1 | #!/usr/bin/env python |
---|
2 | |
---|
3 | |
---|
4 | import unittest |
---|
5 | import os.path |
---|
6 | import sys |
---|
7 | |
---|
8 | from anuga.utilities.system_tools import get_pathname_from_package |
---|
9 | from anuga.culvert_flows.culvert_routines import boyd_generalised_culvert_model |
---|
10 | import numpy as num |
---|
11 | |
---|
12 | |
---|
13 | class Test_culvert_routines(unittest.TestCase): |
---|
14 | def setUp(self): |
---|
15 | pass |
---|
16 | |
---|
17 | def tearDown(self): |
---|
18 | pass |
---|
19 | |
---|
20 | |
---|
21 | def test_boyd_0(self): |
---|
22 | """test_boyd_0 |
---|
23 | |
---|
24 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
25 | This test is the only one that passed in late February 2009 |
---|
26 | """ |
---|
27 | |
---|
28 | g=9.81 |
---|
29 | culvert_slope=0.1 # Downward |
---|
30 | |
---|
31 | inlet_depth=2.0 |
---|
32 | outlet_depth=0.0 |
---|
33 | |
---|
34 | inlet_velocity=0.0, |
---|
35 | outlet_velocity=0.0, |
---|
36 | |
---|
37 | culvert_length=4.0 |
---|
38 | culvert_width=1.2 |
---|
39 | culvert_height=0.75 |
---|
40 | |
---|
41 | culvert_type='box' |
---|
42 | manning=0.013 |
---|
43 | sum_loss=0.0 |
---|
44 | |
---|
45 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
46 | z_in = 0.0 |
---|
47 | z_out = -culvert_length*culvert_slope/100 |
---|
48 | E_in = z_in+inlet_depth # + |
---|
49 | E_out = z_out+outlet_depth # + |
---|
50 | delta_total_energy = E_in-E_out |
---|
51 | |
---|
52 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
53 | outlet_depth, |
---|
54 | inlet_velocity, |
---|
55 | outlet_velocity, |
---|
56 | inlet_specific_energy, |
---|
57 | delta_total_energy, |
---|
58 | g, |
---|
59 | culvert_length, |
---|
60 | culvert_width, |
---|
61 | culvert_height, |
---|
62 | culvert_type, |
---|
63 | manning, |
---|
64 | sum_loss) |
---|
65 | |
---|
66 | #print Q, v, d |
---|
67 | assert num.allclose(Q, 3.118, rtol=1.0e-3) |
---|
68 | |
---|
69 | |
---|
70 | #assert num.allclose(v, 0.93) |
---|
71 | #assert num.allclose(d, 0.0) |
---|
72 | |
---|
73 | |
---|
74 | def Xtest_boyd_00(self): |
---|
75 | """test_boyd_00 |
---|
76 | |
---|
77 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
78 | """ |
---|
79 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
80 | |
---|
81 | g=9.81 |
---|
82 | culvert_slope=0.1 # Downward |
---|
83 | |
---|
84 | inlet_depth=0.2 |
---|
85 | outlet_depth=0.0 |
---|
86 | |
---|
87 | inlet_velocity=0.0, |
---|
88 | outlet_velocity=0.0, |
---|
89 | |
---|
90 | culvert_length=4.0 |
---|
91 | culvert_width=1.2 |
---|
92 | culvert_height=0.75 |
---|
93 | |
---|
94 | culvert_type='box' |
---|
95 | manning=0.013 |
---|
96 | sum_loss=0.0 |
---|
97 | |
---|
98 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
99 | z_in = 0.0 |
---|
100 | z_out = -culvert_length*culvert_slope/100 |
---|
101 | E_in = z_in+inlet_depth # + |
---|
102 | E_out = z_out+outlet_depth # + |
---|
103 | delta_total_energy = E_in-E_out |
---|
104 | |
---|
105 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
106 | outlet_depth, |
---|
107 | inlet_velocity, |
---|
108 | outlet_velocity, |
---|
109 | inlet_specific_energy, |
---|
110 | delta_total_energy, |
---|
111 | g, |
---|
112 | culvert_length, |
---|
113 | culvert_width, |
---|
114 | culvert_height, |
---|
115 | culvert_type, |
---|
116 | manning, |
---|
117 | sum_loss) |
---|
118 | |
---|
119 | #print Q, v, d |
---|
120 | assert num.allclose(Q, 0.185, rtol=1.0e-3) |
---|
121 | #assert num.allclose(v, 0.93) |
---|
122 | #assert num.allclose(d, 0.0) |
---|
123 | |
---|
124 | def Xtest_boyd_1(self): |
---|
125 | """test_boyd_1 |
---|
126 | |
---|
127 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
128 | """ |
---|
129 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
130 | |
---|
131 | g=9.81 |
---|
132 | culvert_slope=0.01 # Downward |
---|
133 | |
---|
134 | inlet_depth=0.263 |
---|
135 | outlet_depth=0.0 |
---|
136 | |
---|
137 | culvert_length=4.0 |
---|
138 | culvert_width=0.75 |
---|
139 | culvert_height=0.75 |
---|
140 | |
---|
141 | culvert_type='pipe' |
---|
142 | manning=0.013 |
---|
143 | sum_loss=1.5 |
---|
144 | |
---|
145 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
146 | z_in = 0.0 |
---|
147 | z_out = -culvert_length*culvert_slope/100 |
---|
148 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
149 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
150 | delta_total_energy = E_in-E_out |
---|
151 | |
---|
152 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
153 | outlet_depth, |
---|
154 | inlet_specific_energy, |
---|
155 | delta_total_energy, |
---|
156 | g, |
---|
157 | culvert_length, |
---|
158 | culvert_width, |
---|
159 | culvert_height, |
---|
160 | culvert_type, |
---|
161 | manning, |
---|
162 | sum_loss) |
---|
163 | |
---|
164 | print Q, v, d |
---|
165 | assert num.allclose(Q, 0.10, rtol=1.0e-2) #inflow |
---|
166 | assert num.allclose(v, 1.13, rtol=1.0e-2) #outflow velocity |
---|
167 | assert num.allclose(d, 0.15, rtol=1.0e-2) #depth at outlet used to calc v |
---|
168 | |
---|
169 | def Xtest_boyd_2(self): |
---|
170 | """test_boyd_2 |
---|
171 | |
---|
172 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
173 | """ |
---|
174 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
175 | |
---|
176 | g=9.81 |
---|
177 | culvert_slope=0.01 # Downward |
---|
178 | |
---|
179 | inlet_depth=1.135 |
---|
180 | outlet_depth=0.0 |
---|
181 | |
---|
182 | culvert_length=4.0 |
---|
183 | culvert_width=0.75 |
---|
184 | culvert_height=0.75 |
---|
185 | |
---|
186 | culvert_type='pipe' |
---|
187 | manning=0.013 |
---|
188 | sum_loss=1.5 |
---|
189 | |
---|
190 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
191 | z_in = 0.0 |
---|
192 | z_out = -culvert_length*culvert_slope/100 |
---|
193 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
194 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
195 | delta_total_energy = E_in-E_out |
---|
196 | |
---|
197 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
198 | outlet_depth, |
---|
199 | inlet_velocity, |
---|
200 | outlet_velocity, |
---|
201 | inlet_specific_energy, |
---|
202 | delta_total_energy, |
---|
203 | g, |
---|
204 | culvert_length, |
---|
205 | culvert_width, |
---|
206 | culvert_height, |
---|
207 | culvert_type, |
---|
208 | manning, |
---|
209 | sum_loss) |
---|
210 | |
---|
211 | print Q, v, d |
---|
212 | assert num.allclose(Q, 1.00, rtol=1.0e-2) #inflow |
---|
213 | assert num.allclose(v, 2.59, rtol=1.0e-2) #outflow velocity |
---|
214 | assert num.allclose(d, 0.563, rtol=1.0e-2) #depth at outlet used to calc v |
---|
215 | |
---|
216 | def Xtest_boyd_3(self): |
---|
217 | """test_boyd_3 |
---|
218 | |
---|
219 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
220 | """ |
---|
221 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
222 | |
---|
223 | g=9.81 |
---|
224 | culvert_slope=0.01 # Downward |
---|
225 | |
---|
226 | inlet_depth=12.747 |
---|
227 | outlet_depth=0.0 |
---|
228 | |
---|
229 | culvert_length=4.0 |
---|
230 | culvert_width=0.75 |
---|
231 | culvert_height=0.75 |
---|
232 | |
---|
233 | culvert_type='pipe' |
---|
234 | manning=0.013 |
---|
235 | sum_loss=1.5 |
---|
236 | |
---|
237 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
238 | z_in = 0.0 |
---|
239 | z_out = -culvert_length*culvert_slope/100 |
---|
240 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
241 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
242 | delta_total_energy = E_in-E_out |
---|
243 | |
---|
244 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
245 | outlet_depth, |
---|
246 | inlet_specific_energy, |
---|
247 | delta_total_energy, |
---|
248 | g, |
---|
249 | culvert_length, |
---|
250 | culvert_width, |
---|
251 | culvert_height, |
---|
252 | culvert_type, |
---|
253 | manning, |
---|
254 | sum_loss) |
---|
255 | |
---|
256 | print Q, v, d |
---|
257 | assert num.allclose(Q, 5.00, rtol=1.0e-2) #inflow |
---|
258 | assert num.allclose(v, 11.022, rtol=1.0e-2) #outflow velocity |
---|
259 | assert num.allclose(d, 0.72, rtol=1.0e-2) #depth at outlet used to calc v |
---|
260 | |
---|
261 | def Xtest_boyd_4(self): |
---|
262 | """test_boyd_4 |
---|
263 | |
---|
264 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
265 | """ |
---|
266 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
267 | |
---|
268 | g=9.81 |
---|
269 | culvert_slope=0.01 # Downward |
---|
270 | |
---|
271 | inlet_depth=1.004 |
---|
272 | outlet_depth=1.00 |
---|
273 | |
---|
274 | culvert_length=4.0 |
---|
275 | culvert_width=0.75 |
---|
276 | culvert_height=0.75 |
---|
277 | |
---|
278 | culvert_type='pipe' |
---|
279 | manning=0.013 |
---|
280 | sum_loss=1.5 |
---|
281 | |
---|
282 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
283 | z_in = 0.0 |
---|
284 | z_out = -culvert_length*culvert_slope/100 |
---|
285 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
286 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
287 | delta_total_energy = E_in-E_out |
---|
288 | |
---|
289 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
290 | outlet_depth, |
---|
291 | inlet_specific_energy, |
---|
292 | delta_total_energy, |
---|
293 | g, |
---|
294 | culvert_length, |
---|
295 | culvert_width, |
---|
296 | culvert_height, |
---|
297 | culvert_type, |
---|
298 | manning, |
---|
299 | sum_loss) |
---|
300 | |
---|
301 | print Q, v, d |
---|
302 | assert num.allclose(Q, 0.10, rtol=1.0e-2) #inflow |
---|
303 | assert num.allclose(v, 0.22, rtol=1.0e-2) #outflow velocity |
---|
304 | assert num.allclose(d, 0.76, rtol=1.0e-2) #depth at outlet used to calc v |
---|
305 | |
---|
306 | def Xtest_boyd_5(self): |
---|
307 | """test_boyd_5 |
---|
308 | |
---|
309 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
310 | """ |
---|
311 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
312 | |
---|
313 | g=9.81 |
---|
314 | culvert_slope=0.01 # Downward |
---|
315 | |
---|
316 | inlet_depth=1.401 |
---|
317 | outlet_depth=1.00 |
---|
318 | |
---|
319 | culvert_length=4.0 |
---|
320 | culvert_width=0.75 |
---|
321 | culvert_height=0.75 |
---|
322 | |
---|
323 | culvert_type='pipe' |
---|
324 | manning=0.013 |
---|
325 | sum_loss=1.5 |
---|
326 | |
---|
327 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
328 | z_in = 0.0 |
---|
329 | z_out = -culvert_length*culvert_slope/100 |
---|
330 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
331 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
332 | delta_total_energy = E_in-E_out |
---|
333 | |
---|
334 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
335 | outlet_depth, |
---|
336 | inlet_specific_energy, |
---|
337 | delta_total_energy, |
---|
338 | g, |
---|
339 | culvert_length, |
---|
340 | culvert_width, |
---|
341 | culvert_height, |
---|
342 | culvert_type, |
---|
343 | manning, |
---|
344 | sum_loss) |
---|
345 | |
---|
346 | print Q, v, d |
---|
347 | assert num.allclose(Q, 1.00, rtol=1.0e-2) #inflow |
---|
348 | assert num.allclose(v, 2.204, rtol=1.0e-2) #outflow velocity |
---|
349 | assert num.allclose(d, 0.76, rtol=1.0e-2) #depth at outlet used to calc v |
---|
350 | |
---|
351 | |
---|
352 | def Xtest_boyd_6(self): |
---|
353 | """test_boyd_5 |
---|
354 | |
---|
355 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
356 | """ |
---|
357 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
358 | |
---|
359 | g=9.81 |
---|
360 | culvert_slope=0.01 # Downward |
---|
361 | |
---|
362 | inlet_depth=12.747 |
---|
363 | outlet_depth=1.00 |
---|
364 | |
---|
365 | culvert_length=4.0 |
---|
366 | culvert_width=0.75 |
---|
367 | culvert_height=0.75 |
---|
368 | |
---|
369 | culvert_type='pipe' |
---|
370 | manning=0.013 |
---|
371 | sum_loss=1.5 |
---|
372 | |
---|
373 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
374 | z_in = 0.0 |
---|
375 | z_out = -culvert_length*culvert_slope/100 |
---|
376 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
377 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
378 | delta_total_energy = E_in-E_out |
---|
379 | |
---|
380 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
381 | outlet_depth, |
---|
382 | inlet_specific_energy, |
---|
383 | delta_total_energy, |
---|
384 | g, |
---|
385 | culvert_length, |
---|
386 | culvert_width, |
---|
387 | culvert_height, |
---|
388 | culvert_type, |
---|
389 | manning, |
---|
390 | sum_loss) |
---|
391 | |
---|
392 | print Q, v, d |
---|
393 | assert num.allclose(Q, 5.00, rtol=1.0e-2) #inflow |
---|
394 | assert num.allclose(v, 11.022, rtol=1.0e-2) #outflow velocity |
---|
395 | assert num.allclose(d, 0.76, rtol=1.0e-2) #depth at outlet used to calc v |
---|
396 | |
---|
397 | |
---|
398 | def Xtest_boyd_7(self): |
---|
399 | """test_boyd_7 |
---|
400 | |
---|
401 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
402 | """ |
---|
403 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
404 | |
---|
405 | g=9.81 |
---|
406 | culvert_slope=0.1 # Downward |
---|
407 | |
---|
408 | inlet_depth=0.303 |
---|
409 | outlet_depth=0.00 |
---|
410 | |
---|
411 | culvert_length=4.0 |
---|
412 | culvert_width=0.75 |
---|
413 | culvert_height=0.75 |
---|
414 | |
---|
415 | culvert_type='pipe' |
---|
416 | manning=0.013 |
---|
417 | sum_loss=1.5 |
---|
418 | |
---|
419 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
420 | z_in = 0.0 |
---|
421 | z_out = -culvert_length*culvert_slope/100 |
---|
422 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
423 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
424 | delta_total_energy = E_in-E_out |
---|
425 | |
---|
426 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
427 | outlet_depth, |
---|
428 | inlet_specific_energy, |
---|
429 | delta_total_energy, |
---|
430 | g, |
---|
431 | culvert_length, |
---|
432 | culvert_width, |
---|
433 | culvert_height, |
---|
434 | culvert_type, |
---|
435 | manning, |
---|
436 | sum_loss) |
---|
437 | |
---|
438 | print Q, v, d |
---|
439 | assert num.allclose(Q, 0.10, rtol=1.0e-2) #inflow |
---|
440 | assert num.allclose(v, 1.13, rtol=1.0e-2) #outflow velocity |
---|
441 | assert num.allclose(d, 0.19, rtol=1.0e-2) #depth at outlet used to calc v |
---|
442 | |
---|
443 | |
---|
444 | def Xtest_boyd_8(self): |
---|
445 | """test_boyd_8 |
---|
446 | |
---|
447 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
448 | """ |
---|
449 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
450 | |
---|
451 | g=9.81 |
---|
452 | culvert_slope=0.1 # Downward |
---|
453 | |
---|
454 | inlet_depth=1.135 |
---|
455 | outlet_depth=0.00 |
---|
456 | |
---|
457 | culvert_length=4.0 |
---|
458 | culvert_width=0.75 |
---|
459 | culvert_height=0.75 |
---|
460 | |
---|
461 | culvert_type='pipe' |
---|
462 | manning=0.013 |
---|
463 | sum_loss=1.5 |
---|
464 | |
---|
465 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
466 | z_in = 0.0 |
---|
467 | z_out = -culvert_length*culvert_slope/100 |
---|
468 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
469 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
470 | delta_total_energy = E_in-E_out |
---|
471 | |
---|
472 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
473 | outlet_depth, |
---|
474 | inlet_specific_energy, |
---|
475 | delta_total_energy, |
---|
476 | g, |
---|
477 | culvert_length, |
---|
478 | culvert_width, |
---|
479 | culvert_height, |
---|
480 | culvert_type, |
---|
481 | manning, |
---|
482 | sum_loss) |
---|
483 | |
---|
484 | print Q, v, d |
---|
485 | assert num.allclose(Q, 1.00, rtol=1.0e-2) #inflow |
---|
486 | assert num.allclose(v, 2.204, rtol=1.0e-2) #outflow velocity |
---|
487 | assert num.allclose(d, 0.76, rtol=1.0e-2) #depth at outlet used to calc v |
---|
488 | |
---|
489 | def Xtest_boyd_9(self): |
---|
490 | """test_boyd_9 |
---|
491 | |
---|
492 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
493 | """ |
---|
494 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
495 | |
---|
496 | g=9.81 |
---|
497 | culvert_slope=0.1 # Downward |
---|
498 | |
---|
499 | inlet_depth=1.1504 |
---|
500 | outlet_depth=1.5 |
---|
501 | |
---|
502 | culvert_length=4.0 |
---|
503 | culvert_width=0.75 |
---|
504 | culvert_height=0.75 |
---|
505 | |
---|
506 | culvert_type='pipe' |
---|
507 | manning=0.013 |
---|
508 | sum_loss=1.5 |
---|
509 | |
---|
510 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
511 | z_in = 0.0 |
---|
512 | z_out = -culvert_length*culvert_slope/100 |
---|
513 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
514 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
515 | delta_total_energy = E_in-E_out |
---|
516 | |
---|
517 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
518 | outlet_depth, |
---|
519 | inlet_specific_energy, |
---|
520 | delta_total_energy, |
---|
521 | g, |
---|
522 | culvert_length, |
---|
523 | culvert_width, |
---|
524 | culvert_height, |
---|
525 | culvert_type, |
---|
526 | manning, |
---|
527 | sum_loss) |
---|
528 | |
---|
529 | print Q, v, d |
---|
530 | assert num.allclose(Q, 0.10, rtol=1.0e-2) #inflow |
---|
531 | assert num.allclose(v, 0.22, rtol=1.0e-2) #outflow velocity |
---|
532 | assert num.allclose(d, 0.76, rtol=1.0e-2) #depth at outlet used to calc v |
---|
533 | |
---|
534 | |
---|
535 | def Xtest_boyd_10(self): |
---|
536 | """test_boyd_9 |
---|
537 | |
---|
538 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
539 | """ |
---|
540 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
541 | |
---|
542 | g=9.81 |
---|
543 | culvert_slope=0.1 # Downward |
---|
544 | |
---|
545 | inlet_depth=1.901 |
---|
546 | outlet_depth=1.5 |
---|
547 | |
---|
548 | culvert_length=4.0 |
---|
549 | culvert_width=0.75 |
---|
550 | culvert_height=0.75 |
---|
551 | |
---|
552 | culvert_type='pipe' |
---|
553 | manning=0.013 |
---|
554 | sum_loss=1.5 |
---|
555 | |
---|
556 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
557 | z_in = 0.0 |
---|
558 | z_out = -culvert_length*culvert_slope/100 |
---|
559 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
560 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
561 | delta_total_energy = E_in-E_out |
---|
562 | |
---|
563 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
564 | outlet_depth, |
---|
565 | inlet_specific_energy, |
---|
566 | delta_total_energy, |
---|
567 | g, |
---|
568 | culvert_length, |
---|
569 | culvert_width, |
---|
570 | culvert_height, |
---|
571 | culvert_type, |
---|
572 | manning, |
---|
573 | sum_loss) |
---|
574 | |
---|
575 | print Q, v, d |
---|
576 | assert num.allclose(Q, 1.00, rtol=1.0e-2) #inflow |
---|
577 | assert num.allclose(v, 2.204, rtol=1.0e-2) #outflow velocity |
---|
578 | assert num.allclose(d, 0.76, rtol=1.0e-2) #depth at outlet used to calc v |
---|
579 | |
---|
580 | |
---|
581 | #------------------------------------------------------------- |
---|
582 | if __name__ == "__main__": |
---|
583 | suite = unittest.makeSuite(Test_culvert_routines, 'test') |
---|
584 | runner = unittest.TextTestRunner() |
---|
585 | runner.run(suite) |
---|
586 | |
---|