1 | import sys |
---|
2 | |
---|
3 | from anuga.shallow_water.forcing import Inflow, General_forcing |
---|
4 | from anuga.culvert_flows.culvert_polygons import create_culvert_polygons |
---|
5 | from anuga.utilities.system_tools import log_to_file |
---|
6 | from anuga.geometry.polygon import inside_polygon, is_inside_polygon, plot_polygons |
---|
7 | |
---|
8 | from anuga.utilities.numerical_tools import mean |
---|
9 | from anuga.utilities.numerical_tools import ensure_numeric, sign |
---|
10 | |
---|
11 | from anuga.config import g, epsilon |
---|
12 | from anuga.config import minimum_allowed_height, velocity_protection |
---|
13 | import anuga.utilities.log as log |
---|
14 | |
---|
15 | import numpy as num |
---|
16 | from math import sqrt |
---|
17 | from math import sqrt |
---|
18 | |
---|
19 | class Below_interval(Exception): pass |
---|
20 | class Above_interval(Exception): pass |
---|
21 | |
---|
22 | # FIXME(Ole): Take a good hard look at logging here |
---|
23 | |
---|
24 | |
---|
25 | # FIXME(Ole): Write in C and reuse this function by similar code |
---|
26 | # in interpolate.py |
---|
27 | def interpolate_linearly(x, xvec, yvec): |
---|
28 | |
---|
29 | msg = 'Input to function interpolate_linearly could not be converted ' |
---|
30 | msg += 'to numerical scalar: x = %s' % str(x) |
---|
31 | try: |
---|
32 | x = float(x) |
---|
33 | except: |
---|
34 | raise Exception, msg |
---|
35 | |
---|
36 | |
---|
37 | # Check bounds |
---|
38 | if x < xvec[0]: |
---|
39 | msg = 'Value provided = %.2f, interpolation minimum = %.2f.'\ |
---|
40 | % (x, xvec[0]) |
---|
41 | raise Below_interval, msg |
---|
42 | |
---|
43 | if x > xvec[-1]: |
---|
44 | msg = 'Value provided = %.2f, interpolation maximum = %.2f.'\ |
---|
45 | %(x, xvec[-1]) |
---|
46 | raise Above_interval, msg |
---|
47 | |
---|
48 | |
---|
49 | # Find appropriate slot within bounds |
---|
50 | i = 0 |
---|
51 | while x > xvec[i]: i += 1 |
---|
52 | |
---|
53 | |
---|
54 | x0 = xvec[i-1] |
---|
55 | x1 = xvec[i] |
---|
56 | alpha = (x - x0)/(x1 - x0) |
---|
57 | |
---|
58 | y0 = yvec[i-1] |
---|
59 | y1 = yvec[i] |
---|
60 | y = alpha*y1 + (1-alpha)*y0 |
---|
61 | |
---|
62 | return y |
---|
63 | |
---|
64 | |
---|
65 | |
---|
66 | def read_culvert_description(culvert_description_filename): |
---|
67 | |
---|
68 | # Read description file |
---|
69 | fid = open(culvert_description_filename) |
---|
70 | |
---|
71 | read_rating_curve_data = False |
---|
72 | rating_curve = [] |
---|
73 | for i, line in enumerate(fid.readlines()): |
---|
74 | |
---|
75 | if read_rating_curve_data is True: |
---|
76 | fields = line.split(',') |
---|
77 | head_difference = float(fields[0].strip()) |
---|
78 | flow_rate = float(fields[1].strip()) |
---|
79 | barrel_velocity = float(fields[2].strip()) |
---|
80 | |
---|
81 | rating_curve.append([head_difference, flow_rate, barrel_velocity]) |
---|
82 | |
---|
83 | if i == 0: |
---|
84 | # Header |
---|
85 | continue |
---|
86 | if i == 1: |
---|
87 | # Metadata |
---|
88 | fields = line.split(',') |
---|
89 | label=fields[0].strip() |
---|
90 | type=fields[1].strip().lower() |
---|
91 | assert type in ['box', 'pipe'] |
---|
92 | |
---|
93 | width=float(fields[2].strip()) |
---|
94 | height=float(fields[3].strip()) |
---|
95 | length=float(fields[4].strip()) |
---|
96 | number_of_barrels=int(fields[5].strip()) |
---|
97 | #fields[6] refers to losses |
---|
98 | description=fields[7].strip() |
---|
99 | |
---|
100 | if line.strip() == '': continue # Skip blanks |
---|
101 | |
---|
102 | if line.startswith('Rating'): |
---|
103 | read_rating_curve_data = True |
---|
104 | # Flow data follows |
---|
105 | |
---|
106 | fid.close() |
---|
107 | |
---|
108 | return label, type, width, height, length, number_of_barrels, description, rating_curve |
---|
109 | |
---|
110 | |
---|
111 | |
---|
112 | |
---|
113 | class Culvert_flow_general: |
---|
114 | """Culvert flow - transfer water from one hole to another |
---|
115 | |
---|
116 | This version will work with either rating curve file or with culvert |
---|
117 | routine. |
---|
118 | |
---|
119 | Input: Two points, pipe_size (either diameter or width, height), |
---|
120 | mannings_rougness, |
---|
121 | """ |
---|
122 | |
---|
123 | def __init__(self, |
---|
124 | domain, |
---|
125 | culvert_description_filename=None, |
---|
126 | culvert_routine=None, |
---|
127 | end_point0=None, |
---|
128 | end_point1=None, |
---|
129 | enquiry_point0=None, |
---|
130 | enquiry_point1=None, |
---|
131 | type='box', |
---|
132 | width=None, |
---|
133 | height=None, |
---|
134 | length=None, |
---|
135 | number_of_barrels=1, |
---|
136 | number_of_smoothing_steps=2000, |
---|
137 | trigger_depth=0.01, # Depth below which no flow happens |
---|
138 | manning=None, # Mannings Roughness for Culvert |
---|
139 | sum_loss=None, |
---|
140 | use_velocity_head=False, # FIXME(Ole): Get rid of - always True |
---|
141 | use_momentum_jet=False, # FIXME(Ole): Not yet implemented |
---|
142 | label=None, |
---|
143 | description=None, |
---|
144 | update_interval=None, |
---|
145 | log_file=False, |
---|
146 | discharge_hydrograph=False, |
---|
147 | verbose=False): |
---|
148 | |
---|
149 | |
---|
150 | |
---|
151 | # Input check |
---|
152 | |
---|
153 | if height is None: height = width |
---|
154 | |
---|
155 | assert number_of_barrels >= 1 |
---|
156 | assert use_velocity_head is True or use_velocity_head is False |
---|
157 | |
---|
158 | #msg = 'Momentum jet not yet moved to general culvert' |
---|
159 | #assert use_momentum_jet is False, msg |
---|
160 | self.use_momentum_jet = use_momentum_jet |
---|
161 | |
---|
162 | self.culvert_routine = culvert_routine |
---|
163 | self.culvert_description_filename = culvert_description_filename |
---|
164 | if culvert_description_filename is not None: |
---|
165 | label, type, width, height, length, number_of_barrels, description, rating_curve = read_culvert_description(culvert_description_filename) |
---|
166 | self.rating_curve = ensure_numeric(rating_curve) |
---|
167 | |
---|
168 | self.height = height |
---|
169 | self.width = width |
---|
170 | |
---|
171 | |
---|
172 | self.domain = domain |
---|
173 | self.trigger_depth = trigger_depth |
---|
174 | |
---|
175 | if manning is None: |
---|
176 | self.manning = 0.012 # Default roughness for pipe |
---|
177 | |
---|
178 | if sum_loss is None: |
---|
179 | self.sum_loss = 0.0 |
---|
180 | |
---|
181 | |
---|
182 | |
---|
183 | # Store culvert information |
---|
184 | self.label = label |
---|
185 | self.description = description |
---|
186 | self.culvert_type = type |
---|
187 | self.number_of_barrels = number_of_barrels |
---|
188 | |
---|
189 | # Store options |
---|
190 | self.use_velocity_head = use_velocity_head |
---|
191 | |
---|
192 | if label is None: label = 'culvert_flow' |
---|
193 | label += '_' + str(id(self)) |
---|
194 | self.label = label |
---|
195 | |
---|
196 | # File for storing discharge_hydrograph |
---|
197 | if discharge_hydrograph is True: |
---|
198 | self.timeseries_filename = label + '_timeseries.csv' |
---|
199 | fid = open(self.timeseries_filename, 'w') |
---|
200 | fid.write('time, discharge\n') |
---|
201 | fid.close() |
---|
202 | |
---|
203 | # Log file for storing general textual output |
---|
204 | if log_file is True: |
---|
205 | self.log_filename = label + '.log' |
---|
206 | log_to_file(self.log_filename, self.label) |
---|
207 | log_to_file(self.log_filename, description) |
---|
208 | log_to_file(self.log_filename, self.culvert_type) |
---|
209 | else: |
---|
210 | self.log_filename = None |
---|
211 | |
---|
212 | |
---|
213 | # Create the fundamental culvert polygons from polygon |
---|
214 | P = create_culvert_polygons(end_point0, |
---|
215 | end_point1, |
---|
216 | width=width, |
---|
217 | height=height, |
---|
218 | number_of_barrels=number_of_barrels) |
---|
219 | self.culvert_polygons = P |
---|
220 | |
---|
221 | # Select enquiry points |
---|
222 | if enquiry_point0 is None: |
---|
223 | enquiry_point0 = P['enquiry_point0'] |
---|
224 | |
---|
225 | if enquiry_point1 is None: |
---|
226 | enquiry_point1 = P['enquiry_point1'] |
---|
227 | |
---|
228 | if verbose is True: |
---|
229 | pass |
---|
230 | #plot_polygons([[end_point0, end_point1], |
---|
231 | # P['exchange_polygon0'], |
---|
232 | # P['exchange_polygon1'], |
---|
233 | # [enquiry_point0, 1.005*enquiry_point0], |
---|
234 | # [enquiry_point1, 1.005*enquiry_point1]], |
---|
235 | # figname='culvert_polygon_output') |
---|
236 | |
---|
237 | |
---|
238 | |
---|
239 | self.enquiry_points = [enquiry_point0, enquiry_point1] |
---|
240 | self.enquiry_indices = self.get_enquiry_indices() |
---|
241 | self.check_culvert_inside_domain() |
---|
242 | |
---|
243 | |
---|
244 | # Create inflow object at each end of the culvert. |
---|
245 | self.openings = [] |
---|
246 | self.openings.append(Inflow(domain, |
---|
247 | polygon=P['exchange_polygon0'])) |
---|
248 | self.openings.append(Inflow(domain, |
---|
249 | polygon=P['exchange_polygon1'])) |
---|
250 | |
---|
251 | # Assume two openings for now: Referred to as 0 and 1 |
---|
252 | assert len(self.openings) == 2 |
---|
253 | |
---|
254 | # Establish initial values at each enquiry point |
---|
255 | dq = domain.quantities |
---|
256 | for i, opening in enumerate(self.openings): |
---|
257 | idx = self.enquiry_indices[i] |
---|
258 | elevation = dq['elevation'].get_values(location='centroids', |
---|
259 | indices=[idx])[0] |
---|
260 | stage = dq['stage'].get_values(location='centroids', |
---|
261 | indices=[idx])[0] |
---|
262 | opening.elevation = elevation |
---|
263 | opening.stage = stage |
---|
264 | opening.depth = stage-elevation |
---|
265 | |
---|
266 | |
---|
267 | |
---|
268 | # Determine initial pipe direction. |
---|
269 | # This may change dynamically based on the total energy difference |
---|
270 | # Consequently, this may be superfluous |
---|
271 | delta_z = self.openings[0].elevation - self.openings[1].elevation |
---|
272 | if delta_z > 0.0: |
---|
273 | self.inlet = self.openings[0] |
---|
274 | self.outlet = self.openings[1] |
---|
275 | else: |
---|
276 | self.outlet = self.openings[0] |
---|
277 | self.inlet = self.openings[1] |
---|
278 | |
---|
279 | |
---|
280 | # Store basic geometry |
---|
281 | self.end_points = [end_point0, end_point1] |
---|
282 | self.vector = P['vector'] |
---|
283 | self.length = P['length']; assert self.length > 0.0 |
---|
284 | if culvert_description_filename is not None: |
---|
285 | if not num.allclose(self.length, length, rtol=1.0e-2, atol=1.0e-2): |
---|
286 | msg = 'WARNING: barrel length specified in "%s" (%.2f m)'\ |
---|
287 | % (culvert_description_filename, |
---|
288 | length) |
---|
289 | msg += ' does not match distance between specified' |
---|
290 | msg += ' end points (%.2f m)' %self.length |
---|
291 | log.critical(msg) |
---|
292 | |
---|
293 | self.verbose = verbose |
---|
294 | |
---|
295 | # Circular index for flow averaging in culvert |
---|
296 | self.N = N = number_of_smoothing_steps |
---|
297 | self.Q_list = [0]*N |
---|
298 | self.i = i |
---|
299 | |
---|
300 | # For use with update_interval |
---|
301 | self.last_update = 0.0 |
---|
302 | self.update_interval = update_interval |
---|
303 | |
---|
304 | # Create objects to update momentum (a bit crude at this stage). This is used with the momentum jet. |
---|
305 | xmom0 = General_forcing(domain, 'xmomentum', |
---|
306 | polygon=P['exchange_polygon0']) |
---|
307 | |
---|
308 | xmom1 = General_forcing(domain, 'xmomentum', |
---|
309 | polygon=P['exchange_polygon1']) |
---|
310 | |
---|
311 | ymom0 = General_forcing(domain, 'ymomentum', |
---|
312 | polygon=P['exchange_polygon0']) |
---|
313 | |
---|
314 | ymom1 = General_forcing(domain, 'ymomentum', |
---|
315 | polygon=P['exchange_polygon1']) |
---|
316 | |
---|
317 | self.opening_momentum = [[xmom0, ymom0], [xmom1, ymom1]] |
---|
318 | |
---|
319 | |
---|
320 | |
---|
321 | # Print some diagnostics to log if requested |
---|
322 | if self.log_filename is not None: |
---|
323 | s = 'Culvert Effective Length = %.2f m' %(self.length) |
---|
324 | log_to_file(self.log_filename, s) |
---|
325 | |
---|
326 | s = 'Culvert Direction is %s\n' %str(self.vector) |
---|
327 | log_to_file(self.log_filename, s) |
---|
328 | |
---|
329 | |
---|
330 | |
---|
331 | |
---|
332 | |
---|
333 | def __call__(self, domain): |
---|
334 | |
---|
335 | # Time stuff |
---|
336 | time = domain.get_time() |
---|
337 | |
---|
338 | |
---|
339 | update = False |
---|
340 | if self.update_interval is None: |
---|
341 | # Use next timestep as has been computed in domain.py |
---|
342 | delta_t = domain.timestep |
---|
343 | update = True |
---|
344 | else: |
---|
345 | # Use update interval |
---|
346 | delta_t = self.update_interval |
---|
347 | if time - self.last_update > self.update_interval or time == 0.0: |
---|
348 | update = True |
---|
349 | |
---|
350 | if self.log_filename is not None: |
---|
351 | s = '\nTime = %.2f, delta_t = %f' %(time, delta_t) |
---|
352 | log_to_file(self.log_filename, s) |
---|
353 | |
---|
354 | |
---|
355 | if update is True: |
---|
356 | self.compute_rates(delta_t) |
---|
357 | |
---|
358 | |
---|
359 | # Execute flow term for each opening |
---|
360 | # This is where Inflow objects are evaluated using the last rate |
---|
361 | # that has been calculated |
---|
362 | # |
---|
363 | # This will take place at every internal timestep and update the domain |
---|
364 | for opening in self.openings: |
---|
365 | opening(domain) |
---|
366 | |
---|
367 | |
---|
368 | |
---|
369 | def get_enquiry_indices(self): |
---|
370 | """Get indices for nearest centroids to self.enquiry_points |
---|
371 | """ |
---|
372 | |
---|
373 | domain = self.domain |
---|
374 | |
---|
375 | enquiry_indices = [] |
---|
376 | for point in self.enquiry_points: |
---|
377 | # Find nearest centroid |
---|
378 | N = len(domain) |
---|
379 | points = domain.get_centroid_coordinates(absolute=True) |
---|
380 | |
---|
381 | # Calculate indices in exchange area for this forcing term |
---|
382 | |
---|
383 | triangle_id = min_dist = sys.maxint |
---|
384 | for k in range(N): |
---|
385 | x, y = points[k,:] # Centroid |
---|
386 | |
---|
387 | c = point |
---|
388 | distance = (x-c[0])**2+(y-c[1])**2 |
---|
389 | if distance < min_dist: |
---|
390 | min_dist = distance |
---|
391 | triangle_id = k |
---|
392 | |
---|
393 | |
---|
394 | if triangle_id < sys.maxint: |
---|
395 | msg = 'found triangle with centroid (%f, %f)'\ |
---|
396 | %tuple(points[triangle_id, :]) |
---|
397 | msg += ' for point (%f, %f)' %tuple(point) |
---|
398 | |
---|
399 | enquiry_indices.append(triangle_id) |
---|
400 | else: |
---|
401 | msg = 'Triangle not found for point (%f, %f)' %point |
---|
402 | raise Exception, msg |
---|
403 | |
---|
404 | return enquiry_indices |
---|
405 | |
---|
406 | |
---|
407 | def check_culvert_inside_domain(self): |
---|
408 | """Check that all polygons and enquiry points lie within the mesh. |
---|
409 | """ |
---|
410 | bounding_polygon = self.domain.get_boundary_polygon() |
---|
411 | P = self.culvert_polygons |
---|
412 | for key in P.keys(): |
---|
413 | if key in ['exchange_polygon0', |
---|
414 | 'exchange_polygon1']: |
---|
415 | for point in list(P[key]) + self.enquiry_points: |
---|
416 | msg = 'Point %s in polygon %s for culvert %s did not'\ |
---|
417 | %(str(point), key, self.label) |
---|
418 | msg += 'fall within the domain boundary.' |
---|
419 | assert is_inside_polygon(point, bounding_polygon), msg |
---|
420 | |
---|
421 | |
---|
422 | def adjust_flow_for_available_water_at_inlet(self, Q, delta_t): |
---|
423 | """Adjust Q downwards depending on available water at inlet |
---|
424 | |
---|
425 | This is a critical step in modelling bridges and Culverts |
---|
426 | the predicted flow through a structure based on an abstract |
---|
427 | algorithm can at times request for water that is simply not |
---|
428 | available due to any number of constrictions that limit the |
---|
429 | flow approaching the structure In order to ensure that |
---|
430 | there is adequate flow available certain checks are |
---|
431 | required There needs to be a check using the Static Water |
---|
432 | Volume sitting infront of the structure, In addition if the |
---|
433 | water is moving the available water will be larger than the |
---|
434 | static volume |
---|
435 | |
---|
436 | NOTE To temporarily switch this off for Debugging purposes |
---|
437 | rem out line in function def compute_rates below |
---|
438 | """ |
---|
439 | |
---|
440 | if delta_t < epsilon: |
---|
441 | # No need to adjust if time step is very small or zero |
---|
442 | # In this case the possible flow will be very large |
---|
443 | # anyway. |
---|
444 | return Q |
---|
445 | |
---|
446 | # Short hands |
---|
447 | domain = self.domain |
---|
448 | dq = domain.quantities |
---|
449 | time = domain.get_time() |
---|
450 | I = self.inlet |
---|
451 | idx = I.exchange_indices |
---|
452 | |
---|
453 | # Find triangle with the smallest depth |
---|
454 | stage = dq['stage'].get_values(location='centroids', |
---|
455 | indices=[idx]) |
---|
456 | elevation = dq['elevation'].get_values(location='centroids', |
---|
457 | indices=[idx]) |
---|
458 | depth = stage-elevation |
---|
459 | min_depth = min(depth.flat) # This may lead to errors if edge of area is at a higher level !!!! |
---|
460 | avg_depth = mean(depth.flat) # Yes, but this one violates the conservation unit tests |
---|
461 | |
---|
462 | |
---|
463 | |
---|
464 | # FIXME (Ole): If you want these, use log.critical() and |
---|
465 | # make the statements depend on verbose |
---|
466 | #print I.depth |
---|
467 | #print I.velocity |
---|
468 | #print self.width |
---|
469 | |
---|
470 | # max_Q Based on Volume Calcs |
---|
471 | |
---|
472 | |
---|
473 | depth_term = min_depth*I.exchange_area/delta_t |
---|
474 | if min_depth < 0.2: |
---|
475 | # Only add velocity term in shallow waters (< 20 cm) |
---|
476 | # This is a little ad hoc, but maybe it is reasonable |
---|
477 | velocity_term = self.width*min_depth*I.velocity |
---|
478 | else: |
---|
479 | velocity_term = 0.0 |
---|
480 | |
---|
481 | # This one takes approaching water into account |
---|
482 | max_Q = max(velocity_term, depth_term) |
---|
483 | |
---|
484 | # This one preserves Volume |
---|
485 | #max_Q = depth_term |
---|
486 | |
---|
487 | |
---|
488 | if self.verbose is True: |
---|
489 | log.critical('Max_Q = %f' % max_Q) |
---|
490 | msg = 'Width = %.2fm, Depth at inlet = %.2f m, Velocity = %.2f m/s. ' % (self.width, I.depth, I.velocity) |
---|
491 | msg += 'Max Q = %.2f m^3/s' %(max_Q) |
---|
492 | log.critical(msg) |
---|
493 | |
---|
494 | if self.log_filename is not None: |
---|
495 | log_to_file(self.log_filename, msg) |
---|
496 | # New Procedure for assessing the flow available to the Culvert |
---|
497 | # This routine uses the GET FLOW THROUGH CROSS SECTION |
---|
498 | # Need to check Several Polyline however |
---|
499 | # Firstly 3 sides of the exchange Poly |
---|
500 | # then only the Line Directly infront of the Polygon |
---|
501 | # Access polygon Points from self.inlet.polygon |
---|
502 | |
---|
503 | # The Following computes the flow crossing over 3 sides of the exchange polygon for the structure |
---|
504 | # Clearly the flow in the culvert can not be more than that flowing toward it through the exhange polygon |
---|
505 | |
---|
506 | #q1 = domain.get_flow_through_cross_section(self.culvert_polygons['exchange_polygon0'][1:3]) # First Side Segment |
---|
507 | #q2 = domain.get_flow_through_cross_section(self.culvert_polygons['exchange_polygon0'][2:]) # Second Face Segment |
---|
508 | #q3 =domain.get_flow_through_cross_section(self.culvert_polygons['exchange_polygon0'].take([3,0], axis=0)) # Third Side Segment |
---|
509 | # q4 = domain.get_flow_through_cross_section([self.culvert_polygons['exchange_polygon0'][1:4]][0]) |
---|
510 | #q4=max(q1,0.0)+max(q2,0.0)+max(q3,0.0) |
---|
511 | # To use only the Flow crossing the 3 sides of the Exchange Polygon use the following Line Only |
---|
512 | #max_Q=max(q1,q2,q3,q4) |
---|
513 | # Try Simple Smoothing using Average of 2 approaches |
---|
514 | #max_Q=(max(q1,q2,q3,q4)+max_Q)/2.0 |
---|
515 | # Calculate the minimum in absolute terms of |
---|
516 | # the requsted flow and the possible flow |
---|
517 | Q_reduced = sign(Q)*min(abs(Q), abs(max_Q)) |
---|
518 | if self.verbose is True: |
---|
519 | msg = 'Initial Q Reduced = %.2f m3/s. ' % (Q_reduced) |
---|
520 | log.critical(msg) |
---|
521 | |
---|
522 | if self.log_filename is not None: |
---|
523 | log_to_file(self.log_filename, msg) |
---|
524 | # Now Keep Rolling Average of Computed Discharge to Reduce / Remove Oscillations |
---|
525 | # can use delta_t if we want to averageover a time frame for example |
---|
526 | # N = 5.0/delta_t Will provide the average over 5 seconds |
---|
527 | |
---|
528 | self.i=(self.i+1)%self.N |
---|
529 | self.Q_list[self.i]=Q_reduced |
---|
530 | Q_reduced = sum(self.Q_list)/len(self.Q_list) |
---|
531 | |
---|
532 | if self.verbose is True: |
---|
533 | msg = 'Final Q Reduced = %.2f m3/s. ' % (Q_reduced) |
---|
534 | log.critical(msg) |
---|
535 | |
---|
536 | if self.log_filename is not None: |
---|
537 | log_to_file(self.log_filename, msg) |
---|
538 | |
---|
539 | |
---|
540 | if abs(Q_reduced) < abs(Q): |
---|
541 | msg = '%.2fs: Requested flow is ' % time |
---|
542 | msg += 'greater than what is supported by the smallest ' |
---|
543 | msg += 'depth at inlet exchange area:\n ' |
---|
544 | msg += 'inlet exchange area: %.2f '% (I.exchange_area) |
---|
545 | msg += 'velocity at inlet :%.2f '% (I.velocity) |
---|
546 | msg += 'Vel* Exch Area = : %.2f '% (I.velocity*avg_depth*self.width) |
---|
547 | msg += 'h_min*inlet_area/delta_t = %.2f*%.2f/%.2f '\ |
---|
548 | % (avg_depth, I.exchange_area, delta_t) |
---|
549 | msg += ' = %.2f m^3/s\n ' % Q_reduced |
---|
550 | msg += 'Q will be reduced from %.2f m^3/s to %.2f m^3/s.' % (Q, Q_reduced) |
---|
551 | msg += 'Note calculate max_Q from V %.2f m^3/s ' % (max_Q) |
---|
552 | if self.verbose is True: |
---|
553 | log.critical(msg) |
---|
554 | |
---|
555 | if self.log_filename is not None: |
---|
556 | log_to_file(self.log_filename, msg) |
---|
557 | |
---|
558 | return Q_reduced |
---|
559 | |
---|
560 | |
---|
561 | def compute_rates(self, delta_t): |
---|
562 | """Compute new rates for inlet and outlet |
---|
563 | """ |
---|
564 | |
---|
565 | # Short hands |
---|
566 | domain = self.domain |
---|
567 | dq = domain.quantities |
---|
568 | |
---|
569 | # Time stuff |
---|
570 | time = domain.get_time() |
---|
571 | self.last_update = time |
---|
572 | |
---|
573 | |
---|
574 | if hasattr(self, 'log_filename'): |
---|
575 | log_filename = self.log_filename |
---|
576 | |
---|
577 | # Compute stage, energy and velocity at the |
---|
578 | # enquiry points at each end of the culvert |
---|
579 | openings = self.openings |
---|
580 | for i, opening in enumerate(openings): |
---|
581 | idx = self.enquiry_indices[i] |
---|
582 | |
---|
583 | stage = dq['stage'].get_values(location='centroids', |
---|
584 | indices=[idx])[0] |
---|
585 | depth = h = stage-opening.elevation |
---|
586 | |
---|
587 | |
---|
588 | # Get velocity |
---|
589 | xmomentum = dq['xmomentum'].get_values(location='centroids', |
---|
590 | indices=[idx])[0] |
---|
591 | ymomentum = dq['xmomentum'].get_values(location='centroids', |
---|
592 | indices=[idx])[0] |
---|
593 | |
---|
594 | if h > minimum_allowed_height: |
---|
595 | u = xmomentum/(h + velocity_protection/h) |
---|
596 | v = ymomentum/(h + velocity_protection/h) |
---|
597 | else: |
---|
598 | u = v = 0.0 |
---|
599 | |
---|
600 | v_squared = u*u + v*v |
---|
601 | |
---|
602 | if self.use_velocity_head is True: |
---|
603 | velocity_head = 0.5*v_squared/g |
---|
604 | else: |
---|
605 | velocity_head = 0.0 |
---|
606 | |
---|
607 | opening.total_energy = velocity_head + stage |
---|
608 | opening.specific_energy = velocity_head + depth |
---|
609 | opening.stage = stage |
---|
610 | opening.depth = depth |
---|
611 | opening.velocity = sqrt(v_squared) |
---|
612 | |
---|
613 | |
---|
614 | # We now need to deal with each opening individually |
---|
615 | # Determine flow direction based on total energy difference |
---|
616 | delta_total_energy = openings[0].total_energy - openings[1].total_energy |
---|
617 | if delta_total_energy > 0: |
---|
618 | inlet = openings[0] |
---|
619 | outlet = openings[1] |
---|
620 | |
---|
621 | # FIXME: I think this whole momentum jet thing could be a bit more elegant |
---|
622 | inlet.momentum = self.opening_momentum[0] |
---|
623 | outlet.momentum = self.opening_momentum[1] |
---|
624 | else: |
---|
625 | inlet = openings[1] |
---|
626 | outlet = openings[0] |
---|
627 | |
---|
628 | inlet.momentum = self.opening_momentum[1] |
---|
629 | outlet.momentum = self.opening_momentum[0] |
---|
630 | |
---|
631 | delta_total_energy = -delta_total_energy |
---|
632 | |
---|
633 | self.inlet = inlet |
---|
634 | self.outlet = outlet |
---|
635 | |
---|
636 | msg = 'Total energy difference is negative' |
---|
637 | assert delta_total_energy >= 0.0, msg |
---|
638 | |
---|
639 | # Recompute slope and issue warning if flow is uphill |
---|
640 | # These values do not enter the computation |
---|
641 | delta_z = inlet.elevation - outlet.elevation |
---|
642 | culvert_slope = (delta_z/self.length) |
---|
643 | if culvert_slope < 0.0: |
---|
644 | # Adverse gradient - flow is running uphill |
---|
645 | # Flow will be purely controlled by uphill outlet face |
---|
646 | if self.verbose is True: |
---|
647 | log.critical('%.2fs - WARNING: Flow is running uphill.' % time) |
---|
648 | |
---|
649 | if self.log_filename is not None: |
---|
650 | s = 'Time=%.2f, inlet stage = %.2f, outlet stage = %.2f'\ |
---|
651 | %(time, self.inlet.stage, self.outlet.stage) |
---|
652 | log_to_file(self.log_filename, s) |
---|
653 | s = 'Delta total energy = %.3f' %(delta_total_energy) |
---|
654 | log_to_file(log_filename, s) |
---|
655 | |
---|
656 | |
---|
657 | # Determine controlling energy (driving head) for culvert |
---|
658 | if inlet.specific_energy > delta_total_energy: |
---|
659 | # Outlet control |
---|
660 | driving_head = delta_total_energy |
---|
661 | else: |
---|
662 | # Inlet control |
---|
663 | driving_head = inlet.specific_energy |
---|
664 | |
---|
665 | |
---|
666 | |
---|
667 | if self.inlet.depth <= self.trigger_depth: |
---|
668 | Q = 0.0 |
---|
669 | else: |
---|
670 | # Calculate discharge for one barrel and |
---|
671 | # set inlet.rate and outlet.rate |
---|
672 | |
---|
673 | if self.culvert_description_filename is not None: |
---|
674 | try: |
---|
675 | Q = interpolate_linearly(driving_head, |
---|
676 | self.rating_curve[:,0], |
---|
677 | self.rating_curve[:,1]) |
---|
678 | except Below_interval, e: |
---|
679 | Q = self.rating_curve[0,1] |
---|
680 | msg = '%.2fs: ' % time |
---|
681 | msg += 'Delta head smaller than rating curve minimum: ' |
---|
682 | msg += str(e) |
---|
683 | msg += '\n ' |
---|
684 | msg += 'I will use minimum discharge %.2f m^3/s ' % Q |
---|
685 | msg += 'for culvert "%s"' % self.label |
---|
686 | |
---|
687 | if hasattr(self, 'log_filename'): |
---|
688 | log_to_file(self.log_filename, msg) |
---|
689 | except Above_interval, e: |
---|
690 | Q = self.rating_curve[-1,1] |
---|
691 | msg = '%.2fs: ' % time |
---|
692 | msg += 'Delta head greater than rating curve maximum: ' |
---|
693 | msg += str(e) |
---|
694 | msg += '\n ' |
---|
695 | msg += 'I will use maximum discharge %.2f m^3/s ' % Q |
---|
696 | msg += 'for culvert "%s"' % self.label |
---|
697 | |
---|
698 | if self.log_filename is not None: |
---|
699 | log_to_file(self.log_filename, msg) |
---|
700 | else: |
---|
701 | # User culvert routine |
---|
702 | Q, barrel_velocity, culvert_outlet_depth =\ |
---|
703 | self.culvert_routine(inlet.depth, |
---|
704 | outlet.depth, |
---|
705 | inlet.velocity, |
---|
706 | outlet.velocity, |
---|
707 | inlet.specific_energy, |
---|
708 | delta_total_energy, |
---|
709 | g, |
---|
710 | culvert_length=self.length, |
---|
711 | culvert_width=self.width, |
---|
712 | culvert_height=self.height, |
---|
713 | culvert_type=self.culvert_type, |
---|
714 | manning=self.manning, |
---|
715 | sum_loss=self.sum_loss, |
---|
716 | log_filename=self.log_filename) |
---|
717 | |
---|
718 | |
---|
719 | |
---|
720 | # Adjust discharge for multiple barrels |
---|
721 | Q *= self.number_of_barrels |
---|
722 | |
---|
723 | # Adjust discharge for available water at the inlet |
---|
724 | Q = self.adjust_flow_for_available_water_at_inlet(Q, delta_t) |
---|
725 | |
---|
726 | self.inlet.rate = -Q |
---|
727 | self.outlet.rate = Q |
---|
728 | |
---|
729 | |
---|
730 | # Momentum jet stuff |
---|
731 | if self.use_momentum_jet is True: |
---|
732 | |
---|
733 | |
---|
734 | # Compute barrel momentum |
---|
735 | barrel_momentum = barrel_velocity*culvert_outlet_depth |
---|
736 | |
---|
737 | if self.log_filename is not None: |
---|
738 | s = 'Barrel velocity = %f' %barrel_velocity |
---|
739 | log_to_file(self.log_filename, s) |
---|
740 | |
---|
741 | # Compute momentum vector at outlet |
---|
742 | outlet_mom_x, outlet_mom_y = self.vector * barrel_momentum |
---|
743 | |
---|
744 | if self.log_filename is not None: |
---|
745 | s = 'Directional momentum = (%f, %f)' %(outlet_mom_x, outlet_mom_y) |
---|
746 | log_to_file(self.log_filename, s) |
---|
747 | |
---|
748 | |
---|
749 | # Update momentum |
---|
750 | if delta_t > 0.0: |
---|
751 | xmomentum_rate = outlet_mom_x - outlet.momentum[0].value |
---|
752 | xmomentum_rate /= delta_t |
---|
753 | |
---|
754 | ymomentum_rate = outlet_mom_y - outlet.momentum[1].value |
---|
755 | ymomentum_rate /= delta_t |
---|
756 | |
---|
757 | if self.log_filename is not None: |
---|
758 | s = 'X Y MOM_RATE = (%f, %f) ' %(xmomentum_rate, ymomentum_rate) |
---|
759 | log_to_file(self.log_filename, s) |
---|
760 | else: |
---|
761 | xmomentum_rate = ymomentum_rate = 0.0 |
---|
762 | |
---|
763 | |
---|
764 | # Set momentum rates for outlet jet |
---|
765 | outlet.momentum[0].rate = xmomentum_rate |
---|
766 | outlet.momentum[1].rate = ymomentum_rate |
---|
767 | |
---|
768 | # Remember this value for next step (IMPORTANT) |
---|
769 | outlet.momentum[0].value = outlet_mom_x |
---|
770 | outlet.momentum[1].value = outlet_mom_y |
---|
771 | |
---|
772 | if int(domain.time*100) % 100 == 0: |
---|
773 | |
---|
774 | if self.log_filename is not None: |
---|
775 | s = 'T=%.5f, Culvert Discharge = %.3f f'\ |
---|
776 | %(time, Q) |
---|
777 | s += ' Depth= %0.3f Momentum = (%0.3f, %0.3f)'\ |
---|
778 | %(culvert_outlet_depth, outlet_mom_x,outlet_mom_y) |
---|
779 | s += ' Momentum rate: (%.4f, %.4f)'\ |
---|
780 | %(xmomentum_rate, ymomentum_rate) |
---|
781 | s+='Outlet Vel= %.3f'\ |
---|
782 | %(barrel_velocity) |
---|
783 | log_to_file(self.log_filename, s) |
---|
784 | |
---|
785 | |
---|
786 | # Execute momentum terms |
---|
787 | # This is where Inflow objects are evaluated and update the domain |
---|
788 | self.outlet.momentum[0](domain) |
---|
789 | self.outlet.momentum[1](domain) |
---|
790 | |
---|
791 | |
---|
792 | |
---|
793 | # Log timeseries to file |
---|
794 | try: |
---|
795 | fid = open(self.timeseries_filename, 'a') |
---|
796 | except: |
---|
797 | pass |
---|
798 | else: |
---|
799 | fid.write('%.2f, %.2f\n' %(time, Q)) |
---|
800 | fid.close() |
---|
801 | |
---|
802 | # Store value of time |
---|
803 | self.last_time = time |
---|
804 | |
---|
805 | |
---|
806 | |
---|
807 | |
---|
808 | |
---|
809 | |
---|
810 | |
---|
811 | # OBSOLETE (Except for momentum jet in Culvert_flow_energy) |
---|
812 | class Culvert_flow_rating: |
---|
813 | """Culvert flow - transfer water from one hole to another |
---|
814 | |
---|
815 | |
---|
816 | Input: Two points, pipe_size (either diameter or width, height), |
---|
817 | mannings_rougness, |
---|
818 | inlet/outlet energy_loss_coefficients, internal_bend_coefficent, |
---|
819 | top-down_blockage_factor and bottom_up_blockage_factor |
---|
820 | |
---|
821 | """ |
---|
822 | |
---|
823 | def __init__(self, |
---|
824 | domain, |
---|
825 | culvert_description_filename=None, |
---|
826 | end_point0=None, |
---|
827 | end_point1=None, |
---|
828 | enquiry_point0=None, |
---|
829 | enquiry_point1=None, |
---|
830 | update_interval=None, |
---|
831 | log_file=False, |
---|
832 | discharge_hydrograph=False, |
---|
833 | verbose=False): |
---|
834 | |
---|
835 | |
---|
836 | |
---|
837 | label, type, width, height, length, number_of_barrels, description, rating_curve = read_culvert_description(culvert_description_filename) |
---|
838 | |
---|
839 | |
---|
840 | # Store culvert information |
---|
841 | self.label = label |
---|
842 | self.description = description |
---|
843 | self.culvert_type = type |
---|
844 | self.rating_curve = ensure_numeric(rating_curve) |
---|
845 | self.number_of_barrels = number_of_barrels |
---|
846 | |
---|
847 | if label is None: label = 'culvert_flow' |
---|
848 | label += '_' + str(id(self)) |
---|
849 | self.label = label |
---|
850 | |
---|
851 | # File for storing discharge_hydrograph |
---|
852 | if discharge_hydrograph is True: |
---|
853 | self.timeseries_filename = label + '_timeseries.csv' |
---|
854 | fid = open(self.timeseries_filename, 'w') |
---|
855 | fid.write('time, discharge\n') |
---|
856 | fid.close() |
---|
857 | |
---|
858 | # Log file for storing general textual output |
---|
859 | if log_file is True: |
---|
860 | self.log_filename = label + '.log' |
---|
861 | log_to_file(self.log_filename, self.label) |
---|
862 | log_to_file(self.log_filename, description) |
---|
863 | log_to_file(self.log_filename, self.culvert_type) |
---|
864 | |
---|
865 | |
---|
866 | # Create the fundamental culvert polygons from POLYGON |
---|
867 | #if self.culvert_type == 'circle': |
---|
868 | # # Redefine width and height for use with create_culvert_polygons |
---|
869 | # width = height = diameter |
---|
870 | |
---|
871 | P = create_culvert_polygons(end_point0, |
---|
872 | end_point1, |
---|
873 | width=width, |
---|
874 | height=height, |
---|
875 | number_of_barrels=number_of_barrels) |
---|
876 | |
---|
877 | # Select enquiry points |
---|
878 | if enquiry_point0 is None: |
---|
879 | enquiry_point0 = P['enquiry_point0'] |
---|
880 | |
---|
881 | if enquiry_point1 is None: |
---|
882 | enquiry_point1 = P['enquiry_point1'] |
---|
883 | |
---|
884 | if verbose is True: |
---|
885 | pass |
---|
886 | #plot_polygons([[end_point0, end_point1], |
---|
887 | # P['exchange_polygon0'], |
---|
888 | # P['exchange_polygon1'], |
---|
889 | # [enquiry_point0, 1.005*enquiry_point0], |
---|
890 | # [enquiry_point1, 1.005*enquiry_point1]], |
---|
891 | # figname='culvert_polygon_output') |
---|
892 | |
---|
893 | |
---|
894 | |
---|
895 | self.enquiry_points = [enquiry_point0, enquiry_point1] |
---|
896 | |
---|
897 | self.enquiry_indices = [] |
---|
898 | for point in self.enquiry_points: |
---|
899 | # Find nearest centroid |
---|
900 | N = len(domain) |
---|
901 | points = domain.get_centroid_coordinates(absolute=True) |
---|
902 | |
---|
903 | # Calculate indices in exchange area for this forcing term |
---|
904 | |
---|
905 | triangle_id = min_dist = sys.maxint |
---|
906 | for k in range(N): |
---|
907 | x, y = points[k,:] # Centroid |
---|
908 | |
---|
909 | c = point |
---|
910 | distance = (x-c[0])**2+(y-c[1])**2 |
---|
911 | if distance < min_dist: |
---|
912 | min_dist = distance |
---|
913 | triangle_id = k |
---|
914 | |
---|
915 | |
---|
916 | if triangle_id < sys.maxint: |
---|
917 | msg = 'found triangle with centroid (%f, %f)'\ |
---|
918 | %tuple(points[triangle_id, :]) |
---|
919 | msg += ' for point (%f, %f)' %tuple(point) |
---|
920 | |
---|
921 | self.enquiry_indices.append(triangle_id) |
---|
922 | else: |
---|
923 | msg = 'Triangle not found for point (%f, %f)' %point |
---|
924 | raise Exception, msg |
---|
925 | |
---|
926 | |
---|
927 | |
---|
928 | # Check that all polygons lie within the mesh. |
---|
929 | bounding_polygon = domain.get_boundary_polygon() |
---|
930 | for key in P.keys(): |
---|
931 | if key in ['exchange_polygon0', |
---|
932 | 'exchange_polygon1']: |
---|
933 | for point in list(P[key]) + self.enquiry_points: |
---|
934 | msg = 'Point %s in polygon %s for culvert %s did not'\ |
---|
935 | %(str(point), key, self.label) |
---|
936 | msg += 'fall within the domain boundary.' |
---|
937 | assert is_inside_polygon(point, bounding_polygon), msg |
---|
938 | |
---|
939 | |
---|
940 | # Create inflow object at each end of the culvert. |
---|
941 | self.openings = [] |
---|
942 | self.openings.append(Inflow(domain, |
---|
943 | polygon=P['exchange_polygon0'])) |
---|
944 | |
---|
945 | self.openings.append(Inflow(domain, |
---|
946 | polygon=P['exchange_polygon1'])) |
---|
947 | |
---|
948 | |
---|
949 | |
---|
950 | dq = domain.quantities |
---|
951 | for i, opening in enumerate(self.openings): |
---|
952 | elevation = dq['elevation'].get_values(location='centroids', |
---|
953 | indices=[self.enquiry_indices[i]]) |
---|
954 | opening.elevation = elevation |
---|
955 | opening.stage = elevation # Simple assumption that culvert is dry initially |
---|
956 | |
---|
957 | # Assume two openings for now: Referred to as 0 and 1 |
---|
958 | assert len(self.openings) == 2 |
---|
959 | |
---|
960 | # Determine pipe direction |
---|
961 | self.delta_z = delta_z = self.openings[0].elevation - self.openings[1].elevation |
---|
962 | if delta_z > 0.0: |
---|
963 | self.inlet = self.openings[0] |
---|
964 | self.outlet = self.openings[1] |
---|
965 | else: |
---|
966 | self.outlet = self.openings[0] |
---|
967 | self.inlet = self.openings[1] |
---|
968 | |
---|
969 | |
---|
970 | # Store basic geometry |
---|
971 | self.end_points = [end_point0, end_point1] |
---|
972 | self.vector = P['vector'] |
---|
973 | self.length = P['length']; assert self.length > 0.0 |
---|
974 | if not num.allclose(self.length, length, rtol=1.0e-2, atol=1.0e-2): |
---|
975 | msg = 'WARNING: barrel length specified in "%s" (%.2f m)' %(culvert_description_filename, length) |
---|
976 | msg += ' does not match distance between specified' |
---|
977 | msg += ' end points (%.2f m)' %self.length |
---|
978 | log.critical(msg) |
---|
979 | |
---|
980 | self.verbose = verbose |
---|
981 | self.last_update = 0.0 # For use with update_interval |
---|
982 | self.last_time = 0.0 |
---|
983 | self.update_interval = update_interval |
---|
984 | |
---|
985 | |
---|
986 | # Print something |
---|
987 | if hasattr(self, 'log_filename'): |
---|
988 | s = 'Culvert Effective Length = %.2f m' %(self.length) |
---|
989 | log_to_file(self.log_filename, s) |
---|
990 | |
---|
991 | s = 'Culvert Direction is %s\n' %str(self.vector) |
---|
992 | log_to_file(self.log_filename, s) |
---|
993 | |
---|
994 | |
---|
995 | |
---|
996 | |
---|
997 | |
---|
998 | def __call__(self, domain): |
---|
999 | |
---|
1000 | # Time stuff |
---|
1001 | time = domain.get_time() |
---|
1002 | |
---|
1003 | |
---|
1004 | update = False |
---|
1005 | if self.update_interval is None: |
---|
1006 | update = True |
---|
1007 | delta_t = domain.timestep # Next timestep has been computed in domain.py |
---|
1008 | else: |
---|
1009 | if time - self.last_update > self.update_interval or time == 0.0: |
---|
1010 | update = True |
---|
1011 | delta_t = self.update_interval |
---|
1012 | |
---|
1013 | s = '\nTime = %.2f, delta_t = %f' %(time, delta_t) |
---|
1014 | if hasattr(self, 'log_filename'): |
---|
1015 | log_to_file(self.log_filename, s) |
---|
1016 | |
---|
1017 | |
---|
1018 | if update is True: |
---|
1019 | self.last_update = time |
---|
1020 | |
---|
1021 | dq = domain.quantities |
---|
1022 | |
---|
1023 | # Get average water depths at each opening |
---|
1024 | openings = self.openings # There are two Opening [0] and [1] |
---|
1025 | for i, opening in enumerate(openings): |
---|
1026 | |
---|
1027 | # Compute mean values of selected quantitites in the |
---|
1028 | # enquiry area in front of the culvert |
---|
1029 | |
---|
1030 | stage = dq['stage'].get_values(location='centroids', |
---|
1031 | indices=[self.enquiry_indices[i]]) |
---|
1032 | |
---|
1033 | # Store current average stage and depth with each opening object |
---|
1034 | opening.depth = stage - opening.elevation |
---|
1035 | opening.stage = stage |
---|
1036 | |
---|
1037 | |
---|
1038 | |
---|
1039 | ################# End of the FOR loop ################################################ |
---|
1040 | |
---|
1041 | # We now need to deal with each opening individually |
---|
1042 | |
---|
1043 | # Determine flow direction based on total energy difference |
---|
1044 | |
---|
1045 | delta_w = self.inlet.stage - self.outlet.stage |
---|
1046 | |
---|
1047 | if hasattr(self, 'log_filename'): |
---|
1048 | s = 'Time=%.2f, inlet stage = %.2f, outlet stage = %.2f' %(time, |
---|
1049 | self.inlet.stage, |
---|
1050 | self.outlet.stage) |
---|
1051 | log_to_file(self.log_filename, s) |
---|
1052 | |
---|
1053 | |
---|
1054 | if self.inlet.depth <= 0.01: |
---|
1055 | Q = 0.0 |
---|
1056 | else: |
---|
1057 | # Calculate discharge for one barrel and set inlet.rate and outlet.rate |
---|
1058 | |
---|
1059 | try: |
---|
1060 | Q = interpolate_linearly(delta_w, self.rating_curve[:,0], self.rating_curve[:,1]) |
---|
1061 | except Below_interval, e: |
---|
1062 | Q = self.rating_curve[0,1] |
---|
1063 | msg = '%.2fs: Delta head smaller than rating curve minimum: ' %time |
---|
1064 | msg += str(e) |
---|
1065 | msg += '\n I will use minimum discharge %.2f m^3/s for culvert "%s"'\ |
---|
1066 | %(Q, self.label) |
---|
1067 | if hasattr(self, 'log_filename'): |
---|
1068 | log_to_file(self.log_filename, msg) |
---|
1069 | except Above_interval, e: |
---|
1070 | Q = self.rating_curve[-1,1] |
---|
1071 | msg = '%.2fs: Delta head greater than rating curve maximum: ' %time |
---|
1072 | msg += str(e) |
---|
1073 | msg += '\n I will use maximum discharge %.2f m^3/s for culvert "%s"'\ |
---|
1074 | %(Q, self.label) |
---|
1075 | if hasattr(self, 'log_filename'): |
---|
1076 | log_to_file(self.log_filename, msg) |
---|
1077 | |
---|
1078 | |
---|
1079 | |
---|
1080 | |
---|
1081 | # Adjust discharge for multiple barrels |
---|
1082 | Q *= self.number_of_barrels |
---|
1083 | |
---|
1084 | |
---|
1085 | # Adjust Q downwards depending on available water at inlet |
---|
1086 | stage = self.inlet.get_quantity_values(quantity_name='stage') |
---|
1087 | elevation = self.inlet.get_quantity_values(quantity_name='elevation') |
---|
1088 | depth = stage-elevation |
---|
1089 | |
---|
1090 | |
---|
1091 | V = 0 |
---|
1092 | for i, d in enumerate(depth): |
---|
1093 | V += d * domain.areas[i] |
---|
1094 | |
---|
1095 | dt = delta_t |
---|
1096 | if Q*dt > V: |
---|
1097 | |
---|
1098 | Q_reduced = 0.9*V/dt # Reduce with safety factor |
---|
1099 | |
---|
1100 | msg = '%.2fs: Computed extraction for this time interval (Q*dt) is ' % time |
---|
1101 | msg += 'greater than current volume (V) at inlet.\n' |
---|
1102 | msg += ' Q will be reduced from %.2f m^3/s to %.2f m^3/s.' % (Q, Q_reduced) |
---|
1103 | |
---|
1104 | if self.verbose is True: |
---|
1105 | log.critical(msg) |
---|
1106 | if hasattr(self, 'log_filename'): |
---|
1107 | log_to_file(self.log_filename, msg) |
---|
1108 | |
---|
1109 | Q = Q_reduced |
---|
1110 | |
---|
1111 | self.inlet.rate = -Q |
---|
1112 | self.outlet.rate = Q |
---|
1113 | |
---|
1114 | # Log timeseries to file |
---|
1115 | try: |
---|
1116 | fid = open(self.timeseries_filename, 'a') |
---|
1117 | except: |
---|
1118 | pass |
---|
1119 | else: |
---|
1120 | fid.write('%.2f, %.2f\n' %(time, Q)) |
---|
1121 | fid.close() |
---|
1122 | |
---|
1123 | # Store value of time |
---|
1124 | self.last_time = time |
---|
1125 | |
---|
1126 | |
---|
1127 | |
---|
1128 | # Execute flow term for each opening |
---|
1129 | # This is where Inflow objects are evaluated using the last rate that has been calculated |
---|
1130 | # |
---|
1131 | # This will take place at every internal timestep and update the domain |
---|
1132 | for opening in self.openings: |
---|
1133 | opening(domain) |
---|
1134 | |
---|
1135 | |
---|
1136 | |
---|
1137 | |
---|
1138 | |
---|
1139 | |
---|
1140 | class Culvert_flow_energy: |
---|
1141 | """Culvert flow - transfer water from one hole to another |
---|
1142 | |
---|
1143 | Using Momentum as Calculated by Culvert Flow !! |
---|
1144 | Could be Several Methods Investigated to do This !!! |
---|
1145 | |
---|
1146 | 2008_May_08 |
---|
1147 | To Ole: |
---|
1148 | OK so here we need to get the Polygon Creating code to create |
---|
1149 | polygons for the culvert Based on |
---|
1150 | the two input Points (X0,Y0) and (X1,Y1) - need to be passed |
---|
1151 | to create polygon |
---|
1152 | |
---|
1153 | The two centers are now passed on to create_polygon. |
---|
1154 | |
---|
1155 | |
---|
1156 | Input: Two points, pipe_size (either diameter or width, height), |
---|
1157 | mannings_rougness, |
---|
1158 | inlet/outlet energy_loss_coefficients, internal_bend_coefficent, |
---|
1159 | top-down_blockage_factor and bottom_up_blockage_factor |
---|
1160 | |
---|
1161 | |
---|
1162 | And the Delta H enquiry should be change from Openings in line 412 |
---|
1163 | to the enquiry Polygons infront of the culvert |
---|
1164 | At the moment this script uses only Depth, later we can change it to |
---|
1165 | Energy... |
---|
1166 | |
---|
1167 | Once we have Delta H can calculate a Flow Rate and from Flow Rate |
---|
1168 | an Outlet Velocity |
---|
1169 | The Outlet Velocity x Outlet Depth = Momentum to be applied at the Outlet... |
---|
1170 | |
---|
1171 | Invert levels are optional. If left out they will default to the |
---|
1172 | elevation at the opening. |
---|
1173 | |
---|
1174 | """ |
---|
1175 | |
---|
1176 | def __init__(self, |
---|
1177 | domain, |
---|
1178 | label=None, |
---|
1179 | description=None, |
---|
1180 | end_point0=None, |
---|
1181 | end_point1=None, |
---|
1182 | width=None, |
---|
1183 | height=None, |
---|
1184 | diameter=None, |
---|
1185 | manning=None, # Mannings Roughness for Culvert |
---|
1186 | invert_level0=None, # Invert level at opening 0 |
---|
1187 | invert_level1=None, # Invert level at opening 1 |
---|
1188 | loss_exit=None, |
---|
1189 | loss_entry=None, |
---|
1190 | loss_bend=None, |
---|
1191 | loss_special=None, |
---|
1192 | blockage_topdwn=None, |
---|
1193 | blockage_bottup=None, |
---|
1194 | culvert_routine=None, |
---|
1195 | number_of_barrels=1, |
---|
1196 | enquiry_point0=None, |
---|
1197 | enquiry_point1=None, |
---|
1198 | update_interval=None, |
---|
1199 | verbose=False): |
---|
1200 | |
---|
1201 | # Input check |
---|
1202 | if diameter is not None: |
---|
1203 | self.culvert_type = 'circle' |
---|
1204 | self.diameter = diameter |
---|
1205 | if height is not None or width is not None: |
---|
1206 | msg = 'Either diameter or width&height must be specified, ' |
---|
1207 | msg += 'but not both.' |
---|
1208 | raise Exception, msg |
---|
1209 | else: |
---|
1210 | if height is not None: |
---|
1211 | if width is None: |
---|
1212 | self.culvert_type = 'square' |
---|
1213 | width = height |
---|
1214 | else: |
---|
1215 | self.culvert_type = 'rectangle' |
---|
1216 | elif width is not None: |
---|
1217 | if height is None: |
---|
1218 | self.culvert_type = 'square' |
---|
1219 | height = width |
---|
1220 | else: |
---|
1221 | msg = 'Either diameter or width&height must be specified.' |
---|
1222 | raise Exception, msg |
---|
1223 | |
---|
1224 | if height == width: |
---|
1225 | self.culvert_type = 'square' |
---|
1226 | |
---|
1227 | self.height = height |
---|
1228 | self.width = width |
---|
1229 | |
---|
1230 | |
---|
1231 | assert self.culvert_type in ['circle', 'square', 'rectangle'] |
---|
1232 | |
---|
1233 | assert number_of_barrels >= 1 |
---|
1234 | self.number_of_barrels = number_of_barrels |
---|
1235 | |
---|
1236 | |
---|
1237 | # Set defaults |
---|
1238 | if manning is None: manning = 0.012 # Default roughness for pipe |
---|
1239 | if loss_exit is None: loss_exit = 1.00 |
---|
1240 | if loss_entry is None: loss_entry = 0.50 |
---|
1241 | if loss_bend is None: loss_bend=0.00 |
---|
1242 | if loss_special is None: loss_special=0.00 |
---|
1243 | if blockage_topdwn is None: blockage_topdwn=0.00 |
---|
1244 | if blockage_bottup is None: blockage_bottup=0.00 |
---|
1245 | if culvert_routine is None: |
---|
1246 | culvert_routine=boyd_generalised_culvert_model |
---|
1247 | |
---|
1248 | if label is None: label = 'culvert_flow' |
---|
1249 | label += '_' + str(id(self)) |
---|
1250 | self.label = label |
---|
1251 | |
---|
1252 | # File for storing culvert quantities |
---|
1253 | self.timeseries_filename = label + '_timeseries.csv' |
---|
1254 | fid = open(self.timeseries_filename, 'w') |
---|
1255 | fid.write('time, E0, E1, Velocity, Discharge\n') |
---|
1256 | fid.close() |
---|
1257 | |
---|
1258 | # Log file for storing general textual output |
---|
1259 | self.log_filename = label + '.log' |
---|
1260 | log_to_file(self.log_filename, self.label) |
---|
1261 | log_to_file(self.log_filename, description) |
---|
1262 | log_to_file(self.log_filename, self.culvert_type) |
---|
1263 | |
---|
1264 | |
---|
1265 | # Create the fundamental culvert polygons from POLYGON |
---|
1266 | if self.culvert_type == 'circle': |
---|
1267 | # Redefine width and height for use with create_culvert_polygons |
---|
1268 | width = height = diameter |
---|
1269 | |
---|
1270 | P = create_culvert_polygons(end_point0, |
---|
1271 | end_point1, |
---|
1272 | width=width, |
---|
1273 | height=height, |
---|
1274 | number_of_barrels=number_of_barrels) |
---|
1275 | |
---|
1276 | # Select enquiry points |
---|
1277 | if enquiry_point0 is None: |
---|
1278 | enquiry_point0 = P['enquiry_point0'] |
---|
1279 | |
---|
1280 | if enquiry_point1 is None: |
---|
1281 | enquiry_point1 = P['enquiry_point1'] |
---|
1282 | |
---|
1283 | if verbose is True: |
---|
1284 | pass |
---|
1285 | #plot_polygons([[end_point0, end_point1], |
---|
1286 | # P['exchange_polygon0'], |
---|
1287 | # P['exchange_polygon1'], |
---|
1288 | # [enquiry_point0, 1.005*enquiry_point0], |
---|
1289 | # [enquiry_point1, 1.005*enquiry_point1]], |
---|
1290 | # figname='culvert_polygon_output') |
---|
1291 | |
---|
1292 | |
---|
1293 | self.enquiry_points = [enquiry_point0, enquiry_point1] |
---|
1294 | |
---|
1295 | |
---|
1296 | self.enquiry_indices = [] |
---|
1297 | for point in self.enquiry_points: |
---|
1298 | # Find nearest centroid |
---|
1299 | N = len(domain) |
---|
1300 | points = domain.get_centroid_coordinates(absolute=True) |
---|
1301 | |
---|
1302 | # Calculate indices in exchange area for this forcing term |
---|
1303 | |
---|
1304 | triangle_id = min_dist = sys.maxint |
---|
1305 | for k in range(N): |
---|
1306 | x, y = points[k,:] # Centroid |
---|
1307 | |
---|
1308 | c = point |
---|
1309 | distance = (x-c[0])**2+(y-c[1])**2 |
---|
1310 | if distance < min_dist: |
---|
1311 | min_dist = distance |
---|
1312 | triangle_id = k |
---|
1313 | |
---|
1314 | |
---|
1315 | if triangle_id < sys.maxint: |
---|
1316 | msg = 'found triangle with centroid (%f, %f)'\ |
---|
1317 | %tuple(points[triangle_id, :]) |
---|
1318 | msg += ' for point (%f, %f)' %tuple(point) |
---|
1319 | |
---|
1320 | self.enquiry_indices.append(triangle_id) |
---|
1321 | else: |
---|
1322 | msg = 'Triangle not found for point (%f, %f)' %point |
---|
1323 | raise Exception, msg |
---|
1324 | |
---|
1325 | |
---|
1326 | |
---|
1327 | |
---|
1328 | |
---|
1329 | |
---|
1330 | # Check that all polygons lie within the mesh. |
---|
1331 | bounding_polygon = domain.get_boundary_polygon() |
---|
1332 | for key in P.keys(): |
---|
1333 | if key in ['exchange_polygon0', |
---|
1334 | 'exchange_polygon1']: |
---|
1335 | for point in P[key]: |
---|
1336 | |
---|
1337 | msg = 'Point %s in polygon %s for culvert %s did not'\ |
---|
1338 | %(str(point), key, self.label) |
---|
1339 | msg += 'fall within the domain boundary.' |
---|
1340 | assert is_inside_polygon(point, bounding_polygon), msg |
---|
1341 | |
---|
1342 | |
---|
1343 | # Create inflow object at each end of the culvert. |
---|
1344 | self.openings = [] |
---|
1345 | self.openings.append(Inflow(domain, |
---|
1346 | polygon=P['exchange_polygon0'])) |
---|
1347 | |
---|
1348 | self.openings.append(Inflow(domain, |
---|
1349 | polygon=P['exchange_polygon1'])) |
---|
1350 | |
---|
1351 | |
---|
1352 | # Assume two openings for now: Referred to as 0 and 1 |
---|
1353 | assert len(self.openings) == 2 |
---|
1354 | |
---|
1355 | # Store basic geometry |
---|
1356 | self.end_points = [end_point0, end_point1] |
---|
1357 | self.invert_levels = [invert_level0, invert_level1] |
---|
1358 | #self.enquiry_polygons = [P['enquiry_polygon0'], P['enquiry_polygon1']] |
---|
1359 | #self.enquiry_polylines = [P['enquiry_polygon0'][:2], |
---|
1360 | # P['enquiry_polygon1'][:2]] |
---|
1361 | self.vector = P['vector'] |
---|
1362 | self.length = P['length']; assert self.length > 0.0 |
---|
1363 | self.verbose = verbose |
---|
1364 | self.last_time = 0.0 |
---|
1365 | self.last_update = 0.0 # For use with update_interval |
---|
1366 | self.update_interval = update_interval |
---|
1367 | |
---|
1368 | |
---|
1369 | # Store hydraulic parameters |
---|
1370 | self.manning = manning |
---|
1371 | self.loss_exit = loss_exit |
---|
1372 | self.loss_entry = loss_entry |
---|
1373 | self.loss_bend = loss_bend |
---|
1374 | self.loss_special = loss_special |
---|
1375 | self.sum_loss = loss_exit + loss_entry + loss_bend + loss_special |
---|
1376 | self.blockage_topdwn = blockage_topdwn |
---|
1377 | self.blockage_bottup = blockage_bottup |
---|
1378 | |
---|
1379 | # Store culvert routine |
---|
1380 | self.culvert_routine = culvert_routine |
---|
1381 | |
---|
1382 | |
---|
1383 | # Create objects to update momentum (a bit crude at this stage) |
---|
1384 | xmom0 = General_forcing(domain, 'xmomentum', |
---|
1385 | polygon=P['exchange_polygon0']) |
---|
1386 | |
---|
1387 | xmom1 = General_forcing(domain, 'xmomentum', |
---|
1388 | polygon=P['exchange_polygon1']) |
---|
1389 | |
---|
1390 | ymom0 = General_forcing(domain, 'ymomentum', |
---|
1391 | polygon=P['exchange_polygon0']) |
---|
1392 | |
---|
1393 | ymom1 = General_forcing(domain, 'ymomentum', |
---|
1394 | polygon=P['exchange_polygon1']) |
---|
1395 | |
---|
1396 | self.opening_momentum = [ [xmom0, ymom0], [xmom1, ymom1] ] |
---|
1397 | |
---|
1398 | |
---|
1399 | # Print something |
---|
1400 | s = 'Culvert Effective Length = %.2f m' %(self.length) |
---|
1401 | log_to_file(self.log_filename, s) |
---|
1402 | |
---|
1403 | s = 'Culvert Direction is %s\n' %str(self.vector) |
---|
1404 | log_to_file(self.log_filename, s) |
---|
1405 | |
---|
1406 | |
---|
1407 | def __call__(self, domain): |
---|
1408 | |
---|
1409 | log_filename = self.log_filename |
---|
1410 | |
---|
1411 | # Time stuff |
---|
1412 | time = domain.get_time() |
---|
1413 | |
---|
1414 | # Short hand |
---|
1415 | dq = domain.quantities |
---|
1416 | |
---|
1417 | |
---|
1418 | update = False |
---|
1419 | if self.update_interval is None: |
---|
1420 | update = True |
---|
1421 | delta_t = domain.timestep # Next timestep has been computed in domain.py |
---|
1422 | else: |
---|
1423 | if time - self.last_update > self.update_interval or time == 0.0: |
---|
1424 | update = True |
---|
1425 | delta_t = self.update_interval |
---|
1426 | |
---|
1427 | s = '\nTime = %.2f, delta_t = %f' %(time, delta_t) |
---|
1428 | if hasattr(self, 'log_filename'): |
---|
1429 | log_to_file(log_filename, s) |
---|
1430 | |
---|
1431 | |
---|
1432 | if update is True: |
---|
1433 | self.last_update = time |
---|
1434 | |
---|
1435 | msg = 'Time did not advance' |
---|
1436 | if time > 0.0: assert delta_t > 0.0, msg |
---|
1437 | |
---|
1438 | |
---|
1439 | # Get average water depths at each opening |
---|
1440 | openings = self.openings # There are two Opening [0] and [1] |
---|
1441 | for i, opening in enumerate(openings): |
---|
1442 | |
---|
1443 | # Compute mean values of selected quantitites in the |
---|
1444 | # exchange area in front of the culvert |
---|
1445 | |
---|
1446 | stage = opening.get_quantity_values(quantity_name='stage') |
---|
1447 | w = mean(stage) # Average stage |
---|
1448 | |
---|
1449 | # Use invert level instead of elevation if specified |
---|
1450 | invert_level = self.invert_levels[i] |
---|
1451 | if invert_level is not None: |
---|
1452 | z = invert_level |
---|
1453 | else: |
---|
1454 | elevation = opening.get_quantity_values(quantity_name='elevation') |
---|
1455 | z = mean(elevation) # Average elevation |
---|
1456 | |
---|
1457 | # Estimated depth above the culvert inlet |
---|
1458 | d = w - z # Used for calculations involving depth |
---|
1459 | if d < 0.0: |
---|
1460 | # This is possible since w and z are taken at different locations |
---|
1461 | #msg = 'D < 0.0: %f' %d |
---|
1462 | #raise msg |
---|
1463 | d = 0.0 |
---|
1464 | |
---|
1465 | |
---|
1466 | # Ratio of depth to culvert height. |
---|
1467 | # If ratio > 1 then culvert is running full |
---|
1468 | if self.culvert_type == 'circle': |
---|
1469 | ratio = d/self.diameter |
---|
1470 | else: |
---|
1471 | ratio = d/self.height |
---|
1472 | opening.ratio = ratio |
---|
1473 | |
---|
1474 | |
---|
1475 | # Average measures of energy in front of this opening |
---|
1476 | |
---|
1477 | id = [self.enquiry_indices[i]] |
---|
1478 | stage = dq['stage'].get_values(location='centroids', |
---|
1479 | indices=id) |
---|
1480 | elevation = dq['elevation'].get_values(location='centroids', |
---|
1481 | indices=id) |
---|
1482 | xmomentum = dq['xmomentum'].get_values(location='centroids', |
---|
1483 | indices=id) |
---|
1484 | ymomentum = dq['xmomentum'].get_values(location='centroids', |
---|
1485 | indices=id) |
---|
1486 | depth = stage-elevation |
---|
1487 | if depth > 0.0: |
---|
1488 | u = xmomentum/(depth + velocity_protection/depth) |
---|
1489 | v = ymomentum/(depth + velocity_protection/depth) |
---|
1490 | else: |
---|
1491 | u = v = 0.0 |
---|
1492 | |
---|
1493 | |
---|
1494 | opening.total_energy = 0.5*(u*u + v*v)/g + stage |
---|
1495 | |
---|
1496 | # Store current average stage and depth with each opening object |
---|
1497 | opening.depth = d |
---|
1498 | opening.depth_trigger = d # Use this for now |
---|
1499 | opening.stage = w |
---|
1500 | opening.elevation = z |
---|
1501 | |
---|
1502 | |
---|
1503 | ################# End of the FOR loop ################################################ |
---|
1504 | |
---|
1505 | # We now need to deal with each opening individually |
---|
1506 | |
---|
1507 | # Determine flow direction based on total energy difference |
---|
1508 | delta_Et = openings[0].total_energy - openings[1].total_energy |
---|
1509 | |
---|
1510 | if delta_Et > 0: |
---|
1511 | inlet = openings[0] |
---|
1512 | outlet = openings[1] |
---|
1513 | |
---|
1514 | inlet.momentum = self.opening_momentum[0] |
---|
1515 | outlet.momentum = self.opening_momentum[1] |
---|
1516 | |
---|
1517 | else: |
---|
1518 | inlet = openings[1] |
---|
1519 | outlet = openings[0] |
---|
1520 | |
---|
1521 | inlet.momentum = self.opening_momentum[1] |
---|
1522 | outlet.momentum = self.opening_momentum[0] |
---|
1523 | |
---|
1524 | delta_Et = -delta_Et |
---|
1525 | |
---|
1526 | self.inlet = inlet |
---|
1527 | self.outlet = outlet |
---|
1528 | |
---|
1529 | msg = 'Total energy difference is negative' |
---|
1530 | assert delta_Et > 0.0, msg |
---|
1531 | |
---|
1532 | delta_h = inlet.stage - outlet.stage |
---|
1533 | delta_z = inlet.elevation - outlet.elevation |
---|
1534 | culvert_slope = (delta_z/self.length) |
---|
1535 | |
---|
1536 | if culvert_slope < 0.0: |
---|
1537 | # Adverse gradient - flow is running uphill |
---|
1538 | # Flow will be purely controlled by uphill outlet face |
---|
1539 | if self.verbose is True: |
---|
1540 | log.critical('WARNING: Flow is running uphill. Watch Out! ' |
---|
1541 | 'inlet.elevation=%s, outlet.elevation%s' |
---|
1542 | % (str(inlet.elevation), str(outlet.elevation))) |
---|
1543 | |
---|
1544 | |
---|
1545 | s = 'Delta total energy = %.3f' %(delta_Et) |
---|
1546 | log_to_file(log_filename, s) |
---|
1547 | |
---|
1548 | |
---|
1549 | # Calculate discharge for one barrel and set inlet.rate and outlet.rate |
---|
1550 | Q, barrel_velocity, culvert_outlet_depth = self.culvert_routine(self, inlet, outlet, delta_Et, g) |
---|
1551 | |
---|
1552 | # Adjust discharge for multiple barrels |
---|
1553 | Q *= self.number_of_barrels |
---|
1554 | |
---|
1555 | # Compute barrel momentum |
---|
1556 | barrel_momentum = barrel_velocity*culvert_outlet_depth |
---|
1557 | |
---|
1558 | s = 'Barrel velocity = %f' %barrel_velocity |
---|
1559 | log_to_file(log_filename, s) |
---|
1560 | |
---|
1561 | # Compute momentum vector at outlet |
---|
1562 | outlet_mom_x, outlet_mom_y = self.vector * barrel_momentum |
---|
1563 | |
---|
1564 | s = 'Directional momentum = (%f, %f)' %(outlet_mom_x, outlet_mom_y) |
---|
1565 | log_to_file(log_filename, s) |
---|
1566 | |
---|
1567 | # Log timeseries to file |
---|
1568 | fid = open(self.timeseries_filename, 'a') |
---|
1569 | fid.write('%f, %f, %f, %f, %f\n'\ |
---|
1570 | %(time, |
---|
1571 | openings[0].total_energy, |
---|
1572 | openings[1].total_energy, |
---|
1573 | barrel_velocity, |
---|
1574 | Q)) |
---|
1575 | fid.close() |
---|
1576 | |
---|
1577 | # Update momentum |
---|
1578 | if delta_t > 0.0: |
---|
1579 | xmomentum_rate = outlet_mom_x - outlet.momentum[0].value |
---|
1580 | xmomentum_rate /= delta_t |
---|
1581 | |
---|
1582 | ymomentum_rate = outlet_mom_y - outlet.momentum[1].value |
---|
1583 | ymomentum_rate /= delta_t |
---|
1584 | |
---|
1585 | s = 'X Y MOM_RATE = (%f, %f) ' %(xmomentum_rate, ymomentum_rate) |
---|
1586 | log_to_file(log_filename, s) |
---|
1587 | else: |
---|
1588 | xmomentum_rate = ymomentum_rate = 0.0 |
---|
1589 | |
---|
1590 | |
---|
1591 | # Set momentum rates for outlet jet |
---|
1592 | outlet.momentum[0].rate = xmomentum_rate |
---|
1593 | outlet.momentum[1].rate = ymomentum_rate |
---|
1594 | |
---|
1595 | # Remember this value for next step (IMPORTANT) |
---|
1596 | outlet.momentum[0].value = outlet_mom_x |
---|
1597 | outlet.momentum[1].value = outlet_mom_y |
---|
1598 | |
---|
1599 | if int(domain.time*100) % 100 == 0: |
---|
1600 | s = 'T=%.5f, Culvert Discharge = %.3f f'\ |
---|
1601 | %(time, Q) |
---|
1602 | s += ' Depth= %0.3f Momentum = (%0.3f, %0.3f)'\ |
---|
1603 | %(culvert_outlet_depth, outlet_mom_x,outlet_mom_y) |
---|
1604 | s += ' Momentum rate: (%.4f, %.4f)'\ |
---|
1605 | %(xmomentum_rate, ymomentum_rate) |
---|
1606 | s+='Outlet Vel= %.3f'\ |
---|
1607 | %(barrel_velocity) |
---|
1608 | log_to_file(log_filename, s) |
---|
1609 | |
---|
1610 | # Store value of time |
---|
1611 | self.last_time = time |
---|
1612 | |
---|
1613 | |
---|
1614 | |
---|
1615 | # Execute flow term for each opening |
---|
1616 | # This is where Inflow objects are evaluated and update the domain |
---|
1617 | for opening in self.openings: |
---|
1618 | opening(domain) |
---|
1619 | |
---|
1620 | # Execute momentum terms |
---|
1621 | # This is where Inflow objects are evaluated and update the domain |
---|
1622 | self.outlet.momentum[0](domain) |
---|
1623 | self.outlet.momentum[1](domain) |
---|
1624 | |
---|
1625 | |
---|
1626 | |
---|
1627 | Culvert_flow = Culvert_flow_general |
---|