1 | from anuga.geometry.polygon import inside_polygon, polygon_area |
---|
2 | from anuga.config import g |
---|
3 | import anuga.utilities.log as log |
---|
4 | import inlet |
---|
5 | import numpy as num |
---|
6 | import math |
---|
7 | |
---|
8 | class Below_interval(Exception): pass |
---|
9 | class Above_interval(Exception): pass |
---|
10 | |
---|
11 | |
---|
12 | class Generic_box_culvert: |
---|
13 | """Culvert flow - transfer water from one rectangular box to another. |
---|
14 | Sets up the geometry of problem |
---|
15 | |
---|
16 | This is the base class for culverts. Inherit from this class (and overwrite |
---|
17 | compute_discharge method for specific subclasses) |
---|
18 | |
---|
19 | Input: Two points, pipe_size (either diameter or width, height), |
---|
20 | mannings_rougness, |
---|
21 | """ |
---|
22 | |
---|
23 | def __init__(self, |
---|
24 | domain, |
---|
25 | end_point0=None, |
---|
26 | end_point1=None, |
---|
27 | width=None, |
---|
28 | height=None, |
---|
29 | verbose=False): |
---|
30 | |
---|
31 | # Input check |
---|
32 | |
---|
33 | self.domain = domain |
---|
34 | |
---|
35 | self.domain.set_fractional_step_operator(self) |
---|
36 | |
---|
37 | self.end_points = [end_point0, end_point1] |
---|
38 | |
---|
39 | if height is None: |
---|
40 | height = width |
---|
41 | |
---|
42 | self.width = width |
---|
43 | self.height = height |
---|
44 | |
---|
45 | self.verbose=verbose |
---|
46 | |
---|
47 | # Create the fundamental culvert polygons and create inlet objects |
---|
48 | self.create_culvert_polygons() |
---|
49 | |
---|
50 | #FIXME (SR) Put this into a foe loop to deal with more inlets |
---|
51 | self.inlets = [] |
---|
52 | polygon0 = self.inlet_polygons[0] |
---|
53 | inlet0_vector = self.culvert_vector |
---|
54 | self.inlets.append(inlet.Inlet(self.domain, polygon0)) |
---|
55 | |
---|
56 | polygon1 = self.inlet_polygons[1] |
---|
57 | inlet1_vector = - self.culvert_vector |
---|
58 | self.inlets.append(inlet.Inlet(self.domain, polygon1)) |
---|
59 | |
---|
60 | self.print_stats() |
---|
61 | |
---|
62 | |
---|
63 | def __call__(self): |
---|
64 | |
---|
65 | # Time stuff |
---|
66 | time = self.domain.get_time() |
---|
67 | timestep = self.domain.get_timestep() |
---|
68 | |
---|
69 | |
---|
70 | |
---|
71 | inflow = self.inlets[0] |
---|
72 | outflow = self.inlets[1] |
---|
73 | |
---|
74 | # Determine flow direction based on total energy difference |
---|
75 | delta_total_energy = inflow.get_average_total_energy() - outflow.get_average_total_energy() |
---|
76 | |
---|
77 | if delta_total_energy < 0: |
---|
78 | inflow = self.inlets[1] |
---|
79 | outflow = self.inlets[0] |
---|
80 | delta_total_energy = -delta_total_energy |
---|
81 | |
---|
82 | delta_z = inflow.get_average_elevation() - outflow.get_average_elevation() |
---|
83 | culvert_slope = delta_z/self.culvert_length |
---|
84 | |
---|
85 | # Determine controlling energy (driving head) for culvert |
---|
86 | if inflow.get_average_specific_energy() > delta_total_energy: |
---|
87 | # Outlet control |
---|
88 | driving_head = delta_total_energy |
---|
89 | else: |
---|
90 | # Inlet control |
---|
91 | driving_head = inflow.get_average_specific_energy() |
---|
92 | |
---|
93 | |
---|
94 | # Transfer |
---|
95 | from culvert_routines import boyd_generalised_culvert_model |
---|
96 | Q, barrel_velocity, culvert_outlet_depth =\ |
---|
97 | boyd_generalised_culvert_model(inflow.get_average_height(), |
---|
98 | outflow.get_average_height(), |
---|
99 | inflow.get_average_speed(), |
---|
100 | outflow.get_average_speed(), |
---|
101 | inflow.get_average_specific_energy(), |
---|
102 | delta_total_energy, |
---|
103 | g, |
---|
104 | culvert_length=self.culvert_length, |
---|
105 | culvert_width=self.width, |
---|
106 | culvert_height=self.height, |
---|
107 | culvert_type='box', |
---|
108 | manning=0.01) |
---|
109 | |
---|
110 | transfer_water = Q*timestep |
---|
111 | |
---|
112 | |
---|
113 | inflow.set_heights(inflow.get_average_height() - transfer_water) |
---|
114 | inflow.set_xmoms(0.0) |
---|
115 | inflow.set_ymoms(0.0) |
---|
116 | |
---|
117 | |
---|
118 | outflow.set_heights(outflow.get_average_height() + transfer_water) |
---|
119 | outflow.set_xmoms(0.0) |
---|
120 | outflow.set_ymoms(0.0) |
---|
121 | |
---|
122 | |
---|
123 | |
---|
124 | def print_stats(self): |
---|
125 | |
---|
126 | print '=====================================' |
---|
127 | print 'Generic Culvert Operator' |
---|
128 | print '=====================================' |
---|
129 | |
---|
130 | for i, inlet in enumerate(self.inlets): |
---|
131 | print '-------------------------------------' |
---|
132 | print 'Inlet %i' % i |
---|
133 | print '-------------------------------------' |
---|
134 | |
---|
135 | print 'inlet triangle indices and centres' |
---|
136 | print inlet.triangle_indices[i] |
---|
137 | print self.domain.get_centroid_coordinates()[inlet.triangle_indices[i]] |
---|
138 | |
---|
139 | print 'polygon' |
---|
140 | print inlet.polygon |
---|
141 | |
---|
142 | print '=====================================' |
---|
143 | |
---|
144 | |
---|
145 | |
---|
146 | |
---|
147 | |
---|
148 | def create_culvert_polygons(self): |
---|
149 | |
---|
150 | """Create polygons at the end of a culvert inlet and outlet. |
---|
151 | At either end two polygons will be created; one for the actual flow to pass through and one a little further away |
---|
152 | for enquiring the total energy at both ends of the culvert and transferring flow. |
---|
153 | """ |
---|
154 | |
---|
155 | # Calculate geometry |
---|
156 | x0, y0 = self.end_points[0] |
---|
157 | x1, y1 = self.end_points[1] |
---|
158 | |
---|
159 | dx = x1 - x0 |
---|
160 | dy = y1 - y0 |
---|
161 | |
---|
162 | self.culvert_vector = num.array([dx, dy]) |
---|
163 | self.culvert_length = math.sqrt(num.sum(self.culvert_vector**2)) |
---|
164 | assert self.culvert_length > 0.0, 'The length of culvert is less than 0' |
---|
165 | |
---|
166 | # Unit direction vector and normal |
---|
167 | self.culvert_vector /= self.culvert_length # Unit vector in culvert direction |
---|
168 | self.culvert_normal = num.array([-dy, dx])/self.culvert_length # Normal vector |
---|
169 | |
---|
170 | # Short hands |
---|
171 | w = 0.5*self.width*self.culvert_normal # Perpendicular vector of 1/2 width |
---|
172 | h = self.height*self.culvert_vector # Vector of length=height in the |
---|
173 | # direction of the culvert |
---|
174 | |
---|
175 | self.inlet_polygons = [] |
---|
176 | |
---|
177 | # Build exchange polygon and enquiry points 0 and 1 |
---|
178 | for i in [0, 1]: |
---|
179 | i0 = (2*i-1) |
---|
180 | p0 = self.end_points[i] + w |
---|
181 | p1 = self.end_points[i] - w |
---|
182 | p2 = p1 + i0*h |
---|
183 | p3 = p0 + i0*h |
---|
184 | self.inlet_polygons.append(num.array([p0, p1, p2, p3])) |
---|
185 | |
---|
186 | # Check that enquiry points are outside inlet polygons |
---|
187 | for i in [0,1]: |
---|
188 | polygon = self.inlet_polygons[i] |
---|
189 | # FIXME (SR) Probably should calculate the area of all the triangles |
---|
190 | # associated with this polygon, as there is likely to be some |
---|
191 | # inconsistency between triangles and ploygon |
---|
192 | area = polygon_area(polygon) |
---|
193 | |
---|
194 | msg = 'Polygon %s ' %(polygon) |
---|
195 | msg += ' has area = %f' % area |
---|
196 | assert area > 0.0, msg |
---|
197 | |
---|
198 | |
---|
199 | |
---|
200 | # FIXME(Ole): Write in C and reuse this function by similar code |
---|
201 | # in interpolate.py |
---|
202 | def interpolate_linearly(x, xvec, yvec): |
---|
203 | |
---|
204 | msg = 'Input to function interpolate_linearly could not be converted ' |
---|
205 | msg += 'to numerical scalar: x = %s' % str(x) |
---|
206 | try: |
---|
207 | x = float(x) |
---|
208 | except: |
---|
209 | raise Exception, msg |
---|
210 | |
---|
211 | |
---|
212 | # Check bounds |
---|
213 | if x < xvec[0]: |
---|
214 | msg = 'Value provided = %.2f, interpolation minimum = %.2f.'\ |
---|
215 | % (x, xvec[0]) |
---|
216 | raise Below_interval, msg |
---|
217 | |
---|
218 | if x > xvec[-1]: |
---|
219 | msg = 'Value provided = %.2f, interpolation maximum = %.2f.'\ |
---|
220 | %(x, xvec[-1]) |
---|
221 | raise Above_interval, msg |
---|
222 | |
---|
223 | |
---|
224 | # Find appropriate slot within bounds |
---|
225 | i = 0 |
---|
226 | while x > xvec[i]: i += 1 |
---|
227 | |
---|
228 | |
---|
229 | x0 = xvec[i-1] |
---|
230 | x1 = xvec[i] |
---|
231 | alpha = (x - x0)/(x1 - x0) |
---|
232 | |
---|
233 | y0 = yvec[i-1] |
---|
234 | y1 = yvec[i] |
---|
235 | y = alpha*y1 + (1-alpha)*y0 |
---|
236 | |
---|
237 | return y |
---|
238 | |
---|
239 | |
---|
240 | |
---|
241 | def read_culvert_description(culvert_description_filename): |
---|
242 | |
---|
243 | # Read description file |
---|
244 | fid = open(culvert_description_filename) |
---|
245 | |
---|
246 | read_rating_curve_data = False |
---|
247 | rating_curve = [] |
---|
248 | for i, line in enumerate(fid.readlines()): |
---|
249 | |
---|
250 | if read_rating_curve_data is True: |
---|
251 | fields = line.split(',') |
---|
252 | head_difference = float(fields[0].strip()) |
---|
253 | flow_rate = float(fields[1].strip()) |
---|
254 | barrel_velocity = float(fields[2].strip()) |
---|
255 | |
---|
256 | rating_curve.append([head_difference, flow_rate, barrel_velocity]) |
---|
257 | |
---|
258 | if i == 0: |
---|
259 | # Header |
---|
260 | continue |
---|
261 | if i == 1: |
---|
262 | # Metadata |
---|
263 | fields = line.split(',') |
---|
264 | label=fields[0].strip() |
---|
265 | type=fields[1].strip().lower() |
---|
266 | assert type in ['box', 'pipe'] |
---|
267 | |
---|
268 | width=float(fields[2].strip()) |
---|
269 | height=float(fields[3].strip()) |
---|
270 | length=float(fields[4].strip()) |
---|
271 | number_of_barrels=int(fields[5].strip()) |
---|
272 | #fields[6] refers to losses |
---|
273 | description=fields[7].strip() |
---|
274 | |
---|
275 | if line.strip() == '': continue # Skip blanks |
---|
276 | |
---|
277 | if line.startswith('Rating'): |
---|
278 | read_rating_curve_data = True |
---|
279 | # Flow data follows |
---|
280 | |
---|
281 | fid.close() |
---|
282 | |
---|
283 | return label, type, width, height, length, number_of_barrels, description, rating_curve |
---|
284 | |
---|