1 | // C extension for the cg_solve module. Implements a c routine of the |
---|
2 | // conjugate gradient algorithm to solve Ax=b, using sparse matrix A in |
---|
3 | // the csr format. |
---|
4 | // |
---|
5 | // See the module cg_solve.py |
---|
6 | // |
---|
7 | // Padarn Wilson 2012 |
---|
8 | // |
---|
9 | // Note Padarn 26/11/12: Currently the input matrix for the CG solve must |
---|
10 | // be a Sparse_CSR matrix python object - defined in anuga/utilities/sparse.py |
---|
11 | // |
---|
12 | // Note Padarn 5/12/12: I have tried a few optimization modifications which |
---|
13 | // didn't seem to save any time: |
---|
14 | // -- conversion of the long arrays to int arrays (to save memory passing time) |
---|
15 | // -- taking advantage of the symmetric quality of the matrix A to reduce the zAx loop |
---|
16 | // -- specifying different 'chunk' sizes for the openmp loops |
---|
17 | // -- using blas instead of own openmp loops |
---|
18 | |
---|
19 | #include "Python.h" |
---|
20 | #include "numpy/arrayobject.h" |
---|
21 | #include "math.h" |
---|
22 | #include "stdio.h" |
---|
23 | #include "omp.h" |
---|
24 | |
---|
25 | |
---|
26 | // Dot product of two double vectors: a.b |
---|
27 | // @input N: int length of vectors a and b |
---|
28 | // a: first vector of doubles |
---|
29 | // b: second vector of double |
---|
30 | // @return: double result of a.b |
---|
31 | double ddot( int N, double *a, double *b) |
---|
32 | { |
---|
33 | double ret = 0; |
---|
34 | int i; |
---|
35 | #pragma omp parallel for private(i) reduction(+:ret) |
---|
36 | for(i=0;i<N;i++) |
---|
37 | { |
---|
38 | ret+=a[i]*b[i]; |
---|
39 | } |
---|
40 | return ret; |
---|
41 | |
---|
42 | } |
---|
43 | |
---|
44 | // In place multiplication of a double vector x by constant a: a*x |
---|
45 | // @input N: int length of vector x |
---|
46 | // a: double scalar to multiply by |
---|
47 | // x: double vector to scale |
---|
48 | void dscal(int N, double a, double *x) |
---|
49 | { |
---|
50 | int i; |
---|
51 | #pragma omp parallel for private(i) |
---|
52 | for(i=0;i<N;i++) |
---|
53 | { |
---|
54 | x[i]=a*x[i]; |
---|
55 | } |
---|
56 | |
---|
57 | } |
---|
58 | |
---|
59 | // Copy of one vector to another - memory already allocated: y=x |
---|
60 | // @input N: int length of vectors x and y |
---|
61 | // x: double vector to make copy of |
---|
62 | // y: double vector to copy into |
---|
63 | void dcopy( int N, double *x, double *y) |
---|
64 | { |
---|
65 | int i; |
---|
66 | #pragma omp parallel for private(i) |
---|
67 | for(i=0;i<N;i++) |
---|
68 | { |
---|
69 | y[i]=x[i]; |
---|
70 | } |
---|
71 | } |
---|
72 | |
---|
73 | // In place axpy operation: y = a*x + y |
---|
74 | // @input N: int length of vectors x and y |
---|
75 | // a: double to multiply x by |
---|
76 | // x: first double vector |
---|
77 | // y: second double vector, stores result |
---|
78 | void daxpy(int N, double a, double *x, double *y) |
---|
79 | { |
---|
80 | int i; |
---|
81 | #pragma omp parallel for private(i) |
---|
82 | for(i=0;i<N;i++) |
---|
83 | { |
---|
84 | y[i]=y[i]+a*x[i]; |
---|
85 | } |
---|
86 | } |
---|
87 | |
---|
88 | // Sparse CSR matrix-vector product: z = A*x |
---|
89 | // @input z: double vector to store the result |
---|
90 | // data: double vector with non-zero entries of A |
---|
91 | // colind: long vector of column indicies of non-zero entries of A |
---|
92 | // row_ptr: long vector giving index of rows for non-zero entires of A |
---|
93 | // x: double vector to be multiplied |
---|
94 | // M: length of vector x |
---|
95 | void zAx(double * z, double * data, long * colind, long * row_ptr, double * x, int M){ |
---|
96 | |
---|
97 | |
---|
98 | |
---|
99 | long i, j, ckey; |
---|
100 | |
---|
101 | |
---|
102 | |
---|
103 | #pragma omp parallel for private(ckey,j,i) |
---|
104 | for (i=0; i<M; i++){ |
---|
105 | z[i]=0; |
---|
106 | for (ckey=row_ptr[i]; ckey<row_ptr[i+1]; ckey++) { |
---|
107 | j = colind[ckey]; |
---|
108 | z[i] += data[ckey]*x[j]; |
---|
109 | } |
---|
110 | } |
---|
111 | |
---|
112 | |
---|
113 | } |
---|
114 | |
---|
115 | // Diagonal matrix-vector product: z = D*x |
---|
116 | // @input z: double vector to store the result |
---|
117 | // D: double vector of diagonal matrix |
---|
118 | // x: double vector to be multiplied |
---|
119 | // M: length of vector x |
---|
120 | void zDx(double * z, double * D, double * x, int M){ |
---|
121 | |
---|
122 | |
---|
123 | long i, j, ckey; |
---|
124 | |
---|
125 | #pragma omp parallel for private(ckey,j,i) |
---|
126 | for (i=0; i<M; i++){ |
---|
127 | z[i]=D[i]*x[i]; |
---|
128 | } |
---|
129 | |
---|
130 | |
---|
131 | } |
---|
132 | |
---|
133 | // Diagonal matrix-vector product: z = D*x |
---|
134 | // @input z: double vector to store the result |
---|
135 | // D: double vector of diagonal matrix |
---|
136 | // x: double vector to be multiplied |
---|
137 | // M: length of vector x |
---|
138 | void zDinx(double * z, double * D, double * x, int M){ |
---|
139 | |
---|
140 | |
---|
141 | long i, j, ckey; |
---|
142 | |
---|
143 | #pragma omp parallel for private(ckey,j,i) |
---|
144 | for (i=0; i<M; i++){ |
---|
145 | z[i]=1.0/D[i]*x[i]; |
---|
146 | } |
---|
147 | |
---|
148 | |
---|
149 | } |
---|
150 | |
---|
151 | |
---|
152 | |
---|
153 | // Sparse CSR matrix-vector product and vector addition: z = a*A*x + y |
---|
154 | // @input z: double vector to store the result |
---|
155 | // a: double to scale matrix-vector product by |
---|
156 | // data: double vector with non-zero entries of A |
---|
157 | // colind: long vector of column indicies of non-zero entries of A |
---|
158 | // row_ptr: long vector giving index of rows for non-zero entires of A |
---|
159 | // x: double vector to be multiplied |
---|
160 | // y: double vector to add |
---|
161 | // M: length of vector x |
---|
162 | void zaAxpy(double * z, double a, double * data, long * colind, long * row_ptr, double * x, |
---|
163 | double * y,int M){ |
---|
164 | long i, j, ckey; |
---|
165 | #pragma omp parallel for private(ckey,j,i) |
---|
166 | for (i=0; i<M; i++ ){ |
---|
167 | z[i]=y[i]; |
---|
168 | |
---|
169 | for (ckey=row_ptr[i]; ckey<row_ptr[i+1]; ckey++) { |
---|
170 | j = colind[ckey]; |
---|
171 | z[i] += a*data[ckey]*x[j]; |
---|
172 | } |
---|
173 | |
---|
174 | } |
---|
175 | |
---|
176 | } |
---|
177 | |
---|
178 | // Jacobi preconditioner for matrix, A, and right hand side, b. Mutiplies each row |
---|
179 | // by one divided by the diagonal element of the matrix. If the diagonal |
---|
180 | // element is zero, does nothing (should nnot occur) |
---|
181 | // colind: long vector of column indicies of non-zero entries of A |
---|
182 | // row_ptr: long vector giving index of rows for non-zero entires of A |
---|
183 | // b: double vector specifying right hand side of equation to solve |
---|
184 | // M: length of vector b |
---|
185 | |
---|
186 | int _jacobi_precon_c(double* data, |
---|
187 | long* colind, |
---|
188 | long* row_ptr, |
---|
189 | double * precon, |
---|
190 | int M){ |
---|
191 | |
---|
192 | |
---|
193 | long i, j, k, ckey; |
---|
194 | double diag; |
---|
195 | |
---|
196 | |
---|
197 | |
---|
198 | #pragma omp parallel for private(diag,ckey,j,i) |
---|
199 | for (i=0; i<M; i++){ |
---|
200 | diag = 0; |
---|
201 | for (ckey=row_ptr[i]; ckey<row_ptr[i+1]; ckey++) { |
---|
202 | j = colind[ckey]; |
---|
203 | if (i==j){ |
---|
204 | diag = data[ckey]; |
---|
205 | } |
---|
206 | } |
---|
207 | if (diag == 0){ |
---|
208 | diag =1; |
---|
209 | } |
---|
210 | precon[i]=diag; |
---|
211 | } |
---|
212 | |
---|
213 | return 0; |
---|
214 | |
---|
215 | } |
---|
216 | |
---|
217 | // Conjugate gradient solve Ax = b for x, A given in Sparse CSR format |
---|
218 | // @input data: double vector with non-zero entries of A |
---|
219 | // colind: long vector of column indicies of non-zero entries of A |
---|
220 | // row_ptr: long vector giving index of rows for non-zero entires of A |
---|
221 | // b: double vector specifying right hand side of equation to solve |
---|
222 | // x: double vector with initial guess and to store result |
---|
223 | // imax: maximum number of iterations |
---|
224 | // tol: error tollerance for stopping criteria |
---|
225 | // M: length of vectors x and b |
---|
226 | // @return: 0 on success |
---|
227 | int _cg_solve_c(double* data, |
---|
228 | long* colind, |
---|
229 | long* row_ptr, |
---|
230 | double * b, |
---|
231 | double * x, |
---|
232 | int imax, |
---|
233 | double tol, |
---|
234 | double a_tol, |
---|
235 | int M){ |
---|
236 | |
---|
237 | int i = 1; |
---|
238 | double alpha,rTr,rTrOld,bt,rTr0; |
---|
239 | |
---|
240 | double * d = malloc(sizeof(double)*M); |
---|
241 | double * r = malloc(sizeof(double)*M); |
---|
242 | double * q = malloc(sizeof(double)*M); |
---|
243 | double * xold = malloc(sizeof(double)*M); |
---|
244 | |
---|
245 | zaAxpy(r,-1.0,data,colind,row_ptr,x,b,M); |
---|
246 | dcopy(M,r,d); |
---|
247 | |
---|
248 | rTr=ddot(M,r,r); |
---|
249 | rTr0 = rTr; |
---|
250 | |
---|
251 | while((i<imax) && (rTr>pow(tol,2)*rTr0) && (rTr > pow(a_tol,2))){ |
---|
252 | |
---|
253 | zAx(q,data,colind,row_ptr,d,M); |
---|
254 | alpha = rTr/ddot(M,d,q); |
---|
255 | dcopy(M,x,xold); |
---|
256 | daxpy(M,alpha,d,x); |
---|
257 | |
---|
258 | daxpy(M,-alpha,q,r); |
---|
259 | rTrOld = rTr; |
---|
260 | rTr = ddot(M,r,r); |
---|
261 | |
---|
262 | bt= rTr/rTrOld; |
---|
263 | |
---|
264 | dscal(M,bt,d); |
---|
265 | daxpy(M,1.0,r,d); |
---|
266 | |
---|
267 | i=i+1; |
---|
268 | |
---|
269 | } |
---|
270 | |
---|
271 | free(d); |
---|
272 | free(r); |
---|
273 | free(q); |
---|
274 | free(xold); |
---|
275 | |
---|
276 | if (i>=imax){ |
---|
277 | return -1; |
---|
278 | } |
---|
279 | else{ |
---|
280 | return 0; |
---|
281 | } |
---|
282 | |
---|
283 | |
---|
284 | } |
---|
285 | |
---|
286 | // Conjugate gradient solve Ax = b for x, A given in Sparse CSR format, |
---|
287 | // using a diagonal preconditioner M. |
---|
288 | // @input data: double vector with non-zero entries of A |
---|
289 | // colind: long vector of column indicies of non-zero entries of A |
---|
290 | // row_ptr: long vector giving index of rows for non-zero entires of A |
---|
291 | // b: double vector specifying right hand side of equation to solve |
---|
292 | // x: double vector with initial guess and to store result |
---|
293 | // imax: maximum number of iterations |
---|
294 | // tol: error tollerance for stopping criteria |
---|
295 | // M: length of vectors x and b |
---|
296 | // precon: diagonal preconditioner given as vector |
---|
297 | // @return: 0 on success |
---|
298 | int _cg_solve_c_precon(double* data, |
---|
299 | long* colind, |
---|
300 | long* row_ptr, |
---|
301 | double * b, |
---|
302 | double * x, |
---|
303 | int imax, |
---|
304 | double tol, |
---|
305 | double a_tol, |
---|
306 | int M, |
---|
307 | double * precon){ |
---|
308 | |
---|
309 | int i = 1; |
---|
310 | double alpha,rTr,rTrOld,bt,rTr0; |
---|
311 | |
---|
312 | double * d = malloc(sizeof(double)*M); |
---|
313 | double * r = malloc(sizeof(double)*M); |
---|
314 | double * q = malloc(sizeof(double)*M); |
---|
315 | double * xold = malloc(sizeof(double)*M); |
---|
316 | double * rhat = malloc(sizeof(double)*M); |
---|
317 | double * temp = malloc(sizeof(double)*M); |
---|
318 | |
---|
319 | zaAxpy(r,-1.0,data,colind,row_ptr,x,b,M); |
---|
320 | zDinx(rhat,precon,r,M); |
---|
321 | dcopy(M,rhat,d); |
---|
322 | |
---|
323 | rTr=ddot(M,r,rhat); |
---|
324 | rTr0 = rTr; |
---|
325 | |
---|
326 | while((i<imax) && (rTr>pow(tol,2)*rTr0) && (rTr > pow(a_tol,2))){ |
---|
327 | |
---|
328 | zAx(q,data,colind,row_ptr,d,M); |
---|
329 | alpha = rTr/ddot(M,d,q); |
---|
330 | dcopy(M,x,xold); |
---|
331 | daxpy(M,alpha,d,x); |
---|
332 | |
---|
333 | daxpy(M,-alpha,q,r); |
---|
334 | zDinx(rhat,precon,r,M); |
---|
335 | rTrOld = rTr; |
---|
336 | rTr = ddot(M,r,rhat); |
---|
337 | |
---|
338 | bt= rTr/rTrOld; |
---|
339 | |
---|
340 | dscal(M,bt,d); |
---|
341 | daxpy(M,1.0,rhat,d); |
---|
342 | |
---|
343 | i=i+1; |
---|
344 | |
---|
345 | } |
---|
346 | free(temp); |
---|
347 | free(rhat); |
---|
348 | free(d); |
---|
349 | free(r); |
---|
350 | free(q); |
---|
351 | free(xold); |
---|
352 | |
---|
353 | if (i>=imax){ |
---|
354 | return -1; |
---|
355 | } |
---|
356 | else{ |
---|
357 | return 0; |
---|
358 | } |
---|
359 | |
---|
360 | |
---|
361 | } |
---|
362 | |
---|
363 | |
---|
364 | ///////////////////////////////////////////////// |
---|
365 | // Gateways to Python |
---|
366 | |
---|
367 | PyObject *jacobi_precon_c(PyObject *self, PyObject *args){ |
---|
368 | |
---|
369 | int M,err,bcols; |
---|
370 | |
---|
371 | PyObject *csr_sparse; // input sparse matrix (must be CSR format) |
---|
372 | |
---|
373 | PyArrayObject |
---|
374 | *data, //Non Zeros Data array |
---|
375 | *colind, //Column indices array |
---|
376 | *row_ptr, //Row pointers array |
---|
377 | *precon; //Right hand side |
---|
378 | |
---|
379 | |
---|
380 | // Convert Python arguments to C |
---|
381 | if (!PyArg_ParseTuple(args, "OO", &csr_sparse, &precon)) { |
---|
382 | PyErr_SetString(PyExc_RuntimeError, "jacobi_precon_c could not parse input"); |
---|
383 | return NULL; |
---|
384 | } |
---|
385 | |
---|
386 | // Extract three subarrays making up the sparse matrix in CSR format. |
---|
387 | data = (PyArrayObject*) |
---|
388 | PyObject_GetAttrString(csr_sparse, "data"); |
---|
389 | if (!data) { |
---|
390 | PyErr_SetString(PyExc_RuntimeError, |
---|
391 | "Data array could not be allocated in cg_solve_c"); |
---|
392 | return NULL; |
---|
393 | } |
---|
394 | |
---|
395 | colind = (PyArrayObject*) |
---|
396 | PyObject_GetAttrString(csr_sparse, "colind"); |
---|
397 | if (!colind) { |
---|
398 | PyErr_SetString(PyExc_RuntimeError, |
---|
399 | "Column index array could not be allocated in cg_solve_c"); |
---|
400 | return NULL; |
---|
401 | } |
---|
402 | |
---|
403 | row_ptr = (PyArrayObject*) |
---|
404 | PyObject_GetAttrString(csr_sparse, "row_ptr"); |
---|
405 | if (!row_ptr) { |
---|
406 | PyErr_SetString(PyExc_RuntimeError, |
---|
407 | "Row pointer array could not be allocated in cg_solve_c"); |
---|
408 | } |
---|
409 | |
---|
410 | M = (row_ptr -> dimensions[0])-1; |
---|
411 | |
---|
412 | // Precondition the matrix and right hand side |
---|
413 | err = _jacobi_precon_c((double*) data->data, |
---|
414 | (long*) colind->data, |
---|
415 | (long*) row_ptr->data, |
---|
416 | (double *) precon->data, |
---|
417 | M); |
---|
418 | |
---|
419 | // Free extra references to sparse matrix parts |
---|
420 | Py_DECREF(data); |
---|
421 | Py_DECREF(colind); |
---|
422 | Py_DECREF(row_ptr); |
---|
423 | |
---|
424 | return Py_BuildValue(""); |
---|
425 | |
---|
426 | |
---|
427 | } |
---|
428 | |
---|
429 | PyObject *cg_solve_c(PyObject *self, PyObject *args) { |
---|
430 | |
---|
431 | |
---|
432 | PyObject *csr_sparse; // input sparse matrix (must be CSR format) |
---|
433 | |
---|
434 | int imax,M,err,bcols; |
---|
435 | double tol,a_tol; |
---|
436 | |
---|
437 | PyArrayObject |
---|
438 | *data, //Non Zeros Data array |
---|
439 | *colind, //Column indices array |
---|
440 | *row_ptr, //Row pointers array |
---|
441 | *x0, //Initial guess - and sotrage of result. |
---|
442 | *b; //Right hand side |
---|
443 | |
---|
444 | |
---|
445 | // Convert Python arguments to C |
---|
446 | if (!PyArg_ParseTuple(args, "OOOiddi", &csr_sparse, &x0, &b, &imax, &tol, &a_tol, &bcols)) { |
---|
447 | PyErr_SetString(PyExc_RuntimeError, "cg_solve_c could not parse input"); |
---|
448 | return NULL; |
---|
449 | } |
---|
450 | |
---|
451 | // Extract three subarrays making up the sparse matrix in CSR format. |
---|
452 | data = (PyArrayObject*) |
---|
453 | PyObject_GetAttrString(csr_sparse, "data"); |
---|
454 | if (!data) { |
---|
455 | PyErr_SetString(PyExc_RuntimeError, |
---|
456 | "Data array could not be allocated in cg_solve_c"); |
---|
457 | return NULL; |
---|
458 | } |
---|
459 | |
---|
460 | colind = (PyArrayObject*) |
---|
461 | PyObject_GetAttrString(csr_sparse, "colind"); |
---|
462 | if (!colind) { |
---|
463 | PyErr_SetString(PyExc_RuntimeError, |
---|
464 | "Column index array could not be allocated in cg_solve_c"); |
---|
465 | return NULL; |
---|
466 | } |
---|
467 | |
---|
468 | row_ptr = (PyArrayObject*) |
---|
469 | PyObject_GetAttrString(csr_sparse, "row_ptr"); |
---|
470 | if (!row_ptr) { |
---|
471 | PyErr_SetString(PyExc_RuntimeError, |
---|
472 | "Row pointer array could not be allocated in cg_solve_c"); |
---|
473 | } |
---|
474 | |
---|
475 | M = (row_ptr -> dimensions[0])-1; |
---|
476 | |
---|
477 | // Solve system uisng conjugate gradient |
---|
478 | err = _cg_solve_c((double*) data->data, |
---|
479 | (long*) colind->data, |
---|
480 | (long*) row_ptr->data, |
---|
481 | (double *) b->data, |
---|
482 | (double *) x0->data, |
---|
483 | imax, |
---|
484 | tol, |
---|
485 | a_tol, |
---|
486 | M); |
---|
487 | |
---|
488 | // Free extra references to sparse matrix parts |
---|
489 | Py_DECREF(data); |
---|
490 | Py_DECREF(colind); |
---|
491 | Py_DECREF(row_ptr); |
---|
492 | |
---|
493 | return Py_BuildValue("i",err); |
---|
494 | } |
---|
495 | |
---|
496 | PyObject *cg_solve_c_precon(PyObject *self, PyObject *args) { |
---|
497 | |
---|
498 | |
---|
499 | PyObject *csr_sparse; // input sparse matrix (must be CSR format) |
---|
500 | |
---|
501 | int imax,M,err,bcols; |
---|
502 | double tol,a_tol; |
---|
503 | |
---|
504 | PyArrayObject |
---|
505 | *data, //Non Zeros Data array |
---|
506 | *colind, //Column indices array |
---|
507 | *row_ptr, //Row pointers array |
---|
508 | *x0, //Initial guess - and sotrage of result. |
---|
509 | *b, //Right hand side |
---|
510 | *precon; //diagonal preconditioner |
---|
511 | |
---|
512 | |
---|
513 | // Convert Python arguments to C |
---|
514 | if (!PyArg_ParseTuple(args, "OOOiddiO", &csr_sparse, &x0, &b, &imax, &tol, &a_tol, &bcols, &precon)) { |
---|
515 | PyErr_SetString(PyExc_RuntimeError, "cg_solve_c_precon could not parse input"); |
---|
516 | return NULL; |
---|
517 | } |
---|
518 | |
---|
519 | // Extract three subarrays making up the sparse matrix in CSR format. |
---|
520 | data = (PyArrayObject*) |
---|
521 | PyObject_GetAttrString(csr_sparse, "data"); |
---|
522 | if (!data) { |
---|
523 | PyErr_SetString(PyExc_RuntimeError, |
---|
524 | "Data array could not be allocated in cg_solve_c"); |
---|
525 | return NULL; |
---|
526 | } |
---|
527 | |
---|
528 | colind = (PyArrayObject*) |
---|
529 | PyObject_GetAttrString(csr_sparse, "colind"); |
---|
530 | if (!colind) { |
---|
531 | PyErr_SetString(PyExc_RuntimeError, |
---|
532 | "Column index array could not be allocated in cg_solve_c"); |
---|
533 | return NULL; |
---|
534 | } |
---|
535 | |
---|
536 | row_ptr = (PyArrayObject*) |
---|
537 | PyObject_GetAttrString(csr_sparse, "row_ptr"); |
---|
538 | if (!row_ptr) { |
---|
539 | PyErr_SetString(PyExc_RuntimeError, |
---|
540 | "Row pointer array could not be allocated in cg_solve_c"); |
---|
541 | } |
---|
542 | |
---|
543 | M = (row_ptr -> dimensions[0])-1; |
---|
544 | |
---|
545 | // Solve system uisng conjugate gradient |
---|
546 | err = _cg_solve_c_precon((double*) data->data, |
---|
547 | (long*) colind->data, |
---|
548 | (long*) row_ptr->data, |
---|
549 | (double *) b->data, |
---|
550 | (double *) x0->data, |
---|
551 | imax, |
---|
552 | tol, |
---|
553 | a_tol, |
---|
554 | M, |
---|
555 | (double *) precon->data); |
---|
556 | |
---|
557 | // Free extra references to sparse matrix parts |
---|
558 | Py_DECREF(data); |
---|
559 | Py_DECREF(colind); |
---|
560 | Py_DECREF(row_ptr); |
---|
561 | |
---|
562 | return Py_BuildValue("i",err); |
---|
563 | } |
---|
564 | |
---|
565 | |
---|
566 | |
---|
567 | // Method table for python module |
---|
568 | static struct PyMethodDef MethodTable[] = { |
---|
569 | {"cg_solve_c", cg_solve_c, METH_VARARGS, "Print out"}, |
---|
570 | {"cg_solve_c_precon", cg_solve_c_precon, METH_VARARGS, "Print out"}, |
---|
571 | {"jacobi_precon_c", jacobi_precon_c, METH_VARARGS, "Print out"}, |
---|
572 | {NULL, NULL, 0, NULL} /* sentinel */ |
---|
573 | }; |
---|
574 | |
---|
575 | // Module initialisation |
---|
576 | void initcg_ext(void){ |
---|
577 | Py_InitModule("cg_ext", MethodTable); |
---|
578 | |
---|
579 | import_array(); //Necessary for handling of NumPY structures |
---|
580 | } |
---|
581 | |
---|