1 | #!/usr/bin/env python |
---|
2 | |
---|
3 | |
---|
4 | import unittest |
---|
5 | import os.path |
---|
6 | import sys |
---|
7 | |
---|
8 | from anuga.utilities.system_tools import get_pathname_from_package |
---|
9 | from anuga.culvert_flows.culvert_routines import boyd_generalised_culvert_model |
---|
10 | import numpy as num |
---|
11 | |
---|
12 | |
---|
13 | class Test_culvert_routines_pipe_1pct(unittest.TestCase): |
---|
14 | """ |
---|
15 | This unit test sets up 6 tests for various culvert conditions for a Circular Pipe Culvert on a 1.0% Slope |
---|
16 | """ |
---|
17 | |
---|
18 | def setUp(self): |
---|
19 | pass |
---|
20 | |
---|
21 | def tearDown(self): |
---|
22 | pass |
---|
23 | |
---|
24 | |
---|
25 | def test_boyd_1(self): |
---|
26 | """test_boyd_1 |
---|
27 | |
---|
28 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
29 | """ |
---|
30 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
31 | |
---|
32 | g=9.81 |
---|
33 | |
---|
34 | |
---|
35 | inlet_depth=0.150 |
---|
36 | outlet_depth=0.15 |
---|
37 | inlet_velocity=1.00 |
---|
38 | outlet_velocity=0.5 |
---|
39 | |
---|
40 | culvert_length=10.0 |
---|
41 | culvert_width=0.0 |
---|
42 | culvert_height=1.20 |
---|
43 | |
---|
44 | culvert_type='circle' |
---|
45 | manning=0.013 |
---|
46 | sum_loss=1.5 |
---|
47 | |
---|
48 | inlet_specific_energy=inlet_depth + 0.5*inlet_velocity**2/g |
---|
49 | culvert_slope=1.0 # % Downward |
---|
50 | z_in = 10.0 |
---|
51 | z_out = -culvert_length*culvert_slope/100 |
---|
52 | E_in = z_in+inlet_depth + 0.5*inlet_velocity**2/g |
---|
53 | E_out = z_out+outlet_depth + 0.5*outlet_velocity**2/g |
---|
54 | delta_total_energy = E_in-E_out |
---|
55 | inlet_specific_energy=inlet_depth + 0.5*inlet_velocity**2/g |
---|
56 | |
---|
57 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
58 | outlet_depth, |
---|
59 | inlet_velocity, |
---|
60 | outlet_velocity, |
---|
61 | inlet_specific_energy, |
---|
62 | delta_total_energy, |
---|
63 | g, |
---|
64 | culvert_length, |
---|
65 | culvert_width, |
---|
66 | culvert_height, |
---|
67 | culvert_type, |
---|
68 | manning, |
---|
69 | sum_loss) |
---|
70 | |
---|
71 | #print ('%s,%.2f,%.2f,%.2f' %('ANUGAcalcsTEST01 Q-v-d',Q,v,d)) |
---|
72 | #print('%s,%.2f,%.2f,%.2f' %('Spreadsheet_Boydcalcs', 0.113, 0.297, 0.443)) |
---|
73 | assert num.allclose(Q, 0.113, rtol=1.0e-1) #inflow |
---|
74 | assert num.allclose(v, 0.297, rtol=1.0e-1) #outflow velocity |
---|
75 | assert num.allclose(d, 0.443, rtol=1.0e-1) #depth at outlet used to calc v |
---|
76 | |
---|
77 | def test_boyd_2(self): |
---|
78 | """test_boyd_2 |
---|
79 | |
---|
80 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
81 | """ |
---|
82 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
83 | |
---|
84 | g=9.81 |
---|
85 | culvert_slope=1 # Downward |
---|
86 | |
---|
87 | inlet_depth=0.500 |
---|
88 | outlet_depth=0.700 |
---|
89 | inlet_velocity=1.5 |
---|
90 | outlet_velocity=0.50 |
---|
91 | |
---|
92 | culvert_length=10.0 |
---|
93 | culvert_width=0.0 |
---|
94 | culvert_height=1.20 |
---|
95 | culvert_width=0.0 |
---|
96 | culvert_type='circle' |
---|
97 | manning=0.013 |
---|
98 | sum_loss=1.5 |
---|
99 | |
---|
100 | inlet_specific_energy=inlet_depth + 0.5*inlet_velocity**2/g |
---|
101 | z_in = 0.0 |
---|
102 | z_out = -culvert_length*culvert_slope/100 |
---|
103 | E_in = z_in+inlet_depth + 0.5*inlet_velocity**2/g |
---|
104 | E_out = z_out+outlet_depth + 0.5*outlet_velocity**2/g |
---|
105 | delta_total_energy = E_in-E_out |
---|
106 | |
---|
107 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
108 | outlet_depth, |
---|
109 | inlet_velocity, |
---|
110 | outlet_velocity, |
---|
111 | inlet_specific_energy, |
---|
112 | delta_total_energy, |
---|
113 | g, |
---|
114 | culvert_length, |
---|
115 | culvert_width, |
---|
116 | culvert_height, |
---|
117 | culvert_type, |
---|
118 | manning, |
---|
119 | sum_loss) |
---|
120 | |
---|
121 | #print ('%s,%.3f,%.3f,%.3f' %('ANUGAcalcsTEST02 Q-v-d',Q,v,d)) |
---|
122 | #print ('%s,%.3f,%.3f,%.3f' %('Spreadsheet_Boydcalcs', 0.108, 0.152, 0.721)) |
---|
123 | assert num.allclose(Q, 0.108, rtol=1.0e-1) #inflow |
---|
124 | assert num.allclose(v, 0.152, rtol=1.0e-1) #outflow velocity |
---|
125 | assert num.allclose(d, 0.721, rtol=1.0e-1) #depth at outlet used to calc v |
---|
126 | |
---|
127 | def test_boyd_3(self): |
---|
128 | """test_boyd_3 |
---|
129 | |
---|
130 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
131 | """ |
---|
132 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
133 | |
---|
134 | g=9.81 |
---|
135 | culvert_slope=1 # Downward |
---|
136 | |
---|
137 | inlet_depth=1.800 |
---|
138 | outlet_depth=0.80 |
---|
139 | inlet_velocity=1.0 |
---|
140 | outlet_velocity=0.5 |
---|
141 | |
---|
142 | culvert_length=10.0 |
---|
143 | |
---|
144 | culvert_height=1.20 |
---|
145 | culvert_width=0.0 |
---|
146 | culvert_type='circle' |
---|
147 | manning=0.013 |
---|
148 | sum_loss=1.5 |
---|
149 | |
---|
150 | inlet_specific_energy=inlet_depth + 0.5*inlet_velocity**2/g |
---|
151 | z_in = 0.0 |
---|
152 | z_out = -culvert_length*culvert_slope/100 |
---|
153 | E_in = z_in+inlet_depth + 0.5*inlet_velocity**2/g |
---|
154 | E_out = z_out+outlet_depth + 0.5*outlet_velocity**2/g |
---|
155 | delta_total_energy = E_in-E_out |
---|
156 | |
---|
157 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
158 | outlet_depth, |
---|
159 | inlet_velocity, |
---|
160 | outlet_velocity, |
---|
161 | inlet_specific_energy, |
---|
162 | delta_total_energy, |
---|
163 | g, |
---|
164 | culvert_length, |
---|
165 | culvert_width, |
---|
166 | culvert_height, |
---|
167 | culvert_type, |
---|
168 | manning, |
---|
169 | sum_loss) |
---|
170 | #print ('%s,%.2f'%('SPEC_E = ',inlet_specific_energy)) |
---|
171 | #print ('%s,%.2f'%('Delta E = ',delta_total_energy)) |
---|
172 | #print ('%s,%.2f,%.2f,%.2f' %('ANUGAcalcsTEST03 Q-v-d',Q,v,d)) |
---|
173 | #print ('%s,%.2f,%.2f,%.2f' %('Spreadsheet_Boydcalcs', 3.441, 3.042, 1.2)) |
---|
174 | assert num.allclose(Q, 3.441, rtol=1.0e-2) #inflow |
---|
175 | assert num.allclose(v, 3.042, rtol=1.0e-2) #outflow velocity |
---|
176 | assert num.allclose(d, 1.2, rtol=1.0e-2) #depth at outlet used to calc v |
---|
177 | |
---|
178 | #NOTE FROM HERE DOWN THE UNITS TEST HAVE NOT BEEN AMENDED TO ALLOW VELOCITY COMPONENT TO BE USED. ONLY ABOVE 3 TESTS WORK. PM WILL FIX THE ONES BELOW WHEN THE ABOVE 3 ARE WORKING |
---|
179 | def test_boyd_4(self): |
---|
180 | """test_boyd_4 |
---|
181 | |
---|
182 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
183 | """ |
---|
184 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
185 | |
---|
186 | g=9.81 |
---|
187 | culvert_slope=1 # Downward |
---|
188 | |
---|
189 | inlet_depth=1.00 |
---|
190 | outlet_depth=0.9 |
---|
191 | inlet_velocity=1.0 |
---|
192 | outlet_velocity=0.5 |
---|
193 | culvert_length=10.0 |
---|
194 | culvert_width=0.0 |
---|
195 | culvert_height=1.20 |
---|
196 | |
---|
197 | culvert_type='circle' |
---|
198 | manning=0.013 |
---|
199 | sum_loss=1.5 |
---|
200 | |
---|
201 | inlet_specific_energy=inlet_depth + 0.5*inlet_velocity**2/g |
---|
202 | z_in = 10.0 |
---|
203 | z_out = 10.0-culvert_length*culvert_slope/100 |
---|
204 | E_in = z_in+inlet_depth + 0.5*inlet_velocity**2/g |
---|
205 | E_out = z_out+outlet_depth + 0.5*outlet_velocity**2/g |
---|
206 | delta_total_energy = E_in-E_out |
---|
207 | |
---|
208 | |
---|
209 | |
---|
210 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
211 | outlet_depth, |
---|
212 | inlet_velocity, |
---|
213 | outlet_velocity, |
---|
214 | inlet_specific_energy, |
---|
215 | delta_total_energy, |
---|
216 | g, |
---|
217 | culvert_length, |
---|
218 | culvert_width, |
---|
219 | culvert_height, |
---|
220 | culvert_type, |
---|
221 | manning, |
---|
222 | sum_loss) |
---|
223 | #print ('%s,%.2f'%('SPEC_E = ',inlet_specific_energy)) |
---|
224 | #print ('%s,%.2f'%('Delta E = ',delta_total_energy)) |
---|
225 | #print ('%s,%.2f,%.2f,%.2f' %('ANUGAcalcsTEST04 Q-v-d',Q,v,d)) |
---|
226 | #print ('%s,%.2f,%.2f,%.2f' %('Spreadsheet_Boydcalcs', 1.559, 1.694, 0.91)) |
---|
227 | assert num.allclose(Q, 1.559, rtol=1.0e-2) #inflow |
---|
228 | assert num.allclose(v, 1.694, rtol=1.0e-2) #outflow velocity |
---|
229 | assert num.allclose(d, 0.91, rtol=1.0e-2) #depth at outlet used to calc v |
---|
230 | |
---|
231 | def test_boyd_5(self): |
---|
232 | """test_boyd_5 |
---|
233 | |
---|
234 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
235 | """ |
---|
236 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
237 | |
---|
238 | g=9.81 |
---|
239 | culvert_slope=1 # Downward |
---|
240 | |
---|
241 | inlet_depth=1.50 |
---|
242 | inlet_velocity= 1.0 |
---|
243 | outlet_depth=1.3 |
---|
244 | outlet_velocity=0.5 |
---|
245 | culvert_length=10.0 |
---|
246 | culvert_width=0.0 |
---|
247 | culvert_height=1.20 |
---|
248 | |
---|
249 | culvert_type='circle' |
---|
250 | manning=0.013 |
---|
251 | sum_loss=1.5 |
---|
252 | |
---|
253 | inlet_specific_energy=inlet_depth + 0.5*inlet_velocity**2/g |
---|
254 | z_in = 10.0 |
---|
255 | z_out = 10.0-culvert_length*culvert_slope/100 |
---|
256 | E_in = z_in+inlet_depth + 0.5*inlet_velocity**2/g |
---|
257 | E_out = z_out+outlet_depth + 0.5*outlet_velocity**2/g |
---|
258 | delta_total_energy = E_in-E_out |
---|
259 | |
---|
260 | |
---|
261 | |
---|
262 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
263 | outlet_depth, |
---|
264 | inlet_velocity, |
---|
265 | outlet_velocity, |
---|
266 | inlet_specific_energy, |
---|
267 | delta_total_energy, |
---|
268 | g, |
---|
269 | culvert_length, |
---|
270 | culvert_width, |
---|
271 | culvert_height, |
---|
272 | culvert_type, |
---|
273 | manning, |
---|
274 | sum_loss) |
---|
275 | #print ('%s,%.3f'%('SPEC_E = ',inlet_specific_energy)) |
---|
276 | #print ('%s,%.3f'%('Delta E = ',delta_total_energy)) |
---|
277 | |
---|
278 | #print ('%s,%.3f,%.3f,%.3f' %('ANUGAcalcsTEST05 Q-v-d',Q,v,d)) |
---|
279 | #print ('%s,%.3f,%.3f,%.3f' %('Spreadsheet_Boydcalcs',2.258, 1.996, 1.20)) |
---|
280 | assert num.allclose(Q, 2.258, rtol=1.0e-2) #inflow |
---|
281 | assert num.allclose(v, 1.996, rtol=1.0e-2) #outflow velocity |
---|
282 | assert num.allclose(d, 1.20, rtol=1.0e-2) #depth at outlet used to calc v |
---|
283 | |
---|
284 | def test_boyd_6(self): |
---|
285 | """test_boyd_6 |
---|
286 | |
---|
287 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
288 | """ |
---|
289 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
290 | |
---|
291 | g=9.81 |
---|
292 | culvert_slope=1 # Downward |
---|
293 | |
---|
294 | inlet_depth=1.50 |
---|
295 | inlet_velocity= 4.0 |
---|
296 | outlet_depth=0.80 |
---|
297 | outlet_velocity=4.0 |
---|
298 | culvert_length=10.0 |
---|
299 | culvert_height=1.20 |
---|
300 | culvert_width=0.0 |
---|
301 | culvert_type='circle' |
---|
302 | manning=0.013 |
---|
303 | sum_loss=1.5 |
---|
304 | |
---|
305 | inlet_specific_energy=inlet_depth + 0.5*inlet_velocity**2/g |
---|
306 | z_in = 10.0 |
---|
307 | z_out = 10.0-culvert_length*culvert_slope/100 |
---|
308 | E_in = z_in+inlet_depth + 0.5*inlet_velocity**2/g |
---|
309 | E_out = z_out+outlet_depth + 0.5*outlet_velocity**2/g |
---|
310 | delta_total_energy = E_in-E_out |
---|
311 | |
---|
312 | |
---|
313 | |
---|
314 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
315 | outlet_depth, |
---|
316 | inlet_velocity, |
---|
317 | outlet_velocity, |
---|
318 | inlet_specific_energy, |
---|
319 | delta_total_energy, |
---|
320 | g, |
---|
321 | culvert_length, |
---|
322 | culvert_width, |
---|
323 | culvert_height, |
---|
324 | culvert_type, |
---|
325 | manning, |
---|
326 | sum_loss) |
---|
327 | #print ('%s,%.3f,%.3f,%.3f' %('ANUGAcalcsTEST06 Q-v-d',Q,v,d)) |
---|
328 | #print ('%s,%.3f,%.3f,%.3f' %('Spreadsheet_Boydcalcs',3.472, 3.070, 1.20)) |
---|
329 | assert num.allclose(Q, 3.472, rtol=1.0e-2) #inflow |
---|
330 | assert num.allclose(v, 3.070, rtol=1.0e-2) #outflow velocity |
---|
331 | assert num.allclose(d, 1.20, rtol=1.0e-2) #depth at outlet used to calc v |
---|
332 | # ========================================================================= |
---|
333 | # ========================================================================= |
---|
334 | |
---|
335 | if __name__ == "__main__": |
---|
336 | suite = unittest.makeSuite(Test_culvert_routines_pipe_1pct, 'test') |
---|
337 | runner = unittest.TextTestRunner() |
---|
338 | runner.run(suite) |
---|