1 | from anuga.config import velocity_protection |
---|
2 | from anuga.utilities.numerical_tools import safe_acos as acos |
---|
3 | |
---|
4 | from math import pi, sqrt, sin, cos |
---|
5 | from anuga.config import g |
---|
6 | |
---|
7 | class Culvert_routines: |
---|
8 | """Collection of culvert routines for use with Culvert_operator |
---|
9 | |
---|
10 | This module holds various routines to determine FLOW through CULVERTS and SIMPLE BRIDGES |
---|
11 | |
---|
12 | Usage: |
---|
13 | |
---|
14 | NOTE: |
---|
15 | Inlet control: self.delta_total_energy > self.inflow.get_average_specific_energy() |
---|
16 | Outlet control: self.delta_total_energy < self.inflow.get_average_specific_energy() |
---|
17 | where total energy is (w + 0.5*v^2/g) and |
---|
18 | specific energy is (h + 0.5*v^2/g) |
---|
19 | """ |
---|
20 | |
---|
21 | def __init__(self, culvert, manning=0.0): |
---|
22 | |
---|
23 | self.inlets = culvert.inlets |
---|
24 | |
---|
25 | self.inflow = self.inlets[0] |
---|
26 | self.outflow = self.inlets[1] |
---|
27 | |
---|
28 | self.culvert_length = culvert.get_culvert_length() |
---|
29 | self.culvert_width = culvert.get_culvert_width() |
---|
30 | self.culvert_height = culvert.get_culvert_height() |
---|
31 | self.sum_loss = 0.0 |
---|
32 | self.max_velocity = 10.0 |
---|
33 | self.manning = manning |
---|
34 | self.log_filename = None |
---|
35 | |
---|
36 | # Determine flow direction based on total energy difference |
---|
37 | self.delta_total_energy = self.inflow.get_average_total_energy() - self.outflow.get_average_total_energy() |
---|
38 | |
---|
39 | if self.delta_total_energy < 0: |
---|
40 | self.inflow = self.inlets[1] |
---|
41 | self.outflow = self.inlets[0] |
---|
42 | self.delta_total_energy = -self.delta_total_energy |
---|
43 | |
---|
44 | #delta_z = self.self.inflow.get_average_elevation() - self.self.outflow.get_average_elevation() |
---|
45 | #culvert_slope = delta_z/self.culvert.get_self.culvert_length() |
---|
46 | |
---|
47 | # Determine controlling energy (driving head) for culvert |
---|
48 | #if self.self.inflow.get_average_specific_energy() > self.self.delta_total_energy: |
---|
49 | # # Outlet control |
---|
50 | # driving_head = self.delta_total_energy |
---|
51 | #else: |
---|
52 | # Inlet control |
---|
53 | # driving_head = self.inflow.get_average_specific_energy() |
---|
54 | |
---|
55 | |
---|
56 | def get_inflow(self): |
---|
57 | |
---|
58 | return self.inflow |
---|
59 | |
---|
60 | |
---|
61 | def get_outflow(self): |
---|
62 | |
---|
63 | return self.outflow |
---|
64 | |
---|
65 | |
---|
66 | def boyd_box(self): |
---|
67 | |
---|
68 | """Boyd's generalisation of the US department of transportation culvert methods |
---|
69 | |
---|
70 | WARNING THIS IS A SIMPLISTIC APPROACH and OUTLET VELOCITIES ARE LIMITED TO EITHER |
---|
71 | FULL PIPE OR CRITICAL DEPTH ONLY |
---|
72 | For Supercritical flow this is UNDERESTIMATING the Outlet Velocity |
---|
73 | The obtain the CORRECT velocity requires an iteration of Depth to Establish |
---|
74 | the Normal Depth of flow in the pipe. |
---|
75 | |
---|
76 | It is proposed to provide this in a seperate routine called |
---|
77 | boyd_generalised_culvert_model_complex |
---|
78 | |
---|
79 | The Boyd Method is based on methods described by the following: |
---|
80 | 1. |
---|
81 | US Dept. Transportation Federal Highway Administration (1965) |
---|
82 | Hydraulic Chart for Selection of Highway Culverts. |
---|
83 | Hydraulic Engineering Circular No. 5 US Government Printing |
---|
84 | 2. |
---|
85 | US Dept. Transportation Federal Highway Administration (1972) |
---|
86 | Capacity charts for the Hydraulic design of highway culverts. |
---|
87 | Hydraulic Engineering Circular No. 10 US Government Printing |
---|
88 | These documents provide around 60 charts for various configurations of culverts and inlets. |
---|
89 | |
---|
90 | Note these documents have been superceded by: |
---|
91 | 2005 Hydraulic Design of Highway Culverts, Hydraulic Design Series No. 5 (HDS-5), |
---|
92 | Which combines culvert design information previously contained in Hydraulic Engineering Circulars |
---|
93 | (HEC) No. 5, No. 10, and No. 13 with hydrologic, storage routing, and special culvert design information. |
---|
94 | HEC-5 provides 20 Charts |
---|
95 | HEC-10 Provides an additional 36 Charts |
---|
96 | HEC-13 Discusses the Design of improved more efficient inlets |
---|
97 | HDS-5 Provides 60 sets of Charts |
---|
98 | |
---|
99 | In 1985 Professor Michael Boyd Published "Head-Discharge Relations for Culverts", and in |
---|
100 | 1987 published "Generalised Head Discharge Equations for Culverts". |
---|
101 | These papers reviewed the previous work by the US DOT and provided a simplistic approach for 3 configurations. |
---|
102 | |
---|
103 | It may be possible to extend the same approach for additional charts in the original work, but to date this has not been done. |
---|
104 | The additional charts cover a range of culvert shapes and inlet configurations |
---|
105 | |
---|
106 | |
---|
107 | """ |
---|
108 | |
---|
109 | local_debug ='false' |
---|
110 | if self.inflow.get_average_height() > 0.1: #this value was 0.01: |
---|
111 | if local_debug =='true': |
---|
112 | log.critical('Specific E & Deltat Tot E = %s, %s' |
---|
113 | % (str(self.inflow.get_average_specific_energy()), |
---|
114 | str(self.delta_total_energy))) |
---|
115 | log.critical('culvert type = %s' % str(culvert_type)) |
---|
116 | # Water has risen above inlet |
---|
117 | |
---|
118 | if self.log_filename is not None: |
---|
119 | s = 'Specific energy = %f m' % self.inflow.get_average_specific_energy() |
---|
120 | log_to_file(self.log_filename, s) |
---|
121 | |
---|
122 | msg = 'Specific energy at inlet is negative' |
---|
123 | assert self.inflow.get_average_specific_energy() >= 0.0, msg |
---|
124 | |
---|
125 | height = self.culvert_height |
---|
126 | width = self.culvert_width |
---|
127 | flow_width = self.culvert_width |
---|
128 | |
---|
129 | Q_inlet_unsubmerged = 0.540*g**0.5*width*self.inflow.get_average_specific_energy()**1.50 # Flow based on Inlet Ctrl Inlet Unsubmerged |
---|
130 | Q_inlet_submerged = 0.702*g**0.5*width*height**0.89*self.inflow.get_average_specific_energy()**0.61 # Flow based on Inlet Ctrl Inlet Submerged |
---|
131 | |
---|
132 | # FIXME(Ole): Are these functions really for inlet control? |
---|
133 | if Q_inlet_unsubmerged < Q_inlet_submerged: |
---|
134 | Q = Q_inlet_unsubmerged |
---|
135 | dcrit = (Q**2/g/width**2)**0.333333 |
---|
136 | if dcrit > height: |
---|
137 | dcrit = height |
---|
138 | flow_area = width*dcrit |
---|
139 | outlet_culvert_depth = dcrit |
---|
140 | case = 'Inlet unsubmerged Box Acts as Weir' |
---|
141 | else: |
---|
142 | Q = Q_inlet_submerged |
---|
143 | flow_area = width*height |
---|
144 | outlet_culvert_depth = height |
---|
145 | case = 'Inlet submerged Box Acts as Orifice' |
---|
146 | |
---|
147 | dcrit = (Q**2/g/width**2)**0.333333 |
---|
148 | |
---|
149 | outlet_culvert_depth = dcrit |
---|
150 | if outlet_culvert_depth > height: |
---|
151 | outlet_culvert_depth = height # Once again the pipe is flowing full not partfull |
---|
152 | flow_area = width*height # Cross sectional area of flow in the culvert |
---|
153 | perimeter = 2*(width+height) |
---|
154 | case = 'Inlet CTRL Outlet unsubmerged PIPE PART FULL' |
---|
155 | else: |
---|
156 | flow_area = width * outlet_culvert_depth |
---|
157 | perimeter = width+2*outlet_culvert_depth |
---|
158 | case = 'INLET CTRL Culvert is open channel flow we will for now assume critical depth' |
---|
159 | |
---|
160 | if self.delta_total_energy < self.inflow.get_average_specific_energy(): |
---|
161 | # Calculate flows for outlet control |
---|
162 | |
---|
163 | # Determine the depth at the outlet relative to the depth of flow in the Culvert |
---|
164 | if self.outflow.get_average_height() > height: # The Outlet is Submerged |
---|
165 | outlet_culvert_depth=height |
---|
166 | flow_area=width*height # Cross sectional area of flow in the culvert |
---|
167 | perimeter=2.0*(width+height) |
---|
168 | case = 'Outlet submerged' |
---|
169 | else: # Here really should use the Culvert Slope to calculate Actual Culvert Depth & Velocity |
---|
170 | dcrit = (Q**2/g/width**2)**0.333333 |
---|
171 | outlet_culvert_depth=dcrit # For purpose of calculation assume the outlet depth = Critical Depth |
---|
172 | if outlet_culvert_depth > height: |
---|
173 | outlet_culvert_depth=height |
---|
174 | flow_area=width*height |
---|
175 | perimeter=2.0*(width+height) |
---|
176 | case = 'Outlet is Flowing Full' |
---|
177 | else: |
---|
178 | flow_area=width*outlet_culvert_depth |
---|
179 | perimeter=(width+2.0*outlet_culvert_depth) |
---|
180 | case = 'Outlet is open channel flow' |
---|
181 | |
---|
182 | hyd_rad = flow_area/perimeter |
---|
183 | |
---|
184 | if self.log_filename is not None: |
---|
185 | s = 'hydraulic radius at outlet = %f' % hyd_rad |
---|
186 | log_to_file(self.log_filename, s) |
---|
187 | |
---|
188 | # Outlet control velocity using tail water |
---|
189 | culvert_velocity = sqrt(self.delta_total_energy/((self.sum_loss/2/g)+(self.manning**2*self.culvert_length)/hyd_rad**1.33333)) |
---|
190 | Q_outlet_tailwater = flow_area * culvert_velocity |
---|
191 | |
---|
192 | if self.log_filename is not None: |
---|
193 | s = 'Q_outlet_tailwater = %.6f' % Q_outlet_tailwater |
---|
194 | log_to_file(self.log_filename, s) |
---|
195 | Q = min(Q, Q_outlet_tailwater) |
---|
196 | else: |
---|
197 | pass |
---|
198 | #FIXME(Ole): What about inlet control? |
---|
199 | |
---|
200 | culv_froude=sqrt(Q**2*flow_width/(g*flow_area**3)) |
---|
201 | if local_debug =='true': |
---|
202 | log.critical('FLOW AREA = %s' % str(flow_area)) |
---|
203 | log.critical('PERIMETER = %s' % str(perimeter)) |
---|
204 | log.critical('Q final = %s' % str(Q)) |
---|
205 | log.critical('FROUDE = %s' % str(culv_froude)) |
---|
206 | |
---|
207 | # Determine momentum at the outlet |
---|
208 | barrel_velocity = Q/(flow_area + velocity_protection/flow_area) |
---|
209 | |
---|
210 | # END CODE BLOCK for DEPTH > Required depth for CULVERT Flow |
---|
211 | |
---|
212 | else: # self.inflow.get_average_height() < 0.01: |
---|
213 | Q = barrel_velocity = outlet_culvert_depth = 0.0 |
---|
214 | |
---|
215 | # Temporary flow limit |
---|
216 | if barrel_velocity > self.max_velocity: |
---|
217 | barrel_velocity = self.max_velocity |
---|
218 | Q = flow_area * barrel_velocity |
---|
219 | |
---|
220 | return Q, barrel_velocity, outlet_culvert_depth |
---|
221 | |
---|
222 | |
---|
223 | def boyd_circle(self): |
---|
224 | """ |
---|
225 | For a circular pipe the Boyd method reviews 3 conditions |
---|
226 | 1. Whether the Pipe Inlet is Unsubmerged (acting as weir flow into the inlet) |
---|
227 | 2. Whether the Pipe Inlet is Fully Submerged (acting as an Orifice) |
---|
228 | 3. Whether the energy loss in the pipe results in the Pipe being controlled by Channel Flow of the Pipe |
---|
229 | |
---|
230 | For these conditions we also would like to assess the pipe flow characteristics as it leaves the pipe |
---|
231 | """ |
---|
232 | |
---|
233 | diameter = self.culvert_height |
---|
234 | |
---|
235 | local_debug ='false' |
---|
236 | if self.inflow.get_average_height() > 0.1: #this value was 0.01: |
---|
237 | if local_debug =='true': |
---|
238 | log.critical('Specific E & Deltat Tot E = %s, %s' |
---|
239 | % (str(self.inflow.get_average_specific_energy()), |
---|
240 | str(self.delta_total_energy))) |
---|
241 | log.critical('culvert type = %s' % str(culvert_type)) |
---|
242 | # Water has risen above inlet |
---|
243 | |
---|
244 | if self.log_filename is not None: |
---|
245 | s = 'Specific energy = %f m' % self.inflow.get_average_specific_energy() |
---|
246 | log_to_file(self.log_filename, s) |
---|
247 | |
---|
248 | msg = 'Specific energy at inlet is negative' |
---|
249 | assert self.inflow.get_average_specific_energy() >= 0.0, msg |
---|
250 | |
---|
251 | # Calculate flows for inlet control |
---|
252 | Q_inlet_unsubmerged = 0.421*g**0.5*diameter**0.87*self.inflow.get_average_specific_energy()**1.63 # Inlet Ctrl Inlet Unsubmerged |
---|
253 | Q_inlet_submerged = 0.530*g**0.5*diameter**1.87*self.inflow.get_average_specific_energy()**0.63 # Inlet Ctrl Inlet Submerged |
---|
254 | # Note for to SUBMERGED TO OCCUR self.inflow.get_average_specific_energy() should be > 1.2 x diameter.... Should Check !!! |
---|
255 | |
---|
256 | if self.log_filename is not None: |
---|
257 | s = 'Q_inlet_unsubmerged = %.6f, Q_inlet_submerged = %.6f' % (Q_inlet_unsubmerged, Q_inlet_submerged) |
---|
258 | log_to_file(self.log_filename, s) |
---|
259 | Q = min(Q_inlet_unsubmerged, Q_inlet_submerged) |
---|
260 | |
---|
261 | # THE LOWEST Value will Control Calcs From here |
---|
262 | # Calculate Critical Depth Based on the Adopted Flow as an Estimate |
---|
263 | dcrit1 = diameter/1.26*(Q/g**0.5*diameter**2.5)**(1/3.75) |
---|
264 | dcrit2 = diameter/0.95*(Q/g**0.5*diameter**2.5)**(1/1.95) |
---|
265 | # From Boyd Paper ESTIMATE of Dcrit has 2 criteria as |
---|
266 | if dcrit1/diameter > 0.85: |
---|
267 | outlet_culvert_depth = dcrit2 |
---|
268 | else: |
---|
269 | outlet_culvert_depth = dcrit1 |
---|
270 | #outlet_culvert_depth = min(outlet_culvert_depth, diameter) |
---|
271 | # Now determine Hydraulic Radius Parameters Area & Wetted Perimeter |
---|
272 | if outlet_culvert_depth >= diameter: |
---|
273 | outlet_culvert_depth = diameter # Once again the pipe is flowing full not partfull |
---|
274 | flow_area = (diameter/2)**2 * pi # Cross sectional area of flow in the culvert |
---|
275 | perimeter = diameter * pi |
---|
276 | flow_width= diameter |
---|
277 | case = 'Inlet CTRL Outlet submerged Circular PIPE FULL' |
---|
278 | if local_debug == 'true': |
---|
279 | log.critical('Inlet CTRL Outlet submerged Circular ' |
---|
280 | 'PIPE FULL') |
---|
281 | else: |
---|
282 | #alpha = acos(1 - outlet_culvert_depth/diameter) # Where did this Come From ????/ |
---|
283 | alpha = acos(1-2*outlet_culvert_depth/diameter)*2 |
---|
284 | #flow_area = diameter**2 * (alpha - sin(alpha)*cos(alpha)) # Pipe is Running Partly Full at the INLET WHRE did this Come From ????? |
---|
285 | flow_area = diameter**2/8*(alpha - sin(alpha)) # Equation from GIECK 5th Ed. Pg. B3 |
---|
286 | flow_width= diameter*sin(alpha/2.0) |
---|
287 | perimeter = alpha*diameter/2.0 |
---|
288 | case = 'INLET CTRL Culvert is open channel flow we will for now assume critical depth' |
---|
289 | if local_debug =='true': |
---|
290 | log.critical('INLET CTRL Culvert is open channel flow ' |
---|
291 | 'we will for now assume critical depth') |
---|
292 | log.critical('Q Outlet Depth and ALPHA = %s, %s, %s' |
---|
293 | % (str(Q), str(outlet_culvert_depth), |
---|
294 | str(alpha))) |
---|
295 | if self.delta_total_energy < self.inflow.get_average_specific_energy(): # OUTLET CONTROL !!!! |
---|
296 | # Calculate flows for outlet control |
---|
297 | |
---|
298 | # Determine the depth at the outlet relative to the depth of flow in the Culvert |
---|
299 | if self.outflow.get_average_height() > diameter: # Outlet is submerged Assume the end of the Pipe is flowing FULL |
---|
300 | outlet_culvert_depth=diameter |
---|
301 | flow_area = (diameter/2)**2 * pi # Cross sectional area of flow in the culvert |
---|
302 | perimeter = diameter * pi |
---|
303 | flow_width= diameter |
---|
304 | case = 'Outlet submerged' |
---|
305 | if local_debug =='true': |
---|
306 | log.critical('Outlet submerged') |
---|
307 | else: # Culvert running PART FULL for PART OF ITS LENGTH Here really should use the Culvert Slope to calculate Actual Culvert Depth & Velocity |
---|
308 | # IF self.outflow.get_average_height() < diameter |
---|
309 | dcrit1 = diameter/1.26*(Q/g**0.5*diameter**2.5)**(1/3.75) |
---|
310 | dcrit2 = diameter/0.95*(Q/g**0.5*diameter**2.5)**(1/1.95) |
---|
311 | if dcrit1/diameter >0.85: |
---|
312 | outlet_culvert_depth= dcrit2 |
---|
313 | else: |
---|
314 | outlet_culvert_depth = dcrit1 |
---|
315 | if outlet_culvert_depth > diameter: |
---|
316 | outlet_culvert_depth = diameter # Once again the pipe is flowing full not partfull |
---|
317 | flow_area = (diameter/2)**2 * pi # Cross sectional area of flow in the culvert |
---|
318 | perimeter = diameter * pi |
---|
319 | flow_width= diameter |
---|
320 | case = 'Outlet unsubmerged PIPE FULL' |
---|
321 | if local_debug =='true': |
---|
322 | log.critical('Outlet unsubmerged PIPE FULL') |
---|
323 | else: |
---|
324 | alpha = acos(1-2*outlet_culvert_depth/diameter)*2 |
---|
325 | flow_area = diameter**2/8*(alpha - sin(alpha)) # Equation from GIECK 5th Ed. Pg. B3 |
---|
326 | flow_width= diameter*sin(alpha/2.0) |
---|
327 | perimeter = alpha*diameter/2.0 |
---|
328 | case = 'Outlet is open channel flow we will for now assume critical depth' |
---|
329 | if local_debug == 'true': |
---|
330 | log.critical('Q Outlet Depth and ALPHA = %s, %s, %s' |
---|
331 | % (str(Q), str(outlet_culvert_depth), |
---|
332 | str(alpha))) |
---|
333 | log.critical('Outlet is open channel flow we ' |
---|
334 | 'will for now assume critical depth') |
---|
335 | if local_debug == 'true': |
---|
336 | log.critical('FLOW AREA = %s' % str(flow_area)) |
---|
337 | log.critical('PERIMETER = %s' % str(perimeter)) |
---|
338 | log.critical('Q Interim = %s' % str(Q)) |
---|
339 | hyd_rad = flow_area/perimeter |
---|
340 | |
---|
341 | if self.log_filename is not None: |
---|
342 | s = 'hydraulic radius at outlet = %f' %hyd_rad |
---|
343 | log_to_file(self.log_filename, s) |
---|
344 | |
---|
345 | # Outlet control velocity using tail water |
---|
346 | if local_debug =='true': |
---|
347 | log.critical('GOT IT ALL CALCULATING Velocity') |
---|
348 | log.critical('HydRad = %s' % str(hyd_rad)) |
---|
349 | culvert_velocity = sqrt(self.delta_total_energy/((self.sum_loss/2/g)+(self.manning**2*self.culvert_length)/hyd_rad**1.33333)) |
---|
350 | Q_outlet_tailwater = flow_area * culvert_velocity |
---|
351 | if local_debug =='true': |
---|
352 | log.critical('VELOCITY = %s' % str(culvert_velocity)) |
---|
353 | log.critical('Outlet Ctrl Q = %s' % str(Q_outlet_tailwater)) |
---|
354 | if self.log_filename is not None: |
---|
355 | s = 'Q_outlet_tailwater = %.6f' %Q_outlet_tailwater |
---|
356 | log_to_file(self.log_filename, s) |
---|
357 | Q = min(Q, Q_outlet_tailwater) |
---|
358 | if local_debug =='true': |
---|
359 | log.critical('%s,%.3f,%.3f' |
---|
360 | % ('dcrit 1 , dcit2 =',dcrit1,dcrit2)) |
---|
361 | log.critical('%s,%.3f,%.3f,%.3f' |
---|
362 | % ('Q and Velocity and Depth=', Q, |
---|
363 | culvert_velocity, outlet_culvert_depth)) |
---|
364 | |
---|
365 | culv_froude=sqrt(Q**2*flow_width/(g*flow_area**3)) |
---|
366 | if local_debug =='true': |
---|
367 | log.critical('FLOW AREA = %s' % str(flow_area)) |
---|
368 | log.critical('PERIMETER = %s' % str(perimeter)) |
---|
369 | log.critical('Q final = %s' % str(Q)) |
---|
370 | log.critical('FROUDE = %s' % str(culv_froude)) |
---|
371 | |
---|
372 | # Determine momentum at the outlet |
---|
373 | barrel_velocity = Q/(flow_area + velocity_protection/flow_area) |
---|
374 | |
---|
375 | else: # self.inflow.get_average_height() < 0.01: |
---|
376 | Q = barrel_velocity = outlet_culvert_depth = 0.0 |
---|
377 | |
---|
378 | # Temporary flow limit |
---|
379 | if barrel_velocity > self.max_velocity: |
---|
380 | barrel_velocity = self.max_velocity |
---|
381 | Q = flow_area * barrel_velocity |
---|
382 | |
---|
383 | return Q, barrel_velocity, outlet_culvert_depth |
---|
384 | |
---|
385 | |
---|