[5897] | 1 | // Python - C extension for polygon module. |
---|
| 2 | // |
---|
| 3 | // To compile (Python2.3): |
---|
| 4 | // gcc -c polygon_ext.c -I/usr/include/python2.3 -o polygon_ext.o -Wall -O |
---|
| 5 | // gcc -shared polygon_ext.o -o polygon_ext.so |
---|
| 6 | // |
---|
| 7 | // See the module polygon.py |
---|
| 8 | // |
---|
| 9 | // |
---|
| 10 | // Ole Nielsen, GA 2004 |
---|
| 11 | // |
---|
[7276] | 12 | // NOTE: We use long* instead of int* for numeric arrays as this will work both |
---|
[5897] | 13 | // for 64 as well as 32 bit systems |
---|
| 14 | |
---|
| 15 | |
---|
| 16 | #include "Python.h" |
---|
[7276] | 17 | #include "numpy/arrayobject.h" |
---|
[5897] | 18 | #include "math.h" |
---|
| 19 | |
---|
[7276] | 20 | #include "util_ext.h" |
---|
| 21 | |
---|
[8017] | 22 | #define YES 1 |
---|
| 23 | #define NO 0 |
---|
[7276] | 24 | |
---|
[8017] | 25 | |
---|
[6189] | 26 | double dist(double x, |
---|
| 27 | double y) { |
---|
| 28 | |
---|
| 29 | return sqrt(x*x + y*y); |
---|
| 30 | } |
---|
[5897] | 31 | |
---|
[6189] | 32 | |
---|
[5897] | 33 | int __point_on_line(double x, double y, |
---|
| 34 | double x0, double y0, |
---|
| 35 | double x1, double y1, |
---|
| 36 | double rtol, |
---|
| 37 | double atol) { |
---|
| 38 | /*Determine whether a point is on a line segment |
---|
| 39 | |
---|
| 40 | Input: x, y, x0, x0, x1, y1: where |
---|
| 41 | point is given by x, y |
---|
| 42 | line is given by (x0, y0) and (x1, y1) |
---|
| 43 | |
---|
| 44 | */ |
---|
| 45 | |
---|
| 46 | double a0, a1, a_normal0, a_normal1, b0, b1, len_a, len_b; |
---|
| 47 | double nominator, denominator; |
---|
| 48 | int is_parallel; |
---|
| 49 | |
---|
| 50 | a0 = x - x0; |
---|
| 51 | a1 = y - y0; |
---|
| 52 | |
---|
| 53 | a_normal0 = a1; |
---|
| 54 | a_normal1 = -a0; |
---|
| 55 | |
---|
| 56 | b0 = x1 - x0; |
---|
| 57 | b1 = y1 - y0; |
---|
| 58 | |
---|
| 59 | nominator = fabs(a_normal0*b0 + a_normal1*b1); |
---|
| 60 | denominator = b0*b0 + b1*b1; |
---|
| 61 | |
---|
| 62 | // Determine if line is parallel to point vector up to a tolerance |
---|
| 63 | is_parallel = 0; |
---|
| 64 | if (denominator == 0.0) { |
---|
| 65 | // Use absolute tolerance |
---|
| 66 | if (nominator <= atol) { |
---|
| 67 | is_parallel = 1; |
---|
| 68 | } |
---|
| 69 | } else { |
---|
| 70 | // Denominator is positive - use relative tolerance |
---|
| 71 | if (nominator/denominator <= rtol) { |
---|
| 72 | is_parallel = 1; |
---|
| 73 | } |
---|
| 74 | } |
---|
| 75 | |
---|
| 76 | if (is_parallel) { |
---|
| 77 | // Point is somewhere on the infinite extension of the line |
---|
| 78 | // subject to specified absolute tolerance |
---|
| 79 | |
---|
[6189] | 80 | len_a = dist(a0, a1); //sqrt(a0*a0 + a1*a1); |
---|
| 81 | len_b = dist(b0, b1); //sqrt(b0*b0 + b1*b1); |
---|
[5897] | 82 | |
---|
| 83 | if (a0*b0 + a1*b1 >= 0 && len_a <= len_b) { |
---|
| 84 | return 1; |
---|
| 85 | } else { |
---|
| 86 | return 0; |
---|
| 87 | } |
---|
| 88 | } else { |
---|
| 89 | return 0; |
---|
| 90 | } |
---|
| 91 | } |
---|
| 92 | |
---|
| 93 | |
---|
[8017] | 94 | // public domain function by Darel Rex Finley, 2006 |
---|
| 95 | // http://www.alienryderflex.com/intersect/ |
---|
| 96 | // |
---|
| 97 | // Determines the intersection point of the line segment defined by points A and B |
---|
| 98 | // with the line segment defined by points C and D. |
---|
| 99 | // |
---|
| 100 | // Returns YES if the intersection point was found, and stores that point in X,Y. |
---|
| 101 | // Returns NO if there is no determinable intersection point, in which case X,Y will |
---|
| 102 | // be unmodified. |
---|
[5897] | 103 | |
---|
[8017] | 104 | int __lineSegmentIntersection( |
---|
| 105 | double Ax, double Ay, |
---|
| 106 | double Bx, double By, |
---|
| 107 | double Cx, double Cy, |
---|
| 108 | double Dx, double Dy, |
---|
| 109 | double *X, double *Y) { |
---|
| 110 | |
---|
| 111 | double distAB, theCos, theSin, newX, ABpos; |
---|
| 112 | |
---|
| 113 | // Fail if either line segment is zero-length. |
---|
| 114 | if ( (Ax == Bx && Ay == By) || (Cx == Dx && Cy == Dy) ) return NO ; |
---|
| 115 | |
---|
| 116 | // Fail if the segments share an end-point. |
---|
| 117 | if ( (Ax == Cx && Ay == Cy) || (Bx == Cx && By == Cy) |
---|
| 118 | || (Ax == Dx && Ay == Dy) || (Bx == Dx && By == Dy) ) { |
---|
| 119 | return NO; |
---|
| 120 | } |
---|
| 121 | |
---|
| 122 | // (1) Translate the system so that point A is on the origin. |
---|
| 123 | Bx -= Ax; |
---|
| 124 | By -= Ay; |
---|
| 125 | Cx -= Ax; |
---|
| 126 | Cy -= Ay; |
---|
| 127 | Dx -= Ax; |
---|
| 128 | Dy -= Ay; |
---|
| 129 | |
---|
| 130 | // Discover the length of segment A-B. |
---|
| 131 | distAB = sqrt(Bx * Bx + By * By); |
---|
| 132 | |
---|
| 133 | // (2) Rotate the system so that point B is on the positive X axis. |
---|
| 134 | theCos = Bx / distAB; |
---|
| 135 | theSin = By / distAB; |
---|
| 136 | newX = Cx * theCos + Cy*theSin; |
---|
| 137 | Cy = Cy * theCos - Cx*theSin; |
---|
| 138 | Cx = newX; |
---|
| 139 | newX = Dx * theCos + Dy*theSin; |
---|
| 140 | Dy = Dy * theCos - Dx*theSin; |
---|
| 141 | Dx = newX; |
---|
| 142 | |
---|
| 143 | // Fail if segment C-D doesn't cross line A-B. |
---|
| 144 | if ( (Cy < 0. && Dy < 0.) || (Cy >= 0. && Dy >= 0.) ) return NO; |
---|
| 145 | |
---|
| 146 | // (3) Discover the position of the intersection point along line A-B. |
---|
| 147 | ABpos = Dx + (Cx - Dx) * Dy / (Dy - Cy); |
---|
| 148 | |
---|
| 149 | // Fail if segment C-D crosses line A-B outside of segment A-B. |
---|
| 150 | if (ABpos < 0. || ABpos > distAB) return NO; |
---|
| 151 | |
---|
| 152 | // (4) Apply the discovered position to line A-B in the original coordinate system. |
---|
| 153 | *X = Ax + ABpos*theCos; |
---|
| 154 | *Y = Ay + ABpos*theSin; |
---|
| 155 | |
---|
| 156 | // Success. |
---|
| 157 | return YES; |
---|
| 158 | } |
---|
| 159 | |
---|
[5897] | 160 | /* |
---|
| 161 | WORK IN PROGRESS TO OPTIMISE INTERSECTION |
---|
| 162 | int __intersection(double x0, double y0, |
---|
| 163 | double x1, double y1) { |
---|
| 164 | |
---|
| 165 | |
---|
| 166 | x0 = line0[0,0]; y0 = line0[0,1] |
---|
| 167 | x1 = line0[1,0]; y1 = line0[1,1] |
---|
| 168 | |
---|
| 169 | x2 = line1[0,0]; y2 = line1[0,1] |
---|
| 170 | x3 = line1[1,0]; y3 = line1[1,1] |
---|
| 171 | |
---|
| 172 | denom = (y3-y2)*(x1-x0) - (x3-x2)*(y1-y0) |
---|
| 173 | u0 = (x3-x2)*(y0-y2) - (y3-y2)*(x0-x2) |
---|
| 174 | u1 = (x2-x0)*(y1-y0) - (y2-y0)*(x1-x0) |
---|
| 175 | |
---|
| 176 | if allclose(denom, 0.0): |
---|
| 177 | # Lines are parallel - check if they coincide on a shared a segment |
---|
| 178 | |
---|
| 179 | if allclose( [u0, u1], 0.0 ): |
---|
| 180 | # We now know that the lines if continued coincide |
---|
| 181 | # The remaining check will establish if the finite lines share a segment |
---|
| 182 | |
---|
| 183 | line0_starts_on_line1 = line0_ends_on_line1 =\ |
---|
| 184 | line1_starts_on_line0 = line1_ends_on_line0 = False |
---|
| 185 | |
---|
| 186 | if point_on_line([x0, y0], line1): |
---|
| 187 | line0_starts_on_line1 = True |
---|
| 188 | |
---|
| 189 | if point_on_line([x1, y1], line1): |
---|
| 190 | line0_ends_on_line1 = True |
---|
| 191 | |
---|
| 192 | if point_on_line([x2, y2], line0): |
---|
| 193 | line1_starts_on_line0 = True |
---|
| 194 | |
---|
| 195 | if point_on_line([x3, y3], line0): |
---|
| 196 | line1_ends_on_line0 = True |
---|
| 197 | |
---|
| 198 | if not(line0_starts_on_line1 or line0_ends_on_line1\ |
---|
| 199 | or line1_starts_on_line0 or line1_ends_on_line0): |
---|
| 200 | # Lines are parallel and would coincide if extended, but not as they are. |
---|
| 201 | return 3, None |
---|
| 202 | |
---|
| 203 | |
---|
| 204 | # One line fully included in the other. Use direction of included line |
---|
| 205 | if line0_starts_on_line1 and line0_ends_on_line1: |
---|
| 206 | # Shared segment is line0 fully included in line1 |
---|
| 207 | segment = array([[x0, y0], [x1, y1]]) |
---|
| 208 | |
---|
| 209 | if line1_starts_on_line0 and line1_ends_on_line0: |
---|
| 210 | # Shared segment is line1 fully included in line0 |
---|
| 211 | segment = array([[x2, y2], [x3, y3]]) |
---|
| 212 | |
---|
| 213 | |
---|
| 214 | # Overlap with lines are oriented the same way |
---|
| 215 | if line0_starts_on_line1 and line1_ends_on_line0: |
---|
| 216 | # Shared segment from line0 start to line 1 end |
---|
| 217 | segment = array([[x0, y0], [x3, y3]]) |
---|
| 218 | |
---|
| 219 | if line1_starts_on_line0 and line0_ends_on_line1: |
---|
| 220 | # Shared segment from line1 start to line 0 end |
---|
| 221 | segment = array([[x2, y2], [x1, y1]]) |
---|
| 222 | |
---|
| 223 | |
---|
| 224 | # Overlap in opposite directions - use direction of line0 |
---|
| 225 | if line0_starts_on_line1 and line1_starts_on_line0: |
---|
| 226 | # Shared segment from line0 start to line 1 end |
---|
| 227 | segment = array([[x0, y0], [x2, y2]]) |
---|
| 228 | |
---|
| 229 | if line0_ends_on_line1 and line1_ends_on_line0: |
---|
| 230 | # Shared segment from line0 start to line 1 end |
---|
| 231 | segment = array([[x3, y3], [x1, y1]]) |
---|
| 232 | |
---|
| 233 | |
---|
| 234 | return 2, segment |
---|
| 235 | else: |
---|
| 236 | # Lines are parallel but they do not coincide |
---|
| 237 | return 4, None #FIXME (Ole): Add distance here instead of None |
---|
| 238 | |
---|
| 239 | else: |
---|
| 240 | # Lines are not parallel or coinciding |
---|
| 241 | u0 = u0/denom |
---|
| 242 | u1 = u1/denom |
---|
| 243 | |
---|
| 244 | x = x0 + u0*(x1-x0) |
---|
| 245 | y = y0 + u0*(y1-y0) |
---|
| 246 | |
---|
| 247 | # Sanity check - can be removed to speed up if needed |
---|
| 248 | assert allclose(x, x2 + u1*(x3-x2)) |
---|
| 249 | assert allclose(y, y2 + u1*(y3-y2)) |
---|
| 250 | |
---|
| 251 | # Check if point found lies within given line segments |
---|
| 252 | if 0.0 <= u0 <= 1.0 and 0.0 <= u1 <= 1.0: |
---|
| 253 | # We have intersection |
---|
| 254 | |
---|
| 255 | return 1, array([x, y]) |
---|
| 256 | else: |
---|
| 257 | # No intersection |
---|
| 258 | return 0, None |
---|
| 259 | |
---|
| 260 | |
---|
| 261 | } |
---|
| 262 | */ |
---|
| 263 | |
---|
| 264 | |
---|
[6189] | 265 | |
---|
| 266 | int __interpolate_polyline(int number_of_nodes, |
---|
| 267 | int number_of_points, |
---|
| 268 | double* data, |
---|
| 269 | double* polyline_nodes, |
---|
| 270 | long* gauge_neighbour_id, |
---|
| 271 | double* interpolation_points, |
---|
| 272 | double* interpolated_values, |
---|
| 273 | double rtol, |
---|
| 274 | double atol) { |
---|
| 275 | |
---|
| 276 | int j, i, neighbour_id; |
---|
| 277 | double x0, y0, x1, y1, x, y; |
---|
| 278 | double segment_len, segment_delta, slope, alpha; |
---|
| 279 | |
---|
| 280 | for (j=0; j<number_of_nodes; j++) { |
---|
| 281 | |
---|
| 282 | neighbour_id = gauge_neighbour_id[j]; |
---|
| 283 | |
---|
| 284 | // FIXME(Ole): I am convinced that gauge_neighbour_id can be discarded, but need to check with John J. |
---|
| 285 | // Keep it for now (17 Jan 2009) |
---|
| 286 | // When gone, we can simply interpolate between neighbouring nodes, i.e. neighbour_id = j+1. |
---|
| 287 | // and the test below becomes something like: if j < number_of_nodes... |
---|
| 288 | |
---|
| 289 | if (neighbour_id >= 0) { |
---|
| 290 | x0 = polyline_nodes[2*j]; |
---|
| 291 | y0 = polyline_nodes[2*j+1]; |
---|
| 292 | |
---|
| 293 | x1 = polyline_nodes[2*neighbour_id]; |
---|
| 294 | y1 = polyline_nodes[2*neighbour_id+1]; |
---|
| 295 | |
---|
| 296 | |
---|
| 297 | segment_len = dist(x1-x0, y1-y0); |
---|
| 298 | segment_delta = data[neighbour_id] - data[j]; |
---|
| 299 | slope = segment_delta/segment_len; |
---|
| 300 | |
---|
| 301 | for (i=0; i<number_of_points; i++) { |
---|
| 302 | x = interpolation_points[2*i]; |
---|
| 303 | y = interpolation_points[2*i+1]; |
---|
| 304 | |
---|
| 305 | if (__point_on_line(x, y, x0, y0, x1, y1, rtol, atol)) { |
---|
| 306 | alpha = dist(x-x0, y-y0); |
---|
| 307 | interpolated_values[i] = slope*alpha + data[j]; |
---|
| 308 | } |
---|
| 309 | } |
---|
| 310 | } |
---|
| 311 | } |
---|
| 312 | |
---|
| 313 | return 0; |
---|
| 314 | } |
---|
| 315 | |
---|
| 316 | |
---|
[6535] | 317 | int __is_inside_triangle(double* point, |
---|
| 318 | double* triangle, |
---|
| 319 | int closed, |
---|
| 320 | double rtol, |
---|
| 321 | double atol) { |
---|
| 322 | |
---|
| 323 | double vx, vy, v0x, v0y, v1x, v1y; |
---|
| 324 | double a00, a10, a01, a11, b0, b1; |
---|
| 325 | double denom, alpha, beta; |
---|
[6544] | 326 | |
---|
| 327 | double x, y; // Point coordinates |
---|
[6535] | 328 | int i, j, res; |
---|
| 329 | |
---|
[6544] | 330 | x = point[0]; |
---|
| 331 | y = point[1]; |
---|
| 332 | |
---|
| 333 | // Quickly reject points that are clearly outside |
---|
| 334 | if ((x < triangle[0]) && |
---|
| 335 | (x < triangle[2]) && |
---|
| 336 | (x < triangle[4])) return 0; |
---|
| 337 | |
---|
| 338 | if ((x > triangle[0]) && |
---|
| 339 | (x > triangle[2]) && |
---|
| 340 | (x > triangle[4])) return 0; |
---|
| 341 | |
---|
| 342 | if ((y < triangle[1]) && |
---|
| 343 | (y < triangle[3]) && |
---|
| 344 | (y < triangle[5])) return 0; |
---|
| 345 | |
---|
| 346 | if ((y > triangle[1]) && |
---|
| 347 | (y > triangle[3]) && |
---|
| 348 | (y > triangle[5])) return 0; |
---|
| 349 | |
---|
| 350 | |
---|
[6535] | 351 | // v0 = C-A |
---|
| 352 | v0x = triangle[4]-triangle[0]; |
---|
| 353 | v0y = triangle[5]-triangle[1]; |
---|
| 354 | |
---|
| 355 | // v1 = B-A |
---|
| 356 | v1x = triangle[2]-triangle[0]; |
---|
| 357 | v1y = triangle[3]-triangle[1]; |
---|
| 358 | |
---|
| 359 | // First check if point lies wholly inside triangle |
---|
| 360 | a00 = v0x*v0x + v0y*v0y; // innerproduct(v0, v0) |
---|
| 361 | a01 = v0x*v1x + v0y*v1y; // innerproduct(v0, v1) |
---|
| 362 | a10 = a01; // innerproduct(v1, v0) |
---|
| 363 | a11 = v1x*v1x + v1y*v1y; // innerproduct(v1, v1) |
---|
| 364 | |
---|
| 365 | denom = a11*a00 - a01*a10; |
---|
| 366 | |
---|
| 367 | if (fabs(denom) > 0.0) { |
---|
| 368 | // v = point-A |
---|
[6544] | 369 | vx = x - triangle[0]; |
---|
| 370 | vy = y - triangle[1]; |
---|
[6535] | 371 | |
---|
| 372 | b0 = v0x*vx + v0y*vy; // innerproduct(v0, v) |
---|
| 373 | b1 = v1x*vx + v1y*vy; // innerproduct(v1, v) |
---|
| 374 | |
---|
| 375 | alpha = (b0*a11 - b1*a01)/denom; |
---|
| 376 | beta = (b1*a00 - b0*a10)/denom; |
---|
| 377 | |
---|
| 378 | if ((alpha > 0.0) && (beta > 0.0) && (alpha+beta < 1.0)) return 1; |
---|
| 379 | } |
---|
| 380 | |
---|
| 381 | if (closed) { |
---|
| 382 | // Check if point lies on one of the edges |
---|
| 383 | |
---|
| 384 | for (i=0; i<3; i++) { |
---|
| 385 | j = (i+1) % 3; // Circular index into triangle array |
---|
[6544] | 386 | res = __point_on_line(x, y, |
---|
[6535] | 387 | triangle[2*i], triangle[2*i+1], |
---|
| 388 | triangle[2*j], triangle[2*j+1], |
---|
| 389 | rtol, atol); |
---|
| 390 | if (res) return 1; |
---|
| 391 | } |
---|
| 392 | } |
---|
| 393 | |
---|
| 394 | // Default return if point is outside triangle |
---|
| 395 | return 0; |
---|
| 396 | } |
---|
| 397 | |
---|
| 398 | |
---|
[5897] | 399 | int __separate_points_by_polygon(int M, // Number of points |
---|
[6534] | 400 | int N, // Number of polygon vertices |
---|
| 401 | double* points, |
---|
| 402 | double* polygon, |
---|
| 403 | long* indices, // M-Array for storage indices |
---|
| 404 | int closed, |
---|
| 405 | int verbose) { |
---|
[5897] | 406 | |
---|
| 407 | double minpx, maxpx, minpy, maxpy, x, y, px_i, py_i, px_j, py_j, rtol=0.0, atol=0.0; |
---|
| 408 | int i, j, k, outside_index, inside_index, inside; |
---|
| 409 | |
---|
[6535] | 410 | // Find min and max of poly used for optimisation when points |
---|
| 411 | // are far away from polygon |
---|
[5897] | 412 | |
---|
[6535] | 413 | // FIXME(Ole): Pass in rtol and atol from Python |
---|
[5897] | 414 | |
---|
| 415 | minpx = polygon[0]; maxpx = minpx; |
---|
| 416 | minpy = polygon[1]; maxpy = minpy; |
---|
| 417 | |
---|
| 418 | for (i=0; i<N; i++) { |
---|
| 419 | px_i = polygon[2*i]; |
---|
| 420 | py_i = polygon[2*i + 1]; |
---|
| 421 | |
---|
| 422 | if (px_i < minpx) minpx = px_i; |
---|
| 423 | if (px_i > maxpx) maxpx = px_i; |
---|
| 424 | if (py_i < minpy) minpy = py_i; |
---|
| 425 | if (py_i > maxpy) maxpy = py_i; |
---|
| 426 | } |
---|
| 427 | |
---|
[6535] | 428 | // Begin main loop (for each point) |
---|
| 429 | inside_index = 0; // Keep track of points inside |
---|
| 430 | outside_index = M-1; // Keep track of points outside (starting from end) |
---|
[5897] | 431 | if (verbose){ |
---|
| 432 | printf("Separating %d points\n", M); |
---|
| 433 | } |
---|
| 434 | for (k=0; k<M; k++) { |
---|
| 435 | if (verbose){ |
---|
| 436 | if (k %((M+10)/10)==0) printf("Doing %d of %d\n", k, M); |
---|
| 437 | } |
---|
| 438 | |
---|
| 439 | x = points[2*k]; |
---|
| 440 | y = points[2*k + 1]; |
---|
| 441 | |
---|
| 442 | inside = 0; |
---|
| 443 | |
---|
[6535] | 444 | // Optimisation |
---|
[5897] | 445 | if ((x > maxpx) || (x < minpx) || (y > maxpy) || (y < minpy)) { |
---|
[6535] | 446 | // Nothing |
---|
[5897] | 447 | } else { |
---|
[6535] | 448 | // Check polygon |
---|
[5897] | 449 | for (i=0; i<N; i++) { |
---|
| 450 | j = (i+1)%N; |
---|
| 451 | |
---|
| 452 | px_i = polygon[2*i]; |
---|
| 453 | py_i = polygon[2*i+1]; |
---|
| 454 | px_j = polygon[2*j]; |
---|
| 455 | py_j = polygon[2*j+1]; |
---|
| 456 | |
---|
[6535] | 457 | // Check for case where point is contained in line segment |
---|
[5897] | 458 | if (__point_on_line(x, y, px_i, py_i, px_j, py_j, rtol, atol)) { |
---|
| 459 | if (closed == 1) { |
---|
| 460 | inside = 1; |
---|
| 461 | } else { |
---|
| 462 | inside = 0; |
---|
| 463 | } |
---|
| 464 | break; |
---|
| 465 | } else { |
---|
[7276] | 466 | //Check if truly inside polygon |
---|
[5897] | 467 | if ( ((py_i < y) && (py_j >= y)) || |
---|
| 468 | ((py_j < y) && (py_i >= y)) ) { |
---|
| 469 | if (px_i + (y-py_i)/(py_j-py_i)*(px_j-px_i) < x) |
---|
| 470 | inside = 1-inside; |
---|
| 471 | } |
---|
| 472 | } |
---|
| 473 | } |
---|
| 474 | } |
---|
| 475 | if (inside == 1) { |
---|
| 476 | indices[inside_index] = k; |
---|
| 477 | inside_index += 1; |
---|
| 478 | } else { |
---|
| 479 | indices[outside_index] = k; |
---|
| 480 | outside_index -= 1; |
---|
| 481 | } |
---|
| 482 | } // End k |
---|
| 483 | |
---|
| 484 | return inside_index; |
---|
| 485 | } |
---|
| 486 | |
---|
| 487 | |
---|
| 488 | |
---|
| 489 | // Gateways to Python |
---|
| 490 | PyObject *_point_on_line(PyObject *self, PyObject *args) { |
---|
| 491 | // |
---|
| 492 | // point_on_line(x, y, x0, y0, x1, y1) |
---|
| 493 | // |
---|
| 494 | |
---|
| 495 | double x, y, x0, y0, x1, y1, rtol, atol; |
---|
| 496 | int res; |
---|
| 497 | PyObject *result; |
---|
| 498 | |
---|
| 499 | // Convert Python arguments to C |
---|
| 500 | if (!PyArg_ParseTuple(args, "dddddddd", &x, &y, &x0, &y0, &x1, &y1, &rtol, &atol)) { |
---|
| 501 | PyErr_SetString(PyExc_RuntimeError, |
---|
| 502 | "point_on_line could not parse input"); |
---|
| 503 | return NULL; |
---|
| 504 | } |
---|
| 505 | |
---|
| 506 | |
---|
| 507 | // Call underlying routine |
---|
| 508 | res = __point_on_line(x, y, x0, y0, x1, y1, rtol, atol); |
---|
| 509 | |
---|
[7276] | 510 | // Return values a and b |
---|
[5897] | 511 | result = Py_BuildValue("i", res); |
---|
| 512 | return result; |
---|
| 513 | } |
---|
| 514 | |
---|
| 515 | |
---|
[6189] | 516 | |
---|
| 517 | // Gateways to Python |
---|
| 518 | PyObject *_interpolate_polyline(PyObject *self, PyObject *args) { |
---|
| 519 | // |
---|
| 520 | // _interpolate_polyline(data, polyline_nodes, gauge_neighbour_id, interpolation_points |
---|
| 521 | // interpolated_values): |
---|
| 522 | // |
---|
| 523 | |
---|
| 524 | |
---|
| 525 | PyArrayObject |
---|
| 526 | *data, |
---|
| 527 | *polyline_nodes, |
---|
| 528 | *gauge_neighbour_id, |
---|
| 529 | *interpolation_points, |
---|
| 530 | *interpolated_values; |
---|
| 531 | |
---|
| 532 | double rtol, atol; |
---|
| 533 | int number_of_nodes, number_of_points, res; |
---|
| 534 | |
---|
| 535 | // Convert Python arguments to C |
---|
| 536 | if (!PyArg_ParseTuple(args, "OOOOOdd", |
---|
| 537 | &data, |
---|
| 538 | &polyline_nodes, |
---|
| 539 | &gauge_neighbour_id, |
---|
| 540 | &interpolation_points, |
---|
| 541 | &interpolated_values, |
---|
| 542 | &rtol, |
---|
| 543 | &atol)) { |
---|
| 544 | |
---|
| 545 | PyErr_SetString(PyExc_RuntimeError, |
---|
| 546 | "_interpolate_polyline could not parse input"); |
---|
| 547 | return NULL; |
---|
| 548 | } |
---|
| 549 | |
---|
[7276] | 550 | // check that numpy array objects arrays are C contiguous memory |
---|
| 551 | CHECK_C_CONTIG(data); |
---|
| 552 | CHECK_C_CONTIG(polyline_nodes); |
---|
| 553 | CHECK_C_CONTIG(gauge_neighbour_id); |
---|
| 554 | CHECK_C_CONTIG(interpolation_points); |
---|
| 555 | CHECK_C_CONTIG(interpolated_values); |
---|
| 556 | |
---|
[6189] | 557 | number_of_nodes = polyline_nodes -> dimensions[0]; // Number of nodes in polyline |
---|
| 558 | number_of_points = interpolation_points -> dimensions[0]; //Number of points |
---|
| 559 | |
---|
| 560 | |
---|
| 561 | // Call underlying routine |
---|
| 562 | res = __interpolate_polyline(number_of_nodes, |
---|
| 563 | number_of_points, |
---|
| 564 | (double*) data -> data, |
---|
| 565 | (double*) polyline_nodes -> data, |
---|
| 566 | (long*) gauge_neighbour_id -> data, |
---|
| 567 | (double*) interpolation_points -> data, |
---|
| 568 | (double*) interpolated_values -> data, |
---|
| 569 | rtol, |
---|
| 570 | atol); |
---|
| 571 | |
---|
| 572 | // Return |
---|
| 573 | return Py_BuildValue(""); |
---|
| 574 | } |
---|
| 575 | |
---|
| 576 | |
---|
| 577 | |
---|
[6535] | 578 | |
---|
| 579 | PyObject *_is_inside_triangle(PyObject *self, PyObject *args) { |
---|
| 580 | // |
---|
| 581 | // _is_inside_triangle(point, triangle, int(closed), rtol, atol) |
---|
| 582 | // |
---|
| 583 | |
---|
| 584 | |
---|
| 585 | PyArrayObject |
---|
| 586 | *point, |
---|
| 587 | *triangle; |
---|
| 588 | |
---|
| 589 | double rtol, atol; |
---|
| 590 | int closed, res; |
---|
| 591 | |
---|
| 592 | PyObject *result; |
---|
| 593 | |
---|
| 594 | // Convert Python arguments to C |
---|
| 595 | if (!PyArg_ParseTuple(args, "OOidd", |
---|
| 596 | &point, |
---|
| 597 | &triangle, |
---|
| 598 | &closed, |
---|
| 599 | &rtol, |
---|
| 600 | &atol)) { |
---|
| 601 | |
---|
| 602 | PyErr_SetString(PyExc_RuntimeError, |
---|
| 603 | "_is_inside_triangle could not parse input"); |
---|
| 604 | return NULL; |
---|
| 605 | } |
---|
| 606 | |
---|
| 607 | // Call underlying routine |
---|
| 608 | res = __is_inside_triangle((double*) point -> data, |
---|
| 609 | (double*) triangle -> data, |
---|
| 610 | closed, |
---|
| 611 | rtol, |
---|
| 612 | atol); |
---|
| 613 | |
---|
| 614 | |
---|
| 615 | // Return result |
---|
| 616 | result = Py_BuildValue("i", res); |
---|
| 617 | return result; |
---|
| 618 | } |
---|
| 619 | |
---|
| 620 | |
---|
| 621 | |
---|
[5897] | 622 | /* |
---|
| 623 | PyObject *_intersection(PyObject *self, PyObject *args) { |
---|
| 624 | // |
---|
| 625 | // intersection(x0, y0, x1, y1) |
---|
| 626 | // |
---|
| 627 | |
---|
| 628 | double x, y, x0, y0, x1, y1; |
---|
| 629 | int res; |
---|
| 630 | PyObject *result; |
---|
| 631 | |
---|
| 632 | // Convert Python arguments to C |
---|
| 633 | if (!PyArg_ParseTuple(args, "dddddd", &x, &y, &x0, &y0, &x1, &y1)) { |
---|
| 634 | PyErr_SetString(PyExc_RuntimeError, |
---|
| 635 | "point_on_line could not parse input"); |
---|
| 636 | return NULL; |
---|
| 637 | } |
---|
| 638 | |
---|
| 639 | |
---|
| 640 | // Call underlying routine |
---|
| 641 | res = __intersection(x, y, x0, y0, x1, y1); |
---|
| 642 | |
---|
| 643 | // Return values a and b |
---|
| 644 | result = Py_BuildValue("i", res); |
---|
| 645 | return result; |
---|
| 646 | } |
---|
| 647 | */ |
---|
| 648 | |
---|
| 649 | |
---|
| 650 | PyObject *_separate_points_by_polygon(PyObject *self, PyObject *args) { |
---|
| 651 | //def separate_points_by_polygon(points, polygon, closed, verbose, one_point): |
---|
| 652 | // """Determine whether points are inside or outside a polygon |
---|
| 653 | // |
---|
| 654 | // Input: |
---|
| 655 | // point - Tuple of (x, y) coordinates, or list of tuples |
---|
| 656 | // polygon - list of vertices of polygon |
---|
| 657 | // closed - (optional) determine whether points on boundary should be |
---|
| 658 | // regarded as belonging to the polygon (closed = True) |
---|
| 659 | // or not (closed = False) |
---|
| 660 | |
---|
| 661 | // |
---|
| 662 | // Output: |
---|
| 663 | // indices: array of same length as points with indices of points falling |
---|
| 664 | // inside the polygon listed from the beginning and indices of points |
---|
| 665 | // falling outside listed from the end. |
---|
| 666 | // |
---|
| 667 | // count: count of points falling inside the polygon |
---|
| 668 | // |
---|
| 669 | // The indices of points inside are obtained as indices[:count] |
---|
| 670 | // The indices of points outside are obtained as indices[count:] |
---|
| 671 | // |
---|
| 672 | // Examples: |
---|
| 673 | // separate_polygon( [[0.5, 0.5], [1, -0.5], [0.3, 0.2]] ) |
---|
| 674 | // will return the indices [0, 2, 1] as only the first and the last point |
---|
| 675 | // is inside the unit square |
---|
| 676 | // |
---|
| 677 | // Remarks: |
---|
| 678 | // The vertices may be listed clockwise or counterclockwise and |
---|
| 679 | // the first point may optionally be repeated. |
---|
| 680 | // Polygons do not need to be convex. |
---|
| 681 | // Polygons can have holes in them and points inside a hole is |
---|
| 682 | // regarded as being outside the polygon. |
---|
| 683 | // |
---|
| 684 | // |
---|
| 685 | // Algorithm is based on work by Darel Finley, |
---|
| 686 | // http://www.alienryderflex.com/polygon/ |
---|
| 687 | // |
---|
| 688 | // |
---|
| 689 | |
---|
| 690 | PyArrayObject |
---|
| 691 | *points, |
---|
| 692 | *polygon, |
---|
| 693 | *indices; |
---|
| 694 | |
---|
| 695 | int closed, verbose; //Flags |
---|
| 696 | int count, M, N; |
---|
| 697 | |
---|
| 698 | // Convert Python arguments to C |
---|
| 699 | if (!PyArg_ParseTuple(args, "OOOii", |
---|
| 700 | &points, |
---|
| 701 | &polygon, |
---|
| 702 | &indices, |
---|
| 703 | &closed, |
---|
| 704 | &verbose)) { |
---|
| 705 | |
---|
| 706 | |
---|
| 707 | PyErr_SetString(PyExc_RuntimeError, |
---|
| 708 | "separate_points_by_polygon could not parse input"); |
---|
| 709 | return NULL; |
---|
| 710 | } |
---|
| 711 | |
---|
[7276] | 712 | // check that points, polygon and indices arrays are C contiguous |
---|
| 713 | CHECK_C_CONTIG(points); |
---|
| 714 | CHECK_C_CONTIG(polygon); |
---|
| 715 | CHECK_C_CONTIG(indices); |
---|
| 716 | |
---|
[5897] | 717 | M = points -> dimensions[0]; //Number of points |
---|
| 718 | N = polygon -> dimensions[0]; //Number of vertices in polygon |
---|
| 719 | |
---|
| 720 | //FIXME (Ole): This isn't send to Python's sys.stdout |
---|
| 721 | if (verbose) printf("Got %d points and %d polygon vertices\n", M, N); |
---|
| 722 | |
---|
| 723 | //Call underlying routine |
---|
| 724 | count = __separate_points_by_polygon(M, N, |
---|
| 725 | (double*) points -> data, |
---|
| 726 | (double*) polygon -> data, |
---|
| 727 | (long*) indices -> data, |
---|
| 728 | closed, verbose); |
---|
| 729 | |
---|
| 730 | //NOTE: return number of points inside.. |
---|
| 731 | return Py_BuildValue("i", count); |
---|
| 732 | } |
---|
| 733 | |
---|
| 734 | |
---|
| 735 | |
---|
| 736 | // Method table for python module |
---|
| 737 | static struct PyMethodDef MethodTable[] = { |
---|
| 738 | /* The cast of the function is necessary since PyCFunction values |
---|
| 739 | * only take two PyObject* parameters, and rotate() takes |
---|
| 740 | * three. |
---|
| 741 | */ |
---|
| 742 | |
---|
| 743 | {"_point_on_line", _point_on_line, METH_VARARGS, "Print out"}, |
---|
| 744 | //{"_intersection", _intersection, METH_VARARGS, "Print out"}, |
---|
| 745 | {"_separate_points_by_polygon", _separate_points_by_polygon, |
---|
| 746 | METH_VARARGS, "Print out"}, |
---|
[6189] | 747 | {"_interpolate_polyline", _interpolate_polyline, |
---|
| 748 | METH_VARARGS, "Print out"}, |
---|
[6535] | 749 | {"_is_inside_triangle", _is_inside_triangle, |
---|
| 750 | METH_VARARGS, "Print out"}, |
---|
[5897] | 751 | {NULL, NULL, 0, NULL} /* sentinel */ |
---|
| 752 | }; |
---|
| 753 | |
---|
| 754 | |
---|
| 755 | |
---|
| 756 | // Module initialisation |
---|
| 757 | void initpolygon_ext(void){ |
---|
| 758 | Py_InitModule("polygon_ext", MethodTable); |
---|
| 759 | |
---|
| 760 | import_array(); //Necessary for handling of NumPY structures |
---|
| 761 | } |
---|
| 762 | |
---|
| 763 | |
---|
| 764 | |
---|