1 | # |
---|
2 | # slide_tsunami function |
---|
3 | # |
---|
4 | |
---|
5 | """This function returns a callable object representing an initial water |
---|
6 | displacement generated by a submarine sediment slide. |
---|
7 | |
---|
8 | Using input parameters: |
---|
9 | |
---|
10 | Required |
---|
11 | length downslope slide length |
---|
12 | depth water depth to slide centre of mass |
---|
13 | slope bathymetric slope |
---|
14 | |
---|
15 | Optional |
---|
16 | x0 x origin (0) |
---|
17 | y0 y origin (0) |
---|
18 | alpha angular orientation of slide in xy plane (0) |
---|
19 | w slide width (0.25*length) |
---|
20 | T slide thickness (0.01*length) |
---|
21 | g acceleration due to gravity (9.8) |
---|
22 | gamma specific density of sediments (1.85) |
---|
23 | Cm added mass coefficient (1) |
---|
24 | Cd drag coefficient (1) |
---|
25 | Cn friction coefficient (0) |
---|
26 | psi (0) |
---|
27 | dx offset of second Gaussian (0.2*width of first Gaussian) |
---|
28 | kappa multiplier for sech^2 function (3.0) |
---|
29 | kappad multiplier for second Gaussian function (0.8) |
---|
30 | zsmall an amount near to zero (0.01) |
---|
31 | |
---|
32 | The following parameters are calculated: |
---|
33 | |
---|
34 | a0 initial acceleration |
---|
35 | ut theoretical terminal velocity |
---|
36 | s0 charactistic distance of motion |
---|
37 | t0 characteristic time of motion |
---|
38 | w initial wavelength of tsunami |
---|
39 | a2D 2D initial amplitude of tsunami |
---|
40 | a3D 3D initial amplitude of tsunami |
---|
41 | |
---|
42 | The returned object is a callable double Gaussian function that represents |
---|
43 | the initial water displacement generated by a submarine sediment slide. |
---|
44 | |
---|
45 | Adrian Hitchman |
---|
46 | Geoscience Australia, June 2005 |
---|
47 | """ |
---|
48 | |
---|
49 | import numpy as num |
---|
50 | |
---|
51 | import anuga.utilities.log as lg |
---|
52 | |
---|
53 | |
---|
54 | def find_min(x0, wa, kappad, dx): |
---|
55 | """Determine eta_min to scale eta(x,y) |
---|
56 | |
---|
57 | eta(x,y) = n03d/nmin*[-f(y)]*g(x) |
---|
58 | |
---|
59 | nmin = min (-f(y)*g(x) ) |
---|
60 | = -f(ystar)*g(xstar) |
---|
61 | |
---|
62 | ystar = min (-f(y) ), i.e. diff(-f(y))=0 |
---|
63 | xstar = min ( g(x) ), i.e. diff(g(x))=0 |
---|
64 | |
---|
65 | ystar = y0 and -f(ystar)=1.0 |
---|
66 | """ |
---|
67 | from math import exp, cosh |
---|
68 | |
---|
69 | step = 0.05 |
---|
70 | x = x0+50. |
---|
71 | deriv = 10.0 |
---|
72 | count_max = 1000000 |
---|
73 | c = 0 |
---|
74 | deriv = 10. |
---|
75 | f_ystar = 1. |
---|
76 | |
---|
77 | while c < count_max and deriv > 0: |
---|
78 | deriv = (x-x0)*exp(-((x-x0)/wa)**2.0) - \ |
---|
79 | kappad*(x-dx-x0)*exp(-((x-dx-x0)/wa)**2.0) |
---|
80 | |
---|
81 | if deriv <= 0: xstar = x |
---|
82 | x -= step |
---|
83 | c += 1 |
---|
84 | |
---|
85 | g_xstar = exp(-((xstar-x0)/wa)**2)-kappad*exp(-((xstar-dx-x0)/wa)**2) |
---|
86 | |
---|
87 | etastar = g_xstar*f_ystar |
---|
88 | |
---|
89 | return etastar |
---|
90 | |
---|
91 | def slide_tsunami(length, depth, slope, width=None, thickness=None, \ |
---|
92 | x0=0.0, y0=0.0, alpha=0.0, \ |
---|
93 | gravity=9.8, gamma=1.85, \ |
---|
94 | massco=1, dragco=1, frictionco=0, psi=0, \ |
---|
95 | dx=None, kappa=3.0, kappad=0.8, zsmall=0.01, \ |
---|
96 | scale=None, |
---|
97 | domain=None, verbose=False): |
---|
98 | |
---|
99 | from math import sin, tan, radians, pi, sqrt, exp |
---|
100 | |
---|
101 | if domain is not None: |
---|
102 | xllcorner = domain.geo_reference.get_xllcorner() |
---|
103 | yllcorner = domain.geo_reference.get_yllcorner() |
---|
104 | x0 = x0 - xllcorner # slump origin (relative) |
---|
105 | y0 = y0 - yllcorner |
---|
106 | |
---|
107 | #if width not provided, set to typical value |
---|
108 | if width is None: |
---|
109 | width = 0.25 * length |
---|
110 | |
---|
111 | #if thickness not provided, set to typical value |
---|
112 | if thickness is None: |
---|
113 | thickness = 0.01 * length |
---|
114 | |
---|
115 | #calculate some parameters of the slide |
---|
116 | |
---|
117 | sint = sin(radians(slope)) |
---|
118 | tant = tan(radians(slope)) |
---|
119 | tanp = tan(radians(psi)) |
---|
120 | |
---|
121 | a0 = gravity * sint * ((gamma-1)/(gamma+massco)) * (1-(tanp/tant)) |
---|
122 | ut = sqrt((gravity*depth) * (length*sint/depth) \ |
---|
123 | * (pi*(gamma-1)/(2*dragco)) * (1-(tanp/tant))) |
---|
124 | s0 = ut**2 / a0 |
---|
125 | t0 = ut / a0 |
---|
126 | |
---|
127 | #calculate some parameters of the water displacement produced by the slide |
---|
128 | |
---|
129 | w = t0 * sqrt(gravity*depth) |
---|
130 | a2D = s0 * (0.0574 - (0.0431*sint)) \ |
---|
131 | * (thickness/length) \ |
---|
132 | * ((length*sint/depth)**1.25) \ |
---|
133 | * (1 - exp(-2.2*(gamma-1))) |
---|
134 | a3D = a2D / (1 + (15.5*sqrt(depth/(length*sint)))) |
---|
135 | |
---|
136 | from math import sqrt, log, e |
---|
137 | dx = 2.0 * (w * sqrt(-log((zsmall/a3D),e))) / 5.0 |
---|
138 | |
---|
139 | # determine nmin for scaling of eta(x,y) |
---|
140 | nmin = find_min(x0,w,kappad,dx) |
---|
141 | |
---|
142 | if scale is None: |
---|
143 | scale = a3D/nmin |
---|
144 | |
---|
145 | #a few temporary print statements |
---|
146 | if verbose is True: |
---|
147 | lg.critical('\nThe slide ...') |
---|
148 | lg.critical('\tLength: %s' % str(length)) |
---|
149 | lg.critical('\tDepth: %s' % str(depth)) |
---|
150 | lg.critical('\tSlope: %s' % str(slope)) |
---|
151 | lg.critical('\tWidth: %s' % str(width)) |
---|
152 | lg.critical('\tThickness: %s' % str(thickness)) |
---|
153 | lg.critical('\tx0: %s' % str(x0)) |
---|
154 | lg.critical('\ty0: %s' % str(y0)) |
---|
155 | lg.critical('\tAlpha: %s' % str(alpha)) |
---|
156 | lg.critical('\tAcceleration: %s' % str(a0)) |
---|
157 | lg.critical('\tTerminal velocity: %s' % str(ut)) |
---|
158 | lg.critical('\tChar time: %s' % str(t0)) |
---|
159 | lg.critical('\tChar distance: %s' % str(s0)) |
---|
160 | lg.critical('\nThe tsunami ...') |
---|
161 | lg.critical('\tWavelength: %s' % str(w)) |
---|
162 | lg.critical('\t2D amplitude: %s' % str(a2D)) |
---|
163 | lg.critical('\t3D amplitude: %s' % str(a3D)) |
---|
164 | lg.critical('\tscale for eta(x,y): %s' % str(scale)) |
---|
165 | |
---|
166 | #keep an eye on some of the assumptions built into the maths |
---|
167 | |
---|
168 | if ((slope < 5) or (slope > 30)): |
---|
169 | if verbose is True: |
---|
170 | lg.critical('WARNING: slope out of range (5 - 30 degrees) %s' |
---|
171 | % str(slope)) |
---|
172 | if ((depth/length < 0.06) or (depth/length > 1.5)): |
---|
173 | if verbose is True: |
---|
174 | lg.critical('WARNING: d/b out of range (0.06 - 1.5) %s' |
---|
175 | % str(depth/length)) |
---|
176 | if ((thickness/length < 0.008) or (thickness/length > 0.2)): |
---|
177 | if verbose is True: |
---|
178 | lg.critical('WARNING: T/b out of range (0.008 - 0.2) %s' |
---|
179 | % str(thickness/length)) |
---|
180 | if ((gamma < 1.46) or (gamma > 2.93)): |
---|
181 | if verbose is True: |
---|
182 | lg.critical('WARNING: gamma out of range (1.46 - 2.93) %s' |
---|
183 | % str(gamma)) |
---|
184 | |
---|
185 | return Double_gaussian(a3D, w, width, x0, y0, alpha, kappa, kappad, zsmall, dx, scale) |
---|
186 | |
---|
187 | # |
---|
188 | # slump_tsunami function |
---|
189 | # |
---|
190 | |
---|
191 | """This function returns a callable object representing an initial water |
---|
192 | displacement generated by a submarine sediment slump. |
---|
193 | |
---|
194 | Using input parameters: |
---|
195 | |
---|
196 | Required |
---|
197 | length downslope slump length |
---|
198 | depth water depth to slump centre of mass |
---|
199 | slope bathymetric slope |
---|
200 | |
---|
201 | Optional |
---|
202 | x0 x origin (0) |
---|
203 | y0 y origin (0) |
---|
204 | alpha angular orientation of slide in xy plane (0) |
---|
205 | w slump width (1.0*length) |
---|
206 | T slump thickness (0.1*length) |
---|
207 | R slump radius of curvature (b^2/(8*T)) |
---|
208 | del_phi slump angular displacement (0.48) |
---|
209 | g acceleration due to gravity (9.8) |
---|
210 | gamma specific density of sediments (1.85) |
---|
211 | Cm added mass coefficient (1) |
---|
212 | Cd drag coefficient (1) |
---|
213 | Cn friction coefficient (0) |
---|
214 | dx offset of second Gaussian (0.2*width of first Gaussian) |
---|
215 | kappa multiplier for sech^2 function (3.0) |
---|
216 | kappad multiplier for second Gaussian function (0.8) |
---|
217 | zsmall an amount near to zero (0.01) |
---|
218 | |
---|
219 | The following parameters are calculated: |
---|
220 | |
---|
221 | a0 initial acceleration |
---|
222 | um maximum velocity |
---|
223 | s0 charactistic distance of motion |
---|
224 | t0 characteristic time of motion |
---|
225 | w initial wavelength of tsunami |
---|
226 | a2D 2D initial amplitude of tsunami |
---|
227 | a3D 3D initial amplitude of tsunami |
---|
228 | |
---|
229 | The returned object is a callable double Gaussian function that represents |
---|
230 | the initial water displacement generated by a submarine sediment slump. |
---|
231 | |
---|
232 | Adrian Hitchman |
---|
233 | Geoscience Australia, June 2005 |
---|
234 | """ |
---|
235 | |
---|
236 | def slump_tsunami(length, depth, slope, width=None, thickness=None, \ |
---|
237 | radius=None, dphi=0.48, x0=0.0, y0=0.0, alpha=0.0, \ |
---|
238 | gravity=9.8, gamma=1.85, \ |
---|
239 | massco=1, dragco=1, frictionco=0, \ |
---|
240 | dx=None, kappa=3.0, kappad=1.0, zsmall=0.01, scale=None, \ |
---|
241 | domain=None, |
---|
242 | verbose=False): |
---|
243 | |
---|
244 | from math import sin, radians, sqrt |
---|
245 | |
---|
246 | if domain is not None: |
---|
247 | xllcorner = domain.geo_reference.get_xllcorner() |
---|
248 | yllcorner = domain.geo_reference.get_yllcorner() |
---|
249 | x0 = x0 - xllcorner # slump origin (relative) |
---|
250 | y0 = y0 - yllcorner |
---|
251 | |
---|
252 | #if width not provided, set to typical value |
---|
253 | if width is None: |
---|
254 | width = length |
---|
255 | |
---|
256 | #if thickness not provided, set to typical value |
---|
257 | if thickness is None: |
---|
258 | thickness = 0.1 * length |
---|
259 | |
---|
260 | #if radius not provided, set to typical value |
---|
261 | if radius is None: |
---|
262 | radius = length**2 / (8.0 * thickness) |
---|
263 | |
---|
264 | #calculate some parameters of the slump |
---|
265 | |
---|
266 | sint = sin(radians(slope)) |
---|
267 | |
---|
268 | s0 = radius * dphi / 2 |
---|
269 | t0 = sqrt((radius*(gamma+massco)) / (gravity*(gamma-1))) |
---|
270 | a0 = s0 / t0**2 |
---|
271 | um = s0 / t0 |
---|
272 | |
---|
273 | #calculate some parameters of the water displacement produced by the slump |
---|
274 | |
---|
275 | w = t0 * sqrt(gravity*depth) |
---|
276 | a2D = s0 * (0.131/sint) \ |
---|
277 | * (thickness/length) \ |
---|
278 | * (length*sint/depth)**1.25 \ |
---|
279 | * (length/radius)**0.63 * dphi**0.39 \ |
---|
280 | * (1.47 - (0.35*(gamma-1))) * (gamma-1) |
---|
281 | a3D = a2D / (1 + (2.06*sqrt(depth/length))) |
---|
282 | |
---|
283 | from math import sqrt, log, e |
---|
284 | dx = 2.0 * (w * sqrt(-log((zsmall/a3D),e))) / 5.0 |
---|
285 | |
---|
286 | # determine nmin for scaling of eta(x,y) |
---|
287 | nmin = find_min(x0,w,kappad,dx) |
---|
288 | |
---|
289 | if scale is None: |
---|
290 | scale = a3D/nmin |
---|
291 | |
---|
292 | #a few temporary print statements |
---|
293 | if verbose is True: |
---|
294 | lg.critical('\nThe slump ...') |
---|
295 | lg.critical('\tLength: %s' % str(length)) |
---|
296 | lg.critical('\tDepth: %s' % str(depth)) |
---|
297 | lg.critical('\tSlope: %s' % str(slope)) |
---|
298 | lg.critical('\tWidth: %s' % str(width)) |
---|
299 | lg.critical('\tThickness: %s' % str(thickness)) |
---|
300 | lg.critical('\tRadius: %s' % str(radius)) |
---|
301 | lg.critical('\tDphi: %s' % str(dphi)) |
---|
302 | lg.critical('\tx0: %s' % str(x0)) |
---|
303 | lg.critical('\ty0: %s' % str(y0)) |
---|
304 | lg.critical('\tAlpha: %s' % str(alpha)) |
---|
305 | lg.critical('\tAcceleration: %s' % str(a0)) |
---|
306 | lg.critical('\tMaximum velocity: %s' % str(um)) |
---|
307 | lg.critical('\tChar time: %s' % str(t0)) |
---|
308 | lg.critical('\tChar distance: %s' % str(s0)) |
---|
309 | lg.critical('\nThe tsunami ...') |
---|
310 | lg.critical('\tWavelength: %s' % str(w)) |
---|
311 | lg.critical('\t2D amplitude: %s' % str(a2D)) |
---|
312 | lg.critical('\t3D amplitude: %s' % str(a3D)) |
---|
313 | lg.critical('\tDelta x %s' % str(dx)) |
---|
314 | lg.critical('\tsmall %s' % str(zsmall)) |
---|
315 | lg.critical('\tKappa d %s' % str(kappad)) |
---|
316 | lg.critical('\tscale for eta(x,y): %s' % str(scale)) |
---|
317 | |
---|
318 | #keep an eye on some of the assumptions built into the maths |
---|
319 | |
---|
320 | if ((slope < 10) or (slope > 30)): |
---|
321 | if verbose is True: |
---|
322 | lg.critical('WARNING: slope out of range (10 - 30 degrees) %s' |
---|
323 | % str(slope)) |
---|
324 | if ((depth/length < 0.34) or (depth/length > 0.5)): |
---|
325 | if verbose is True: |
---|
326 | lg.critical('WARNING: d/b out of range (0.34 - 0.5) %s' |
---|
327 | % str(depth/length)) |
---|
328 | if ((thickness/length < 0.10) or (thickness/length > 0.15)): |
---|
329 | if verbose is True: |
---|
330 | lg.critical('WARNING: T/b out of range (0.10 - 0.15) %s' |
---|
331 | % str(thickness/length)) |
---|
332 | if ((radius/length < 1.0) or (radius/length > 2.0)): |
---|
333 | if verbose is True: |
---|
334 | lg.critical('WARNING: R/b out of range (1 - 2) %s' |
---|
335 | % str(radius/length)) |
---|
336 | if ((dphi < 0.10) or (dphi > 0.52)): |
---|
337 | if verbose is True: |
---|
338 | lg.critical('WARNING: del_phi out of range (0.10 - 0.52) %s' |
---|
339 | % str(dphi)) |
---|
340 | if ((gamma < 1.46) or (gamma > 2.93)): |
---|
341 | if verbose is True: |
---|
342 | lg.critical('WARNING: gamma out of range (1.46 - 2.93) %s' |
---|
343 | % str(gamma)) |
---|
344 | |
---|
345 | return Double_gaussian(a3D, w, width, x0, y0, alpha, kappa, kappad, zsmall, dx, scale) |
---|
346 | |
---|
347 | # |
---|
348 | # Double_gaussian class |
---|
349 | # |
---|
350 | |
---|
351 | """This is a callable class representing the initial water displacment |
---|
352 | generated by a sediment slide or slump. |
---|
353 | |
---|
354 | Using input parameters: |
---|
355 | |
---|
356 | Required |
---|
357 | w initial wavelength of tsunami |
---|
358 | a3D 3D initial amplitude of tsunami |
---|
359 | width width of smf |
---|
360 | |
---|
361 | Optional |
---|
362 | x0 x origin of smf |
---|
363 | y0 y origin of smf |
---|
364 | alpha angular orientation of smf in xy plane (0) |
---|
365 | dx offset of second Gaussian (0.2*width of first Gaussian) |
---|
366 | kappa multiplier for sech^2 function (3.0) |
---|
367 | kappad multiplier for second Gaussian function (0.8) |
---|
368 | zsmall an amount near to zero (0.01) |
---|
369 | |
---|
370 | Adrian Hitchman |
---|
371 | Geoscience Australia, June 2005 |
---|
372 | """ |
---|
373 | |
---|
374 | class Double_gaussian: |
---|
375 | |
---|
376 | def __init__(self, a3D, wavelength, width, x0, y0, alpha, \ |
---|
377 | kappa, kappad, zsmall, dx, scale): |
---|
378 | self.a3D = a3D |
---|
379 | self.wavelength = wavelength |
---|
380 | self.width = width |
---|
381 | self.x0 = x0 |
---|
382 | self.y0 = y0 |
---|
383 | self.alpha = alpha |
---|
384 | self.kappa = kappa |
---|
385 | self.kappad = kappad |
---|
386 | self.scale = scale |
---|
387 | |
---|
388 | if dx is None: |
---|
389 | from math import sqrt, log, e |
---|
390 | dx = 2.0 * (self.wavelength * sqrt(-log((zsmall/self.a3D),e))) / 5.0 |
---|
391 | self.dx = dx |
---|
392 | |
---|
393 | def __call__(self, x, y): |
---|
394 | """Make Double_gaussian a callable object. |
---|
395 | |
---|
396 | If called as a function, this object returns z values representing |
---|
397 | the initial 3D distribution of water heights at the points (x,y) |
---|
398 | produced by a submarine mass failure. |
---|
399 | """ |
---|
400 | |
---|
401 | from math import sin, cos, radians, exp, cosh |
---|
402 | |
---|
403 | #ensure vectors x and y have the same length |
---|
404 | N = len(x) |
---|
405 | assert N == len(y) |
---|
406 | |
---|
407 | am = self.a3D |
---|
408 | am2 = 1.0 |
---|
409 | wa = self.wavelength |
---|
410 | wi = self.width |
---|
411 | x0 = self.x0 |
---|
412 | y0 = self.y0 |
---|
413 | alpha = self.alpha |
---|
414 | dx = self.dx |
---|
415 | kappa = self.kappa |
---|
416 | kappad = self.kappad |
---|
417 | scale = self.scale |
---|
418 | |
---|
419 | #double Gaussian calculation assumes water displacement is oriented |
---|
420 | #E-W, so, for displacement at some angle alpha clockwise from the E-W |
---|
421 | #direction, rotate (x,y) coordinates anti-clockwise by alpha |
---|
422 | |
---|
423 | cosa = cos(radians(alpha)) |
---|
424 | sina = sin(radians(alpha)) |
---|
425 | |
---|
426 | xr = ((x-x0) * cosa - (y-y0) * sina) + x0 |
---|
427 | yr = ((x-x0) * sina + (y-y0) * cosa) + y0 |
---|
428 | |
---|
429 | z = num.zeros(N, num.float) |
---|
430 | maxz = 0.0 |
---|
431 | minz = 0.0 |
---|
432 | for i in range(N): |
---|
433 | try: |
---|
434 | z[i] = -scale / ((cosh(kappa*(yr[i]-y0)/(wi+wa)))**2) \ |
---|
435 | * (exp(-((xr[i]-x0)/wa)**2) - \ |
---|
436 | kappad*exp(-((xr[i]-dx-x0)/wa)**2)) |
---|
437 | if z[i] > maxz: maxz = z[i] |
---|
438 | if z[i] < minz: minz = z[i] |
---|
439 | |
---|
440 | except OverflowError: |
---|
441 | pass |
---|
442 | |
---|
443 | return z |
---|
444 | |
---|
445 | def determineDX(self, zsmall): |
---|
446 | """Determine a suitable offset for the second Gaussian function. |
---|
447 | |
---|
448 | A suitable offset for the second Gaussian function is taken to |
---|
449 | be some fraction of the 'width' of the first Gaussian function. |
---|
450 | |
---|
451 | The 'width' of the first Gaussian is obtained from the range of |
---|
452 | the x coordinates over which the function takes values from |
---|
453 | 'near zero', through 1, and back to 'near zero'. |
---|
454 | |
---|
455 | The parameter zsmall passed to this function specifies how much |
---|
456 | 'near zero' is. |
---|
457 | """ |
---|
458 | |
---|
459 | from math import sqrt, log, e |
---|
460 | |
---|
461 | a = self.a3D |
---|
462 | c = self.wavelength |
---|
463 | |
---|
464 | self.dx = 2.0 * (c * sqrt(-log((zsmall/a),e))) / 5.0 |
---|
465 | |
---|
466 | return self.dx |
---|
467 | |
---|