outlet_mom_x, outlet_mom_y = self.vector * barrel_momentum |
---|
| 1563 | |
---|
| 1564 | s = 'Directional momentum = (%f, %f)' %(outlet_mom_x, outlet_mom_y) |
---|
| 1565 | log_to_file(log_filename, s) |
---|
| 1566 | |
---|
| 1567 | # Log timeseries to file |
---|
| 1568 | fid = open(self.timeseries_filename, 'a') |
---|
| 1569 | fid.write('%f, %f, %f, %f, %f\n'\ |
---|
| 1570 | %(time, |
---|
| 1571 | openings[0].total_energy, |
---|
| 1572 | openings[1].total_energy, |
---|
| 1573 | barrel_velocity, |
---|
| 1574 | Q)) |
---|
| 1575 | fid.close() |
---|
| 1576 | |
---|
| 1577 | # Update momentum |
---|
| 1578 | if delta_t > 0.0: |
---|
| 1579 | xmomentum_rate = outlet_mom_x - outlet.momentum[0].value |
---|
| 1580 | xmomentum_rate /= delta_t |
---|
| 1581 | |
---|
| 1582 | ymomentum_rate = outlet_mom_y - outlet.momentum[1].value |
---|
| 1583 | ymomentum_rate /= delta_t |
---|
| 1584 | |
---|
| 1585 | s = 'X Y MOM_RATE = (%f, %f) ' %(xmomentum_rate, ymomentum_rate) |
---|
| 1586 | log_to_file(log_filename, s) |
---|
| 1587 | else: |
---|
| 1588 | xmomentum_rate = ymomentum_rate = 0.0 |
---|
| 1589 | |
---|
| 1590 | |
---|
| 1591 | # Set momentum rates for outlet jet |
---|
| 1592 | outlet.momentum[0].rate = xmomentum_rate |
---|
| 1593 | outlet.momentum[1].rate = ymomentum_rate |
---|
| 1594 | |
---|
| 1595 | # Remember this value for next step (IMPORTANT) |
---|
| 1596 | outlet.momentum[0].value = outlet_mom_x |
---|
| 1597 | outlet.momentum[1].value = outlet_mom_y |
---|
| 1598 | |
---|
| 1599 | if int(domain.time*100) % 100 == 0: |
---|
| 1600 | s = 'T=%.5f, Culvert Discharge = %.3f f'\ |
---|
| 1601 | %(time, Q) |
---|
| 1602 | s += ' Depth= %0.3f Momentum = (%0.3f, %0.3f)'\ |
---|
| 1603 | %(culvert_outlet_depth, outlet_mom_x,outlet_mom_y) |
---|
| 1604 | s += ' Momentum rate: (%.4f, %.4f)'\ |
---|
| 1605 | %(xmomentum_rate, ymomentum_rate) |
---|
| 1606 | s+='Outlet Vel= %.3f'\ |
---|
| 1607 | %(barrel_velocity) |
---|
| 1608 | log_to_file(log_filename, s) |
---|
| 1609 | |
---|
| 1610 | # Store value of time |
---|
| 1611 | self.last_time = time |
---|
| 1612 | |
---|
| 1613 | |
---|
| 1614 | |
---|
| 1615 | # Execute flow term for each opening |
---|
| 1616 | # This is where Inflow objects are evaluated and update the domain |
---|
| 1617 | for opening in self.openings: |
---|
| 1618 | opening(domain) |
---|
| 1619 | |
---|
| 1620 | # Execute momentum terms |
---|
| 1621 | # This is where Inflow objects are evaluated and update the domain |
---|
| 1622 | self.outlet.momentum[0](domain) |
---|
| 1623 | self.outlet.momentum[1](domain) |
---|
| 1624 | |
---|
| 1625 | |
---|
| 1626 | |
---|
| 1627 | Culvert_flow = Culvert_flow_general |
---|