1 | import sys |
---|
2 | |
---|
3 | from anuga.shallow_water.forcing import Inflow, General_forcing |
---|
4 | from anuga.utilities.system_tools import log_to_file |
---|
5 | from anuga.geometry.polygon import inside_polygon, is_inside_polygon |
---|
6 | from anuga.geometry.polygon import plot_polygons, polygon_area |
---|
7 | |
---|
8 | |
---|
9 | from anuga.utilities.numerical_tools import mean |
---|
10 | from anuga.utilities.numerical_tools import ensure_numeric, sign |
---|
11 | |
---|
12 | from anuga.config import g, epsilon |
---|
13 | from anuga.config import minimum_allowed_height, velocity_protection |
---|
14 | import anuga.utilities.log as log |
---|
15 | |
---|
16 | import numpy as num |
---|
17 | from math import sqrt |
---|
18 | |
---|
19 | class Below_interval(Exception): pass |
---|
20 | class Above_interval(Exception): pass |
---|
21 | |
---|
22 | |
---|
23 | |
---|
24 | class Inlet: |
---|
25 | """Contains information associated with each inlet |
---|
26 | """ |
---|
27 | |
---|
28 | def __init__(self,domain,polygon,enquiry_point,inlet_vector): |
---|
29 | |
---|
30 | self.domain = domain |
---|
31 | self.domain_bounding_polygon = self.domain.get_boundary_polygon() |
---|
32 | self.polygon = polygon |
---|
33 | self.enquiry_point = enquiry_point |
---|
34 | self.inlet_vector = inlet_vector |
---|
35 | |
---|
36 | # FIXME (SR) Using get_triangle_containing_point which needs to be sped up |
---|
37 | self.enquiry_index = self.domain.get_triangle_containing_point(self.enquiry_point) |
---|
38 | |
---|
39 | self.compute_inlet_triangle_indices() |
---|
40 | |
---|
41 | |
---|
42 | def compute_inlet_averages(self): |
---|
43 | |
---|
44 | |
---|
45 | |
---|
46 | self.cell_indices = self.exchange_triangle_indices[0] |
---|
47 | self.areas = areas[cell_indices] |
---|
48 | |
---|
49 | |
---|
50 | # Inlet Averages |
---|
51 | self.heights = stage[cell_indices]-elevation[cell_indices] |
---|
52 | self.total_water_volume = num.sum(self.heights*self.areas) |
---|
53 | self.average_height = self.total_water_volume/self.total_inlet_area |
---|
54 | |
---|
55 | |
---|
56 | |
---|
57 | |
---|
58 | def compute_inlet_triangle_indices(self): |
---|
59 | |
---|
60 | # Get boundary (in absolute coordinates) |
---|
61 | bounding_polygon = self.domain_bounding_polygon |
---|
62 | centroids = self.domain.get_centroid_coordinates(absolute=True) |
---|
63 | |
---|
64 | inlet_polygon = self.polygon |
---|
65 | |
---|
66 | # Check that polygon lies within the mesh. |
---|
67 | for point in inlet_polygon: |
---|
68 | msg = 'Point %s in polygon for forcing term' % str(point) |
---|
69 | msg += ' did not fall within the domain boundary.' |
---|
70 | assert is_inside_polygon(point, bounding_polygon), msg |
---|
71 | |
---|
72 | |
---|
73 | self.triangle_indices = inside_polygon(centroids, inlet_polygon) |
---|
74 | |
---|
75 | if len(self.triangle_indices) == 0: |
---|
76 | region = 'Inlet polygon=%s' % (inlet_polygon) |
---|
77 | msg = 'No triangles have been identified in ' |
---|
78 | msg += 'specified region: %s' % region |
---|
79 | raise Exception, msg |
---|
80 | |
---|
81 | # Compute exchange area as the sum of areas of triangles identified |
---|
82 | # by polygon |
---|
83 | self.area = 0.0 |
---|
84 | for j in self.triangle_indices: |
---|
85 | self.area += self.domain.areas[j] |
---|
86 | |
---|
87 | |
---|
88 | msg = 'Inlet exchange area has area = %f' % self.area |
---|
89 | assert self.area > 0.0 |
---|
90 | |
---|
91 | |
---|
92 | |
---|
93 | class Generic_box_culvert: |
---|
94 | """Culvert flow - transfer water from one rectangular box to another. |
---|
95 | Sets up the geometry of problem |
---|
96 | |
---|
97 | This is the base class for culverts. Inherit from this class (and overwrite |
---|
98 | compute_discharge method for specific subclasses) |
---|
99 | |
---|
100 | Input: Two points, pipe_size (either diameter or width, height), |
---|
101 | mannings_rougness, |
---|
102 | """ |
---|
103 | |
---|
104 | def __init__(self, |
---|
105 | domain, |
---|
106 | end_point0=None, |
---|
107 | end_point1=None, |
---|
108 | enquiry_gap_factor=0.2, |
---|
109 | width=None, |
---|
110 | height=None, |
---|
111 | verbose=False): |
---|
112 | |
---|
113 | # Input check |
---|
114 | |
---|
115 | self.domain = domain |
---|
116 | |
---|
117 | self.domain.set_fractional_step_operator(self) |
---|
118 | |
---|
119 | self.end_points= [end_point0, end_point1] |
---|
120 | self.enquiry_gap_factor = enquiry_gap_factor |
---|
121 | |
---|
122 | if height is None: |
---|
123 | height = width |
---|
124 | |
---|
125 | self.width = width |
---|
126 | self.height = height |
---|
127 | |
---|
128 | self.verbose=verbose |
---|
129 | self.filename = None |
---|
130 | |
---|
131 | # Create the fundamental culvert polygons and create inlet objects |
---|
132 | self.create_culvert_polygons() |
---|
133 | |
---|
134 | #FIXME (SR) Put this into a foe loop to deal with more inlets |
---|
135 | self.inlets = [] |
---|
136 | polygon0 = self.exchange_polygons[0] |
---|
137 | enquiry_pt0 = self.enquiry_points[0] |
---|
138 | inlet0_vector = self.culvert_vector |
---|
139 | |
---|
140 | self.inlets.append(Inlet(self.domain,polygon0,enquiry_pt0,inlet0_vector)) |
---|
141 | |
---|
142 | polygon1 = self.exchange_polygons[1] |
---|
143 | enquiry_pt1 = self.enquiry_points[1] |
---|
144 | inlet1_vector = - self.culvert_vector |
---|
145 | |
---|
146 | self.inlets.append(Inlet(self.domain,polygon1,enquiry_pt1, inlet1_vector)) |
---|
147 | |
---|
148 | |
---|
149 | # aliases to quantity centroid values and cell areas |
---|
150 | self.areas = self.domain.areas |
---|
151 | self.stage = self.domain.quantities['stage'].centroid_values |
---|
152 | self.elevation = self.domain.quantities['elevation'].centroid_values |
---|
153 | self.xmom = self.domain.quantities['xmomentum'].centroid_values |
---|
154 | self.ymom = self.domain.quantities['ymomentum'].centroid_values |
---|
155 | |
---|
156 | |
---|
157 | self.print_stats() |
---|
158 | |
---|
159 | |
---|
160 | |
---|
161 | def __call__(self): |
---|
162 | |
---|
163 | |
---|
164 | # Time stuff |
---|
165 | time = self.domain.get_time() |
---|
166 | timestep = self.domain.get_timestep() |
---|
167 | |
---|
168 | |
---|
169 | inlet0 = self.inlets[0] |
---|
170 | inlet1 = self.inlets[1] |
---|
171 | |
---|
172 | |
---|
173 | # Aliases to cell indices |
---|
174 | inlet0_indices = inlet0.triangle_indices |
---|
175 | inlet1_indices = inlet1.triangle_indices |
---|
176 | |
---|
177 | |
---|
178 | # Inlet0 averages |
---|
179 | inlet0_heights = self.stage[inlet0_indices]-self.elevation[inlet0_indices] |
---|
180 | inlet0_areas = self.areas[inlet0_indices] |
---|
181 | |
---|
182 | inlet0_water_volume = num.sum(inlet0_heights*inlet0_areas) |
---|
183 | |
---|
184 | average_inlet0_height = inlet0_water_volume/inlet0.area |
---|
185 | |
---|
186 | # Inlet1 averages |
---|
187 | inlet1_heights = self.stage[inlet1_indices]-self.elevation[inlet1_indices] |
---|
188 | inlet1_areas = self.areas[inlet1_indices] |
---|
189 | |
---|
190 | inlet1_water_volume = num.sum(inlet1_heights*inlet1_areas) |
---|
191 | |
---|
192 | average_inlet1_height = inlet1_water_volume/inlet1.area |
---|
193 | |
---|
194 | |
---|
195 | # Transfer |
---|
196 | transfer_water = timestep*inlet0_water_volume |
---|
197 | |
---|
198 | self.stage[inlet0_indices] = self.elevation[inlet0_indices] + average_inlet0_height - transfer_water |
---|
199 | self.xmom[inlet0_indices] = 0.0 |
---|
200 | self.ymom[inlet0_indices] = 0.0 |
---|
201 | |
---|
202 | |
---|
203 | self.stage[inlet1_indices] = self.elevation[inlet1_indices] + average_inlet1_height + transfer_water |
---|
204 | self.xmom[inlet1_indices] = 0.0 |
---|
205 | self.ymom[inlet1_indices] = 0.0 |
---|
206 | |
---|
207 | |
---|
208 | def print_stats(self): |
---|
209 | |
---|
210 | print '=====================================' |
---|
211 | print 'Generic Culvert Operator' |
---|
212 | print '=====================================' |
---|
213 | print "enquiry_gap_factor" |
---|
214 | print self.enquiry_gap_factor |
---|
215 | |
---|
216 | for i, inlet in enumerate(self.inlets): |
---|
217 | print '-------------------------------------' |
---|
218 | print 'Inlet %i' % i |
---|
219 | print '-------------------------------------' |
---|
220 | |
---|
221 | print 'inlet triangle indices and centres' |
---|
222 | print inlet.triangle_indices[i] |
---|
223 | print self.domain.get_centroid_coordinates()[inlet.triangle_indices[i]] |
---|
224 | |
---|
225 | print 'polygon' |
---|
226 | print inlet.polygon |
---|
227 | |
---|
228 | print 'enquiry_point' |
---|
229 | print inlet.enquiry_point |
---|
230 | |
---|
231 | print '=====================================' |
---|
232 | |
---|
233 | |
---|
234 | |
---|
235 | |
---|
236 | |
---|
237 | |
---|
238 | |
---|
239 | def set_store_hydrograph_discharge(self, filename=None): |
---|
240 | |
---|
241 | if filename is None: |
---|
242 | self.filename = 'culvert_discharge_hydrograph' |
---|
243 | else: |
---|
244 | self.filename = filename |
---|
245 | |
---|
246 | self.discharge_hydrograph = True |
---|
247 | |
---|
248 | self.timeseries_filename = self.filename + '_timeseries.csv' |
---|
249 | fid = open(self.timeseries_filename, 'w') |
---|
250 | fid.write('time, discharge\n') |
---|
251 | fid.close() |
---|
252 | |
---|
253 | def create_culvert_polygons(self): |
---|
254 | """Create polygons at the end of a culvert inlet and outlet. |
---|
255 | At either end two polygons will be created; one for the actual flow to pass through and one a little further away |
---|
256 | for enquiring the total energy at both ends of the culvert and transferring flow. |
---|
257 | """ |
---|
258 | |
---|
259 | # Calculate geometry |
---|
260 | x0, y0 = self.end_points[0] |
---|
261 | x1, y1 = self.end_points[1] |
---|
262 | |
---|
263 | dx = x1 - x0 |
---|
264 | dy = y1 - y0 |
---|
265 | |
---|
266 | self.culvert_vector = num.array([dx, dy]) |
---|
267 | self.culvert_length = sqrt(num.sum(self.culvert_vector**2)) |
---|
268 | assert self.culvert_length > 0.0, 'The length of culvert is less than 0' |
---|
269 | |
---|
270 | # Unit direction vector and normal |
---|
271 | self.culvert_vector /= self.culvert_length # Unit vector in culvert direction |
---|
272 | self.culvert_normal = num.array([-dy, dx])/self.culvert_length # Normal vector |
---|
273 | |
---|
274 | # Short hands |
---|
275 | w = 0.5*self.width*self.culvert_normal # Perpendicular vector of 1/2 width |
---|
276 | h = self.height*self.culvert_vector # Vector of length=height in the |
---|
277 | # direction of the culvert |
---|
278 | gap = (1 + self.enquiry_gap_factor)*h |
---|
279 | |
---|
280 | self.exchange_polygons = [] |
---|
281 | self.enquiry_points = [] |
---|
282 | |
---|
283 | # Build exchange polygon and enquiry points 0 and 1 |
---|
284 | for i in [0, 1]: |
---|
285 | i0 = (2*i-1) |
---|
286 | p0 = self.end_points[i] + w |
---|
287 | p1 = self.end_points[i] - w |
---|
288 | p2 = p1 + i0*h |
---|
289 | p3 = p0 + i0*h |
---|
290 | self.exchange_polygons.append(num.array([p0, p1, p2, p3])) |
---|
291 | self.enquiry_points.append(self.end_points[i] + i0*gap) |
---|
292 | |
---|
293 | |
---|
294 | |
---|
295 | |
---|
296 | # Check that enquiry points are outside exchange polygons |
---|
297 | for i in [0,1]: |
---|
298 | polygon = self.exchange_polygons[i] |
---|
299 | # FIXME (SR) Probably should calculate the area of all the triangles |
---|
300 | # associated with this polygon, as there is likely to be some |
---|
301 | # inconsistency between triangles and ploygon |
---|
302 | area = polygon_area(polygon) |
---|
303 | |
---|
304 | |
---|
305 | msg = 'Polygon %s ' %(polygon) |
---|
306 | msg += ' has area = %f' % area |
---|
307 | assert area > 0.0, msg |
---|
308 | |
---|
309 | for j in [0,1]: |
---|
310 | point = self.enquiry_points[j] |
---|
311 | msg = 'Enquiry point falls inside a culvert polygon.' |
---|
312 | |
---|
313 | assert not inside_polygon(point, polygon), msg |
---|
314 | |
---|
315 | |
---|
316 | |
---|
317 | |
---|
318 | |
---|
319 | |
---|
320 | |
---|
321 | |
---|
322 | |
---|
323 | def adjust_flow_for_available_water_at_inlet(self, Q, delta_t): |
---|
324 | """Adjust Q downwards depending on available water at inlet |
---|
325 | |
---|
326 | This is a critical step in modelling bridges and Culverts |
---|
327 | the predicted flow through a structure based on an abstract |
---|
328 | algorithm can at times request for water that is simply not |
---|
329 | available due to any number of constrictions that limit the |
---|
330 | flow approaching the structure In order to ensure that |
---|
331 | there is adequate flow available certain checks are |
---|
332 | required There needs to be a check using the Static Water |
---|
333 | Volume sitting infront of the structure, In addition if the |
---|
334 | water is moving the available water will be larger than the |
---|
335 | static volume |
---|
336 | |
---|
337 | NOTE To temporarily switch this off for Debugging purposes |
---|
338 | rem out line in function def compute_rates below |
---|
339 | """ |
---|
340 | |
---|
341 | if delta_t < epsilon: |
---|
342 | # No need to adjust if time step is very small or zero |
---|
343 | # In this case the possible flow will be very large |
---|
344 | # anyway. |
---|
345 | return Q |
---|
346 | |
---|
347 | # Short hands |
---|
348 | domain = self.domain |
---|
349 | dq = domain.quantities |
---|
350 | time = domain.get_time() |
---|
351 | I = self.inlet |
---|
352 | idx = I.exchange_indices |
---|
353 | |
---|
354 | # Find triangle with the smallest depth |
---|
355 | stage = dq['stage'].get_values(location='centroids', |
---|
356 | indices=[idx]) |
---|
357 | elevation = dq['elevation'].get_values(location='centroids', |
---|
358 | indices=[idx]) |
---|
359 | depth = stage-elevation |
---|
360 | min_depth = min(depth.flat) # This may lead to errors if edge of area is at a higher level !!!! |
---|
361 | avg_depth = mean(depth.flat) # Yes, but this one violates the conservation unit tests |
---|
362 | |
---|
363 | |
---|
364 | |
---|
365 | # FIXME (Ole): If you want these, use log.critical() and |
---|
366 | # make the statements depend on verbose |
---|
367 | #print I.depth |
---|
368 | #print I.velocity |
---|
369 | #print self.width |
---|
370 | |
---|
371 | # max_Q Based on Volume Calcs |
---|
372 | |
---|
373 | |
---|
374 | depth_term = min_depth*I.exchange_area/delta_t |
---|
375 | if min_depth < 0.2: |
---|
376 | # Only add velocity term in shallow waters (< 20 cm) |
---|
377 | # This is a little ad hoc, but maybe it is reasonable |
---|
378 | velocity_term = self.width*min_depth*I.velocity |
---|
379 | else: |
---|
380 | velocity_term = 0.0 |
---|
381 | |
---|
382 | # This one takes approaching water into account |
---|
383 | max_Q = max(velocity_term, depth_term) |
---|
384 | |
---|
385 | # This one preserves Volume |
---|
386 | #max_Q = depth_term |
---|
387 | |
---|
388 | |
---|
389 | if self.verbose is True: |
---|
390 | log.critical('Max_Q = %f' % max_Q) |
---|
391 | msg = 'Width = %.2fm, Depth at inlet = %.2f m, Velocity = %.2f m/s. ' % (self.width, I.depth, I.velocity) |
---|
392 | msg += 'Max Q = %.2f m^3/s' %(max_Q) |
---|
393 | log.critical(msg) |
---|
394 | |
---|
395 | if self.log_filename is not None: |
---|
396 | log_to_file(self.log_filename, msg) |
---|
397 | # New Procedure for assessing the flow available to the Culvert |
---|
398 | # This routine uses the GET FLOW THROUGH CROSS SECTION |
---|
399 | # Need to check Several Polyline however |
---|
400 | # Firstly 3 sides of the exchange Poly |
---|
401 | # then only the Line Directly infront of the Polygon |
---|
402 | # Access polygon Points from self.inlet.polygon |
---|
403 | |
---|
404 | # The Following computes the flow crossing over 3 sides of the exchange polygon for the structure |
---|
405 | # Clearly the flow in the culvert can not be more than that flowing toward it through the exhange polygon |
---|
406 | |
---|
407 | #q1 = domain.get_flow_through_cross_section(self.culvert_polygons['exchange_polygon0'][1:3]) # First Side Segment |
---|
408 | #q2 = domain.get_flow_through_cross_section(self.culvert_polygons['exchange_polygon0'][2:]) # Second Face Segment |
---|
409 | #q3 =domain.get_flow_through_cross_section(self.culvert_polygons['exchange_polygon0'].take([3,0], axis=0)) # Third Side Segment |
---|
410 | # q4 = domain.get_flow_through_cross_section([self.culvert_polygons['exchange_polygon0'][1:4]][0]) |
---|
411 | #q4=max(q1,0.0)+max(q2,0.0)+max(q3,0.0) |
---|
412 | # To use only the Flow crossing the 3 sides of the Exchange Polygon use the following Line Only |
---|
413 | #max_Q=max(q1,q2,q3,q4) |
---|
414 | # Try Simple Smoothing using Average of 2 approaches |
---|
415 | #max_Q=(max(q1,q2,q3,q4)+max_Q)/2.0 |
---|
416 | # Calculate the minimum in absolute terms of |
---|
417 | # the requsted flow and the possible flow |
---|
418 | Q_reduced = sign(Q)*min(abs(Q), abs(max_Q)) |
---|
419 | if self.verbose is True: |
---|
420 | msg = 'Initial Q Reduced = %.2f m3/s. ' % (Q_reduced) |
---|
421 | log.critical(msg) |
---|
422 | |
---|
423 | if self.log_filename is not None: |
---|
424 | log_to_file(self.log_filename, msg) |
---|
425 | # Now Keep Rolling Average of Computed Discharge to Reduce / Remove Oscillations |
---|
426 | # can use delta_t if we want to averageover a time frame for example |
---|
427 | # N = 5.0/delta_t Will provide the average over 5 seconds |
---|
428 | |
---|
429 | self.i=(self.i+1)%self.N |
---|
430 | self.Q_list[self.i]=Q_reduced |
---|
431 | Q_reduced = sum(self.Q_list)/len(self.Q_list) |
---|
432 | |
---|
433 | if self.verbose is True: |
---|
434 | msg = 'Final Q Reduced = %.2f m3/s. ' % (Q_reduced) |
---|
435 | log.critical(msg) |
---|
436 | |
---|
437 | if self.log_filename is not None: |
---|
438 | log_to_file(self.log_filename, msg) |
---|
439 | |
---|
440 | |
---|
441 | if abs(Q_reduced) < abs(Q): |
---|
442 | msg = '%.2fs: Requested flow is ' % time |
---|
443 | msg += 'greater than what is supported by the smallest ' |
---|
444 | msg += 'depth at inlet exchange area:\n ' |
---|
445 | msg += 'inlet exchange area: %.2f '% (I.exchange_area) |
---|
446 | msg += 'velocity at inlet :%.2f '% (I.velocity) |
---|
447 | msg += 'Vel* Exch Area = : %.2f '% (I.velocity*avg_depth*self.width) |
---|
448 | msg += 'h_min*inlet_area/delta_t = %.2f*%.2f/%.2f '\ |
---|
449 | % (avg_depth, I.exchange_area, delta_t) |
---|
450 | msg += ' = %.2f m^3/s\n ' % Q_reduced |
---|
451 | msg += 'Q will be reduced from %.2f m^3/s to %.2f m^3/s.' % (Q, Q_reduced) |
---|
452 | msg += 'Note calculate max_Q from V %.2f m^3/s ' % (max_Q) |
---|
453 | if self.verbose is True: |
---|
454 | log.critical(msg) |
---|
455 | |
---|
456 | if self.log_filename is not None: |
---|
457 | log_to_file(self.log_filename, msg) |
---|
458 | |
---|
459 | return Q_reduced |
---|
460 | |
---|
461 | |
---|
462 | def compute_rates(self, delta_t): |
---|
463 | """Compute new rates for inlet and outlet |
---|
464 | """ |
---|
465 | |
---|
466 | # Short hands |
---|
467 | domain = self.domain |
---|
468 | dq = domain.quantities |
---|
469 | |
---|
470 | # Time stuff |
---|
471 | time = domain.get_time() |
---|
472 | self.last_update = time |
---|
473 | |
---|
474 | |
---|
475 | if hasattr(self, 'log_filename'): |
---|
476 | log_filename = self.log_filename |
---|
477 | |
---|
478 | # Compute stage, energy and velocity at the |
---|
479 | # enquiry points at each end of the culvert |
---|
480 | openings = self.openings |
---|
481 | for i, opening in enumerate(openings): |
---|
482 | idx = self.enquiry_indices[i] |
---|
483 | |
---|
484 | stage = dq['stage'].get_values(location='centroids', |
---|
485 | indices=[idx])[0] |
---|
486 | depth = h = stage-opening.elevation |
---|
487 | |
---|
488 | |
---|
489 | # Get velocity |
---|
490 | xmomentum = dq['xmomentum'].get_values(location='centroids', |
---|
491 | indices=[idx])[0] |
---|
492 | ymomentum = dq['xmomentum'].get_values(location='centroids', |
---|
493 | indices=[idx])[0] |
---|
494 | |
---|
495 | if h > minimum_allowed_height: |
---|
496 | u = xmomentum/(h + velocity_protection/h) |
---|
497 | v = ymomentum/(h + velocity_protection/h) |
---|
498 | else: |
---|
499 | u = v = 0.0 |
---|
500 | |
---|
501 | v_squared = u*u + v*v |
---|
502 | |
---|
503 | if self.use_velocity_head is True: |
---|
504 | velocity_head = 0.5*v_squared/g |
---|
505 | else: |
---|
506 | velocity_head = 0.0 |
---|
507 | |
---|
508 | opening.total_energy = velocity_head + stage |
---|
509 | opening.specific_energy = velocity_head + depth |
---|
510 | opening.stage = stage |
---|
511 | opening.depth = depth |
---|
512 | opening.velocity = sqrt(v_squared) |
---|
513 | |
---|
514 | |
---|
515 | # We now need to deal with each opening individually |
---|
516 | # Determine flow direction based on total energy difference |
---|
517 | delta_total_energy = openings[0].total_energy - openings[1].total_energy |
---|
518 | if delta_total_energy > 0: |
---|
519 | inlet = openings[0] |
---|
520 | outlet = openings[1] |
---|
521 | |
---|
522 | # FIXME: I think this whole momentum jet thing could be a bit more elegant |
---|
523 | inlet.momentum = self.opening_momentum[0] |
---|
524 | outlet.momentum = self.opening_momentum[1] |
---|
525 | else: |
---|
526 | inlet = openings[1] |
---|
527 | outlet = openings[0] |
---|
528 | |
---|
529 | inlet.momentum = self.opening_momentum[1] |
---|
530 | outlet.momentum = self.opening_momentum[0] |
---|
531 | |
---|
532 | delta_total_energy = -delta_total_energy |
---|
533 | |
---|
534 | self.inlet = inlet |
---|
535 | self.outlet = outlet |
---|
536 | |
---|
537 | msg = 'Total energy difference is negative' |
---|
538 | assert delta_total_energy >= 0.0, msg |
---|
539 | |
---|
540 | # Recompute slope and issue warning if flow is uphill |
---|
541 | # These values do not enter the computation |
---|
542 | delta_z = inlet.elevation - outlet.elevation |
---|
543 | culvert_slope = (delta_z/self.length) |
---|
544 | if culvert_slope < 0.0: |
---|
545 | # Adverse gradient - flow is running uphill |
---|
546 | # Flow will be purely controlled by uphill outlet face |
---|
547 | if self.verbose is True: |
---|
548 | log.critical('%.2fs - WARNING: Flow is running uphill.' % time) |
---|
549 | |
---|
550 | if self.log_filename is not None: |
---|
551 | s = 'Time=%.2f, inlet stage = %.2f, outlet stage = %.2f'\ |
---|
552 | %(time, self.inlet.stage, self.outlet.stage) |
---|
553 | log_to_file(self.log_filename, s) |
---|
554 | s = 'Delta total energy = %.3f' %(delta_total_energy) |
---|
555 | log_to_file(log_filename, s) |
---|
556 | |
---|
557 | |
---|
558 | # Determine controlling energy (driving head) for culvert |
---|
559 | if inlet.specific_energy > delta_total_energy: |
---|
560 | # Outlet control |
---|
561 | driving_head = delta_total_energy |
---|
562 | else: |
---|
563 | # Inlet control |
---|
564 | driving_head = inlet.specific_energy |
---|
565 | |
---|
566 | |
---|
567 | |
---|
568 | if self.inlet.depth <= self.trigger_depth: |
---|
569 | Q = 0.0 |
---|
570 | else: |
---|
571 | # Calculate discharge for one barrel and |
---|
572 | # set inlet.rate and outlet.rate |
---|
573 | |
---|
574 | if self.culvert_description_filename is not None: |
---|
575 | try: |
---|
576 | Q = interpolate_linearly(driving_head, |
---|
577 | self.rating_curve[:,0], |
---|
578 | self.rating_curve[:,1]) |
---|
579 | except Below_interval, e: |
---|
580 | Q = self.rating_curve[0,1] |
---|
581 | msg = '%.2fs: ' % time |
---|
582 | msg += 'Delta head smaller than rating curve minimum: ' |
---|
583 | msg += str(e) |
---|
584 | msg += '\n ' |
---|
585 | msg += 'I will use minimum discharge %.2f m^3/s ' % Q |
---|
586 | msg += 'for culvert "%s"' % self.label |
---|
587 | |
---|
588 | if hasattr(self, 'log_filename'): |
---|
589 | log_to_file(self.log_filename, msg) |
---|
590 | except Above_interval, e: |
---|
591 | Q = self.rating_curve[-1,1] |
---|
592 | msg = '%.2fs: ' % time |
---|
593 | msg += 'Delta head greater than rating curve maximum: ' |
---|
594 | msg += str(e) |
---|
595 | msg += '\n ' |
---|
596 | msg += 'I will use maximum discharge %.2f m^3/s ' % Q |
---|
597 | msg += 'for culvert "%s"' % self.label |
---|
598 | |
---|
599 | if self.log_filename is not None: |
---|
600 | log_to_file(self.log_filename, msg) |
---|
601 | else: |
---|
602 | # User culvert routine |
---|
603 | Q, barrel_velocity, culvert_outlet_depth =\ |
---|
604 | self.culvert_routine(inlet.depth, |
---|
605 | outlet.depth, |
---|
606 | inlet.velocity, |
---|
607 | outlet.velocity, |
---|
608 | inlet.specific_energy, |
---|
609 | delta_total_energy, |
---|
610 | g, |
---|
611 | culvert_length=self.length, |
---|
612 | culvert_width=self.width, |
---|
613 | culvert_height=self.height, |
---|
614 | culvert_type=self.culvert_type, |
---|
615 | manning=self.manning, |
---|
616 | sum_loss=self.sum_loss, |
---|
617 | log_filename=self.log_filename) |
---|
618 | |
---|
619 | |
---|
620 | |
---|
621 | # Adjust discharge for multiple barrels |
---|
622 | Q *= self.number_of_barrels |
---|
623 | |
---|
624 | # Adjust discharge for available water at the inlet |
---|
625 | Q = self.adjust_flow_for_available_water_at_inlet(Q, delta_t) |
---|
626 | |
---|
627 | self.inlet.rate = -Q |
---|
628 | self.outlet.rate = Q |
---|
629 | |
---|
630 | |
---|
631 | # Momentum jet stuff |
---|
632 | if self.use_momentum_jet is True: |
---|
633 | |
---|
634 | |
---|
635 | # Compute barrel momentum |
---|
636 | barrel_momentum = barrel_velocity*culvert_outlet_depth |
---|
637 | |
---|
638 | if self.log_filename is not None: |
---|
639 | s = 'Barrel velocity = %f' %barrel_velocity |
---|
640 | log_to_file(self.log_filename, s) |
---|
641 | |
---|
642 | # Compute momentum vector at outlet |
---|
643 | outlet_mom_x, outlet_mom_y = self.vector * barrel_momentum |
---|
644 | |
---|
645 | if self.log_filename is not None: |
---|
646 | s = 'Directional momentum = (%f, %f)' %(outlet_mom_x, outlet_mom_y) |
---|
647 | log_to_file(self.log_filename, s) |
---|
648 | |
---|
649 | |
---|
650 | # Update momentum |
---|
651 | if delta_t > 0.0: |
---|
652 | xmomentum_rate = outlet_mom_x - outlet.momentum[0].value |
---|
653 | xmomentum_rate /= delta_t |
---|
654 | |
---|
655 | ymomentum_rate = outlet_mom_y - outlet.momentum[1].value |
---|
656 | ymomentum_rate /= delta_t |
---|
657 | |
---|
658 | if self.log_filename is not None: |
---|
659 | s = 'X Y MOM_RATE = (%f, %f) ' %(xmomentum_rate, ymomentum_rate) |
---|
660 | log_to_file(self.log_filename, s) |
---|
661 | else: |
---|
662 | xmomentum_rate = ymomentum_rate = 0.0 |
---|
663 | |
---|
664 | |
---|
665 | # Set momentum rates for outlet jet |
---|
666 | outlet.momentum[0].rate = xmomentum_rate |
---|
667 | outlet.momentum[1].rate = ymomentum_rate |
---|
668 | |
---|
669 | # Remember this value for next step (IMPORTANT) |
---|
670 | outlet.momentum[0].value = outlet_mom_x |
---|
671 | outlet.momentum[1].value = outlet_mom_y |
---|
672 | |
---|
673 | if int(domain.time*100) % 100 == 0: |
---|
674 | |
---|
675 | if self.log_filename is not None: |
---|
676 | s = 'T=%.5f, Culvert Discharge = %.3f f'\ |
---|
677 | %(time, Q) |
---|
678 | s += ' Depth= %0.3f Momentum = (%0.3f, %0.3f)'\ |
---|
679 | %(culvert_outlet_depth, outlet_mom_x,outlet_mom_y) |
---|
680 | s += ' Momentum rate: (%.4f, %.4f)'\ |
---|
681 | %(xmomentum_rate, ymomentum_rate) |
---|
682 | s+='Outlet Vel= %.3f'\ |
---|
683 | %(barrel_velocity) |
---|
684 | log_to_file(self.log_filename, s) |
---|
685 | |
---|
686 | |
---|
687 | # Execute momentum terms |
---|
688 | # This is where Inflow objects are evaluated and update the domain |
---|
689 | self.outlet.momentum[0](domain) |
---|
690 | self.outlet.momentum[1](domain) |
---|
691 | |
---|
692 | |
---|
693 | |
---|
694 | # Log timeseries to file |
---|
695 | try: |
---|
696 | fid = open(self.timeseries_filename, 'a') |
---|
697 | except: |
---|
698 | pass |
---|
699 | else: |
---|
700 | fid.write('%.2f, %.2f\n' %(time, Q)) |
---|
701 | fid.close() |
---|
702 | |
---|
703 | # Store value of time |
---|
704 | self.last_time = time |
---|
705 | |
---|
706 | |
---|
707 | # FIXME(Ole): Write in C and reuse this function by similar code |
---|
708 | # in interpolate.py |
---|
709 | def interpolate_linearly(x, xvec, yvec): |
---|
710 | |
---|
711 | msg = 'Input to function interpolate_linearly could not be converted ' |
---|
712 | msg += 'to numerical scalar: x = %s' % str(x) |
---|
713 | try: |
---|
714 | x = float(x) |
---|
715 | except: |
---|
716 | raise Exception, msg |
---|
717 | |
---|
718 | |
---|
719 | # Check bounds |
---|
720 | if x < xvec[0]: |
---|
721 | msg = 'Value provided = %.2f, interpolation minimum = %.2f.'\ |
---|
722 | % (x, xvec[0]) |
---|
723 | raise Below_interval, msg |
---|
724 | |
---|
725 | if x > xvec[-1]: |
---|
726 | msg = 'Value provided = %.2f, interpolation maximum = %.2f.'\ |
---|
727 | %(x, xvec[-1]) |
---|
728 | raise Above_interval, msg |
---|
729 | |
---|
730 | |
---|
731 | # Find appropriate slot within bounds |
---|
732 | i = 0 |
---|
733 | while x > xvec[i]: i += 1 |
---|
734 | |
---|
735 | |
---|
736 | x0 = xvec[i-1] |
---|
737 | x1 = xvec[i] |
---|
738 | alpha = (x - x0)/(x1 - x0) |
---|
739 | |
---|
740 | y0 = yvec[i-1] |
---|
741 | y1 = yvec[i] |
---|
742 | y = alpha*y1 + (1-alpha)*y0 |
---|
743 | |
---|
744 | return y |
---|
745 | |
---|
746 | |
---|
747 | |
---|
748 | def read_culvert_description(culvert_description_filename): |
---|
749 | |
---|
750 | # Read description file |
---|
751 | fid = open(culvert_description_filename) |
---|
752 | |
---|
753 | read_rating_curve_data = False |
---|
754 | rating_curve = [] |
---|
755 | for i, line in enumerate(fid.readlines()): |
---|
756 | |
---|
757 | if read_rating_curve_data is True: |
---|
758 | fields = line.split(',') |
---|
759 | head_difference = float(fields[0].strip()) |
---|
760 | flow_rate = float(fields[1].strip()) |
---|
761 | barrel_velocity = float(fields[2].strip()) |
---|
762 | |
---|
763 | rating_curve.append([head_difference, flow_rate, barrel_velocity]) |
---|
764 | |
---|
765 | if i == 0: |
---|
766 | # Header |
---|
767 | continue |
---|
768 | if i == 1: |
---|
769 | # Metadata |
---|
770 | fields = line.split(',') |
---|
771 | label=fields[0].strip() |
---|
772 | type=fields[1].strip().lower() |
---|
773 | assert type in ['box', 'pipe'] |
---|
774 | |
---|
775 | width=float(fields[2].strip()) |
---|
776 | height=float(fields[3].strip()) |
---|
777 | length=float(fields[4].strip()) |
---|
778 | number_of_barrels=int(fields[5].strip()) |
---|
779 | #fields[6] refers to losses |
---|
780 | description=fields[7].strip() |
---|
781 | |
---|
782 | if line.strip() == '': continue # Skip blanks |
---|
783 | |
---|
784 | if line.startswith('Rating'): |
---|
785 | read_rating_curve_data = True |
---|
786 | # Flow data follows |
---|
787 | |
---|
788 | fid.close() |
---|
789 | |
---|
790 | return label, type, width, height, length, number_of_barrels, description, rating_curve |
---|
791 | |
---|