1 | """ |
---|
2 | |
---|
3 | Routines to ease the import of spatial data to ANUGA |
---|
4 | |
---|
5 | Key routines: |
---|
6 | readShp_1PolyGeo, readShp_1LineGeo -- read SIMPLE shapefile geometries into ANUGA as a list of points. |
---|
7 | The supported geometries are quite restricted, see help |
---|
8 | readShpPointsAndAttributes -- read a multi-point shapefile with its attributes into ANUGA |
---|
9 | |
---|
10 | ListPts2Wkb -- (Probably for internal use) Convert a list of points to a |
---|
11 | Wkb geometry, allowing us to use GDALs geometry tools |
---|
12 | Wbk2ListPts -- reverse of ListPts2Wkb |
---|
13 | |
---|
14 | addIntersectionPtsToLines -- (Probably for internal use, see add_intersections_to_domain_features) |
---|
15 | Given 2 intersecting lines, add their intersection points to them, or |
---|
16 | move existing points if they are within a given distance of the intersection. |
---|
17 | |
---|
18 | add_intersections_to_domain_features -- Add intersections to bounding_polygon, breaklines, riverwalls |
---|
19 | This sets them up for being passed to the mesh generator. |
---|
20 | Points within a given distance of an intersection can be replaced |
---|
21 | with the intersection point if desired |
---|
22 | |
---|
23 | rasterValuesAtPoints -- (Probably for internal use, see quantityRasterFun in quantity_setting_functions) |
---|
24 | Quite efficiently get raster cell values at points in any gdal-compatible raster |
---|
25 | [gridPointsInPolygon could in future be linked with this to get raster values in a region, |
---|
26 | if we develop a version of ANUGA with sub-grid topography] |
---|
27 | |
---|
28 | readRegionPtAreas -- read a shapefile containin regionPtAreas -- xy coordinates + 1 attribute, which is |
---|
29 | the mesh triangle side length (or area) limit. Can be passed as regionPtAreas in |
---|
30 | the mesh generation stage. |
---|
31 | |
---|
32 | readListOfBreakLines -- takes a list of shapefile names, each containing a single line geometry, and reads |
---|
33 | it in as a dictionary of breaklines. |
---|
34 | |
---|
35 | polygon_from_matching_breaklines -- given a pattern (string) matching exactly 2 breaklines in a directory, |
---|
36 | convert them to a single polygon. This is useful to e.g. make |
---|
37 | a polygon defining the extent of a channel that is defined from 2 breaklines |
---|
38 | |
---|
39 | |
---|
40 | """ |
---|
41 | import sys |
---|
42 | import os |
---|
43 | import copy |
---|
44 | import struct |
---|
45 | import numpy |
---|
46 | from matplotlib import path |
---|
47 | |
---|
48 | try: |
---|
49 | import gdal |
---|
50 | import ogr |
---|
51 | gdal_available = True |
---|
52 | #import osr # Not needed here but important in general |
---|
53 | except ImportError, err: |
---|
54 | gdal_available = False |
---|
55 | |
---|
56 | |
---|
57 | ##################################### |
---|
58 | if gdal_available: |
---|
59 | |
---|
60 | |
---|
61 | def readShp_1PolyGeo(shapefile, dropLast=True): |
---|
62 | """ |
---|
63 | Read a "single polygon" shapefile into an ANUGA_polygon object |
---|
64 | (a list of lists, each containing a polygon coordinate) |
---|
65 | |
---|
66 | The attribute table is ignored, and there can only be a single geometry in the shapefile |
---|
67 | |
---|
68 | INPUTS: shapefile -- full path to shapefile name |
---|
69 | dropLast -- Logical. If so, cut the last point (which closes |
---|
70 | the polygon). ANUGA uses this by default for e.g. |
---|
71 | bounding polygons |
---|
72 | """ |
---|
73 | |
---|
74 | # Get the data |
---|
75 | driver=ogr.GetDriverByName("ESRI Shapefile") |
---|
76 | dataSrc=driver.Open(shapefile, 0) |
---|
77 | #dataSrc=ogr.Open(shapefile) |
---|
78 | layer=dataSrc.GetLayer() |
---|
79 | |
---|
80 | # Need a single polygon |
---|
81 | try: |
---|
82 | assert(len(layer)==1) |
---|
83 | except: |
---|
84 | print shapefile |
---|
85 | |
---|
86 | boundary_poly=[] |
---|
87 | for feature in layer: |
---|
88 | #geom=feature.GetGeometryReg() |
---|
89 | boundary=feature.GetGeometryRef().Boundary().GetPoints() |
---|
90 | boundary=[list(pts) for pts in boundary] |
---|
91 | boundary_poly.extend(boundary) |
---|
92 | |
---|
93 | if(dropLast): |
---|
94 | # Return a list of points, without last point [= first point] |
---|
95 | return boundary_poly[:-1] |
---|
96 | else: |
---|
97 | return boundary_poly |
---|
98 | |
---|
99 | #################### |
---|
100 | |
---|
101 | def readShp_1LineGeo(shapefile): |
---|
102 | """ |
---|
103 | Read a "single-line" shapefile into a list of lists (each containing a point), |
---|
104 | resembling an ANUGA polygon object |
---|
105 | |
---|
106 | The attribute table is ignored, and there can only be a single geometry in the shapefile |
---|
107 | |
---|
108 | INPUTS: shapefile -- full path to shapefile name |
---|
109 | """ |
---|
110 | |
---|
111 | driver=ogr.GetDriverByName("ESRI Shapefile") |
---|
112 | dataSrc=driver.Open(shapefile, 0) |
---|
113 | #dataSrc=ogr.Open(shapefile) |
---|
114 | layer=dataSrc.GetLayer() |
---|
115 | |
---|
116 | # Need a single line |
---|
117 | try: |
---|
118 | assert(len(layer)==1) |
---|
119 | except: |
---|
120 | print shapefile |
---|
121 | |
---|
122 | line_all=[] |
---|
123 | for feature in layer: |
---|
124 | line=feature.GetGeometryRef().GetPoints() |
---|
125 | line=[list(pts) for pts in line] |
---|
126 | line_all.extend(line) |
---|
127 | |
---|
128 | return line_all |
---|
129 | |
---|
130 | #################### |
---|
131 | |
---|
132 | def readShpPtsAndAttributes(shapefile): |
---|
133 | """ |
---|
134 | Read a point shapefile with an attribute table into a list |
---|
135 | |
---|
136 | INPUT: shapefile -- name of shapefile to read |
---|
137 | |
---|
138 | OUTPUT: List with [ list_of_points, list_of_attributes, names_of_attributes] |
---|
139 | """ |
---|
140 | |
---|
141 | driver=ogr.GetDriverByName("ESRI Shapefile") |
---|
142 | dataSrc=driver.Open(shapefile, 0) |
---|
143 | #dataSrc=ogr.Open(shapefile) |
---|
144 | layer=dataSrc.GetLayer() |
---|
145 | |
---|
146 | pts=[] |
---|
147 | attribute=[] |
---|
148 | for i, feature in enumerate(layer): |
---|
149 | if(i==0): |
---|
150 | attributeNames=feature.keys() |
---|
151 | pt=feature.GetGeometryRef().GetPoints() |
---|
152 | pt=[list(p) for p in pt] |
---|
153 | pts.extend(pt) |
---|
154 | att=[feature[i] for i in attributeNames] |
---|
155 | attribute.extend(att) |
---|
156 | |
---|
157 | return [pts, attribute, attributeNames] |
---|
158 | |
---|
159 | ######################################## |
---|
160 | def ListPts2Wkb( ptsIn, geometry_type='line', appendFirstOnEnd=None): |
---|
161 | """ |
---|
162 | Convert list of points to a GDAl Wkb format |
---|
163 | Can be either points, lines, or polygon |
---|
164 | |
---|
165 | Purpose is that once data in in Wkb format, we can use GDAL's geometric operations |
---|
166 | (e.g. to test for intersections, etc) |
---|
167 | |
---|
168 | INPUT: ptsIn -- list of points in the format [[x0,y0], [x1, y1], ..., [xn, yn]] |
---|
169 | Actually it is also ok if [x0,y0], .. is a tuple instead |
---|
170 | geometry_type -- 'point' or 'line' or 'polygon' |
---|
171 | |
---|
172 | appendFirstOnEnd -- logical. If true, add the first point to the |
---|
173 | end. Probably wanted for polygons when they are unclosed in ANUGA |
---|
174 | |
---|
175 | OUTPUT: |
---|
176 | The points as a Wkb Geometry. |
---|
177 | geometry_type='point' produces a MULTIPOINT Geometry |
---|
178 | ='line' produces a LINESTRING Geometry |
---|
179 | ='polygon' produces a POLYGON Geometry |
---|
180 | |
---|
181 | FIXME: This might not sensibly-use the gdal geometry types (although it |
---|
182 | passes our tests) -- consider revising |
---|
183 | """ |
---|
184 | # Avoid modifying ptsIn |
---|
185 | pts=copy.copy(ptsIn) |
---|
186 | |
---|
187 | if appendFirstOnEnd is None: |
---|
188 | if(geometry_type=='polygon'): |
---|
189 | appendFirstOnEnd=True |
---|
190 | else: |
---|
191 | appendFirstOnEnd=False |
---|
192 | |
---|
193 | if appendFirstOnEnd: |
---|
194 | pts.append(pts[0]) |
---|
195 | |
---|
196 | if(geometry_type=='point'): |
---|
197 | data=ogr.Geometry(ogr.wkbMultiPoint) |
---|
198 | elif(geometry_type=='line'): |
---|
199 | data=ogr.Geometry(ogr.wkbLineString) |
---|
200 | elif(geometry_type=='polygon'): |
---|
201 | data=ogr.Geometry(ogr.wkbLinearRing) |
---|
202 | else: |
---|
203 | raise Exception, "Type must be either 'point' or 'line' or 'polygon'" |
---|
204 | |
---|
205 | for i in range(len(pts)): |
---|
206 | if(len(pts[i])==2): |
---|
207 | if(geometry_type=='point'): |
---|
208 | newPt=ogr.Geometry(ogr.wkbPoint) |
---|
209 | newPt.AddPoint(pts[i][0], pts[i][1]) |
---|
210 | data.AddGeometryDirectly(newPt) |
---|
211 | else: |
---|
212 | data.AddPoint(pts[i][0], pts[i][1]) |
---|
213 | elif(len(pts[i])==3): |
---|
214 | if(geometry_type=='point'): |
---|
215 | newPt=ogr.Geometry(ogr.wkbPoint) |
---|
216 | newPt.AddPoint(pts[i][0], pts[i][1], pts[i][2]) |
---|
217 | data.AddGeometryDirectly(newPt) |
---|
218 | else: |
---|
219 | data.AddPoint(pts[i][0], pts[i][1], pts[i][2]) |
---|
220 | else: |
---|
221 | raise Exception, 'Points must be either 2 or 3 dimensional' |
---|
222 | |
---|
223 | if(geometry_type=='polygon'): |
---|
224 | poly = ogr.Geometry(ogr.wkbPolygon) |
---|
225 | poly.AddGeometry(data) |
---|
226 | data=poly |
---|
227 | |
---|
228 | return(data) |
---|
229 | |
---|
230 | ############################################################################ |
---|
231 | def Wkb2ListPts(wkb_geo, removeLast=False, drop_third_dimension=False): |
---|
232 | """ |
---|
233 | Reverse of ListPts2Wkb |
---|
234 | """ |
---|
235 | if(wkb_geo.GetGeometryName()=='POLYGON'): |
---|
236 | X=wkb_geo.GetBoundary() |
---|
237 | new=[ list(X.GetPoints()[i]) for i in range(len(X.GetPoints())) ] |
---|
238 | elif(wkb_geo.GetGeometryName()=='MULTIPOINT'): |
---|
239 | new=[ [feature.GetX(), feature.GetY(),feature.GetZ()] for feature in wkb_geo] |
---|
240 | elif(wkb_geo.GetGeometryName()=='LINESTRING'): |
---|
241 | new=[ list(wkb_geo.GetPoints()[i]) for i in range(len(wkb_geo.GetPoints())) ] |
---|
242 | else: |
---|
243 | raise Exception, 'Geometry type not supported' |
---|
244 | |
---|
245 | if(removeLast): |
---|
246 | new=new[:-1] |
---|
247 | if(drop_third_dimension): |
---|
248 | new = [new[i][0:2] for i in range(len(new))] |
---|
249 | return new |
---|
250 | |
---|
251 | ############################################################################ |
---|
252 | def compute_squared_distance_to_segment(pt, line): |
---|
253 | """ |
---|
254 | Compute the squared distance between a point and a [finite] line segment |
---|
255 | |
---|
256 | INPUT: pt -- [x,y] |
---|
257 | line -- [[x0,y0],[x1,y1]] -- 2 points defining a line segment |
---|
258 | |
---|
259 | OUTPUT: The distance^2 of pt to the line segment |
---|
260 | |
---|
261 | """ |
---|
262 | p0 = line[0] |
---|
263 | p1 = line[1] |
---|
264 | # |
---|
265 | # Get unit vector along segment |
---|
266 | seg_unitVec_x=float(p1[0]-p0[0]) |
---|
267 | seg_unitVec_y=float(p1[1]-p0[1]) |
---|
268 | segLen=(seg_unitVec_x**2+seg_unitVec_y**2)**0.5 |
---|
269 | if(segLen==0.): |
---|
270 | #print line |
---|
271 | #print 'Pt' |
---|
272 | #print pt |
---|
273 | raise Exception, 'Line has repeated points: Line %s Pt %s' % (str(line),str(pt)) |
---|
274 | seg_unitVec_x=seg_unitVec_x/segLen |
---|
275 | seg_unitVec_y=seg_unitVec_y/segLen |
---|
276 | # |
---|
277 | # Get vector from pt to p0 |
---|
278 | pt_p0_vec_x=float(pt[0]-p0[0]) |
---|
279 | pt_p0_vec_y=float(pt[1]-p0[1]) |
---|
280 | pt_p0_vec_len_squared=(pt_p0_vec_x**2 + pt_p0_vec_y**2) |
---|
281 | # Get dot product of above vector with unit vector |
---|
282 | pt_dot_segUnitVec=(pt_p0_vec_x)*seg_unitVec_x+(pt_p0_vec_y)*seg_unitVec_y |
---|
283 | # |
---|
284 | if( (pt_dot_segUnitVec<segLen) and (pt_dot_segUnitVec > 0.)): |
---|
285 | # The nearest point on the line is actually between p0 and p1, so we have a 'real' candidate |
---|
286 | # Get distance^2 |
---|
287 | output = pt_p0_vec_len_squared - pt_dot_segUnitVec**2. |
---|
288 | else: |
---|
289 | # Distance is the min distance from p0 and p1. |
---|
290 | output = min( pt_p0_vec_len_squared, (float(pt[0]-p1[0])**2+float(pt[1]-p1[1])**2)) |
---|
291 | if(output < -1.0e-06): |
---|
292 | raise Exception, 'round-off in compute_squared_distance_to_segment' |
---|
293 | if(output < 0.): |
---|
294 | output=0. |
---|
295 | return output |
---|
296 | |
---|
297 | ############################################################################ |
---|
298 | |
---|
299 | def find_nearest_segment(pt, segments): |
---|
300 | """ |
---|
301 | Given a point and a line, find the line segment nearest to the line |
---|
302 | |
---|
303 | NOTE: The answer can be ambiguous if one of the segment endpoints is |
---|
304 | the nearest point. In that case, the behaviour is determined by the behaviour |
---|
305 | of numpy.argmin. Won't be a problem for this application |
---|
306 | |
---|
307 | INPUT: pt -- [x,y] |
---|
308 | segments -- [[x0,y0], [x1,y1], ...] |
---|
309 | A list of points, consecutive points are interpreted |
---|
310 | as joined and so defining line segments |
---|
311 | |
---|
312 | OUTPUT: The squared distance, and the index i of the segment [x_i,y_i],[x_i+1,y_i+1] in segments which is closest to pt |
---|
313 | """ |
---|
314 | ll=len(segments) |
---|
315 | if(ll<=1): |
---|
316 | raise Exception, 'Segments must have length > 1 in find_nearest_segment' |
---|
317 | |
---|
318 | ptDist_sq=numpy.zeros(ll-1) # Hold the squared distance from the point to the line segment |
---|
319 | for i in range(len(segments)-1): |
---|
320 | # Compute distance from segment |
---|
321 | ptDist_sq[i]=compute_squared_distance_to_segment(pt, [segments[i],segments[i+1]]) |
---|
322 | |
---|
323 | return [ptDist_sq.min(), ptDist_sq.argmin()] |
---|
324 | |
---|
325 | ###################################################### |
---|
326 | |
---|
327 | def shift_point_on_line(pt, lineIn, nearest_segment_index): |
---|
328 | """ |
---|
329 | Support pt is a point, which is near to the 'nearest_segment_index' segment of the line 'lineIn' |
---|
330 | |
---|
331 | This routine moves the nearest end point of that segment on line to pt. |
---|
332 | |
---|
333 | INPUTS: pt -- [x,y] point |
---|
334 | lineIn -- [ [x0, y0], [x1, y1], ..., [xN,yN]] |
---|
335 | nearest_segment_index = index where the distance of pt to the line from [x_i,y_i] to [x_i+1,y_i+1] is minimum |
---|
336 | |
---|
337 | OUTPUT: The new line |
---|
338 | """ |
---|
339 | # Avoid Changing line |
---|
340 | line=copy.copy(lineIn) |
---|
341 | |
---|
342 | # Replace the nearest point on L1 with the intersection point |
---|
343 | p0 = line[nearest_segment_index] |
---|
344 | p1 = line[nearest_segment_index+1] |
---|
345 | d_p0 = ( (pt[0]-p0[0])**2 + (pt[1]-p0[1])**2) |
---|
346 | d_p1 = ( (pt[0]-p1[0])**2 + (pt[1]-p1[1])**2) |
---|
347 | changeP1=(d_p1<d_p0) |
---|
348 | line[nearest_segment_index+changeP1][0] = pt[0] |
---|
349 | line[nearest_segment_index+changeP1][1] = pt[1] |
---|
350 | |
---|
351 | return line |
---|
352 | |
---|
353 | ################################################################################# |
---|
354 | def insert_intersection_point(intersectionPt, line_pts, point_movement_threshold, verbose=False): |
---|
355 | """ |
---|
356 | Add intersectionPt to line_pts, either by inserting it, or if a point on line_pts is |
---|
357 | closer than point_movement_threshold, then by moving that point to the intersection point |
---|
358 | |
---|
359 | INPUTS: |
---|
360 | intersectionPt -- the intersection point [known to lie on line_pts] |
---|
361 | line_pts -- ordered list of [x,y] points making a line. |
---|
362 | point_movement_threshold -- used to decide to move or add intersectionPt |
---|
363 | |
---|
364 | OUTPUT: |
---|
365 | new version of lint_pts with the point added |
---|
366 | """ |
---|
367 | # Avoid pointer/copy issues |
---|
368 | L1_pts = copy.copy(line_pts) |
---|
369 | iP=copy.copy(intersectionPt) |
---|
370 | |
---|
371 | # Adjust L1 |
---|
372 | tmp = find_nearest_segment(intersectionPt, L1_pts) |
---|
373 | # Compute the distance from the end points of the segment to the |
---|
374 | # intersection point. Based on this we decide to add or move the point |
---|
375 | p0 = L1_pts[tmp[1]] |
---|
376 | p1 = L1_pts[tmp[1]+1] |
---|
377 | endPt_Dist_Sq=min( ( (p0[0]-iP[0])**2 + (p0[1]-iP[1])**2), ( (p1[0]-iP[0])**2 + (p1[1]-iP[1])**2)) |
---|
378 | # |
---|
379 | if(endPt_Dist_Sq>point_movement_threshold**2): |
---|
380 | # Insert the intersection point. We do this in a tricky way to |
---|
381 | # account for the possibility of L1_pts having > 2 coordinates |
---|
382 | # (riverWalls) |
---|
383 | if verbose: |
---|
384 | print ' Inserting new point' |
---|
385 | dummyPt=copy.copy(L1_pts[tmp[1]]) |
---|
386 | L1_pts.insert(tmp[1]+1,dummyPt) |
---|
387 | L1_pts[tmp[1]+1][0]=iP[0] |
---|
388 | L1_pts[tmp[1]+1][1]=iP[1] |
---|
389 | if(len(L1_pts[tmp[1]+1])==3): |
---|
390 | # Treat 3rd coordinate |
---|
391 | # Find distance of inserted point from neighbours, and |
---|
392 | # Set 3rd coordinate as distance-weighted average of the others |
---|
393 | d0=((L1_pts[tmp[1]][0]-L1_pts[tmp[1]+1][0])**2.+\ |
---|
394 | (L1_pts[tmp[1]][1]-L1_pts[tmp[1]+1][1])**2.)**0.5 |
---|
395 | d1=((L1_pts[tmp[1]+2][0]-L1_pts[tmp[1]+1][0])**2.+\ |
---|
396 | (L1_pts[tmp[1]+2][1]-L1_pts[tmp[1]+1][1])**2.)**0.5 |
---|
397 | L1_pts[tmp[1]+1][2] = (d0*L1_pts[tmp[1]+2][2] + d1*L1_pts[tmp[1]][2])/(d0+d1) |
---|
398 | |
---|
399 | else: |
---|
400 | if verbose: |
---|
401 | print ' Shifting existing point' |
---|
402 | # Move a point already on L1 |
---|
403 | L1_pts=shift_point_on_line(iP, L1_pts, tmp[1]) |
---|
404 | |
---|
405 | return L1_pts |
---|
406 | |
---|
407 | ####################################################################################################### |
---|
408 | def check_polygon_is_small(intersection, buf, tol2=100.): |
---|
409 | """ |
---|
410 | |
---|
411 | Elsewhere in the code, we check whether lines intersect by buffering them |
---|
412 | to polygons with a small buffer = buf, then getting the intersection. |
---|
413 | [since intersection with polygons is supported by gdal, but apparently |
---|
414 | not directly with lines]. |
---|
415 | |
---|
416 | The logic of our code only works with point intersections, |
---|
417 | and it will fails if 2 lines overlap in a line. |
---|
418 | |
---|
419 | We crudely check for this situation here, by ensuring that the intersection polygon is 'small' |
---|
420 | |
---|
421 | WARNING: The gdal geometry routines may be a bit rough (?) |
---|
422 | Intersections not very precise, etc (?) |
---|
423 | |
---|
424 | INPUT: intersection -- intersection of the 2 lines [gdal geometry] |
---|
425 | buf -- a length scale giving the size of the intersection extent that we expect for a point |
---|
426 | tol2 -- Throw an error if the x or y extent is greater than buf*tol2. Seems this needs to be |
---|
427 | large sometimes -- this might reflect the stated weaknesses of GDALs geometry routines? |
---|
428 | OUTPUT: True/False |
---|
429 | False should suggest that the intersection is not describing a point |
---|
430 | """ |
---|
431 | |
---|
432 | extent=intersection.GetEnvelope() |
---|
433 | assert(len(extent)==4) # Make sure this assumption is valid |
---|
434 | if( (abs(extent[0]-extent[1])>buf*tol2) or (abs(extent[2]-extent[3]) > buf*tol2)): |
---|
435 | return False |
---|
436 | else: |
---|
437 | return True |
---|
438 | |
---|
439 | ####################################################################################################### |
---|
440 | |
---|
441 | def addIntersectionPtsToLines(L1,L2, point_movement_threshold=0.0, buf=1.0e-05, tol2 = 100, |
---|
442 | verbose=True, nameFlag=''): |
---|
443 | """ |
---|
444 | Add intersection points to lines L1 and L2 if they intersect each other |
---|
445 | |
---|
446 | This is useful e.g. so that intersections can be exact (important for |
---|
447 | mesh generation in ANUGA) |
---|
448 | |
---|
449 | It currently only supports point intersection of 2 lines. |
---|
450 | Line intersections should fail gracefully |
---|
451 | |
---|
452 | INPUTS: L1, L2 = Wkb LineString geometries |
---|
453 | |
---|
454 | point_movement_threshold -- if the distance from the nearest |
---|
455 | point on L1 or L2 to the intersection is < point_movement_threshold, then the |
---|
456 | nearest point has its coordinates replaced with the intersection point. This is |
---|
457 | to prevent points being too close to each other |
---|
458 | |
---|
459 | buf = tolerence that is used to buffer lines to find |
---|
460 | intersections. Probably doesn't need modification |
---|
461 | |
---|
462 | tol2 = [see check_polygon_is_small] Probably doesn't need to change |
---|
463 | |
---|
464 | nameFlag = This will be printed if intersection occurs. Convenient way to display intersecting filenames |
---|
465 | |
---|
466 | OUTPUTS: L1,L2 with intersection points added in the right places |
---|
467 | """ |
---|
468 | |
---|
469 | if(L1.Intersects(L2)): |
---|
470 | # Get points on the lines |
---|
471 | L1_pts=Wkb2ListPts(L1) #L1.GetPoints() |
---|
472 | L2_pts=Wkb2ListPts(L2) #L2.GetPoints() |
---|
473 | |
---|
474 | # Buffer lines by a small amount |
---|
475 | L1_buf=L1.Buffer(buf) |
---|
476 | L2_buf=L2.Buffer(buf) |
---|
477 | |
---|
478 | # Get intersection point[s] |
---|
479 | L1_L2_intersect=L1_buf.Intersection(L2_buf) |
---|
480 | if(L1_L2_intersect.GetGeometryCount()==1): |
---|
481 | if(not check_polygon_is_small(L1_L2_intersect, buf, tol2)): |
---|
482 | #print L1_L2_intersect.GetEnvelope() |
---|
483 | raise Exception, 'line intersection is not allowed. Envelope %s '% str(L1_L2_intersect.GetEnvelope()) |
---|
484 | # Seems to need special treatment with only 1 intersection point |
---|
485 | intersectionPts=[L1_L2_intersect.Centroid().GetPoint()] |
---|
486 | else: |
---|
487 | intersectionPts=[] |
---|
488 | for feature in L1_L2_intersect: |
---|
489 | if(not check_polygon_is_small(feature, buf, tol2)): |
---|
490 | print feature.GetEnvelope() |
---|
491 | raise Exception, 'line intersection is not allowed' |
---|
492 | intersectionPts.append(feature.Centroid().GetPoint()) |
---|
493 | |
---|
494 | if(verbose): |
---|
495 | print nameFlag |
---|
496 | print ' Treating intersections in ', len(intersectionPts) , ' locations' |
---|
497 | print intersectionPts |
---|
498 | |
---|
499 | # Insert the points into the line segments |
---|
500 | for i in range(len(intersectionPts)): |
---|
501 | L1_pts = insert_intersection_point(intersectionPts[i], L1_pts, point_movement_threshold, verbose=verbose) |
---|
502 | L2_pts = insert_intersection_point(intersectionPts[i], L2_pts, point_movement_threshold, verbose=verbose) |
---|
503 | |
---|
504 | # Convert to the input format |
---|
505 | L1_pts=ListPts2Wkb(L1_pts,geometry_type='line') |
---|
506 | L2_pts=ListPts2Wkb(L2_pts,geometry_type='line') |
---|
507 | |
---|
508 | return [L1_pts, L2_pts] |
---|
509 | else: |
---|
510 | return [L1, L2] |
---|
511 | |
---|
512 | ########################################################### |
---|
513 | def getRasterExtent(rasterFile, asPolygon=False): |
---|
514 | """ |
---|
515 | Sometimes we need to know the extent of a raster |
---|
516 | i.e. the minimum x, maximum x, minimum y, and maximum y values |
---|
517 | |
---|
518 | INPUT: |
---|
519 | rasterFile -- a gdal compatible rasterfile |
---|
520 | asPolygon -- if False, return [xmin,xmax,ymin,ymax]. |
---|
521 | If True, return [ [xmin,ymin],[xmax,ymin],[xmax,ymax],[xmin,ymax]] |
---|
522 | OUTPUT |
---|
523 | The extent as defined above |
---|
524 | |
---|
525 | """ |
---|
526 | raster = gdal.Open(rasterFile) |
---|
527 | transform=raster.GetGeoTransform() |
---|
528 | xOrigin = transform[0] |
---|
529 | yOrigin = transform[3] |
---|
530 | xPixels=raster.RasterXSize |
---|
531 | yPixels=raster.RasterYSize |
---|
532 | |
---|
533 | # Compute the other extreme corner |
---|
534 | x2=xOrigin + xPixels*transform[1]+yPixels*transform[2] |
---|
535 | y2=yOrigin + xPixels*transform[4]+yPixels*transform[5] |
---|
536 | |
---|
537 | xmin=min(xOrigin,x2) |
---|
538 | xmax=max(xOrigin,x2) |
---|
539 | |
---|
540 | ymin=min(yOrigin,y2) |
---|
541 | ymax=max(yOrigin,y2) |
---|
542 | |
---|
543 | if(asPolygon): |
---|
544 | return [ [xmin,ymin], [xmax,ymin], [xmax,ymax], [xmin,ymax]] |
---|
545 | else: |
---|
546 | return [xmin,xmax,ymin,ymax] |
---|
547 | |
---|
548 | |
---|
549 | ########################################################### |
---|
550 | def rasterValuesAtPoints(xy, rasterFile, band=1): |
---|
551 | """ |
---|
552 | Get raster values at point locations. |
---|
553 | Can be used to e.g. set quantity values |
---|
554 | |
---|
555 | INPUT: |
---|
556 | xy = numpy array with point locations |
---|
557 | rasterFile = Filename of the gdal-compatible raster |
---|
558 | band = band of the raster to get |
---|
559 | |
---|
560 | OUTPUT: |
---|
561 | 1d numpy array with raster values at xy |
---|
562 | |
---|
563 | """ |
---|
564 | # Raster info |
---|
565 | raster = gdal.Open(rasterFile) |
---|
566 | rasterBand=raster.GetRasterBand(band) |
---|
567 | rasterBandType=gdal.GetDataTypeName(rasterBand.DataType) |
---|
568 | |
---|
569 | # Projection info |
---|
570 | transform=raster.GetGeoTransform() |
---|
571 | xOrigin = transform[0] |
---|
572 | yOrigin = transform[3] |
---|
573 | pixelWidth = transform[1] |
---|
574 | pixelHeight = transform[5] # Negative |
---|
575 | |
---|
576 | # Get coordinates in pixel values |
---|
577 | px = ((xy[:,0] - xOrigin) / pixelWidth).astype(int) #x |
---|
578 | py = ((xy[:,1] - yOrigin) / pixelHeight).astype(int) #y |
---|
579 | |
---|
580 | # Hold elevation |
---|
581 | elev=px*0. |
---|
582 | |
---|
583 | # Get the right character for struct.unpack |
---|
584 | if (rasterBandType == 'Int16'): |
---|
585 | CtypeName='h' |
---|
586 | elif (rasterBandType == 'Float32'): |
---|
587 | CtypeName='f' |
---|
588 | elif (rasterBandType == 'Byte'): |
---|
589 | CtypeName='B' |
---|
590 | else: |
---|
591 | print 'unrecognized DataType:', gdal.GetDataTypeName(band.DataType) |
---|
592 | print 'You might need to edit this code to read the data type' |
---|
593 | raise Exception, 'Stopping' |
---|
594 | |
---|
595 | # Upper bounds for pixel values, so we can fail gracefully |
---|
596 | xMax=raster.RasterXSize |
---|
597 | yMax=raster.RasterYSize |
---|
598 | if(px.max()<xMax and px.min()>=0 and py.max()<yMax and py.min()>=0): |
---|
599 | pass |
---|
600 | else: |
---|
601 | raise Exception, 'Trying to extract point values that exceed the raster extent' |
---|
602 | |
---|
603 | # Get values -- seems we have to loop, but it is efficient enough |
---|
604 | for i in range(len(px)): |
---|
605 | xC=int(px[i]) |
---|
606 | yC=int(py[i]) |
---|
607 | structval=rasterBand.ReadRaster(xC,yC,1,1,buf_type=rasterBand.DataType) |
---|
608 | elev[i] = struct.unpack(CtypeName, structval)[0] |
---|
609 | |
---|
610 | return elev |
---|
611 | |
---|
612 | |
---|
613 | def gridPointsInPolygon(polygon, approx_grid_spacing=[1.,1.], eps=1.0e-06): |
---|
614 | """ |
---|
615 | Get a 'grid' of points inside a polygon. Could be used with rasterValuesAtPoints to |
---|
616 | get a range of raster values inside a polygon |
---|
617 | |
---|
618 | Approach: A 'trial-grid' of points is created which is 'almost' covering the range of the polygon (xmin-xmax,ymin-ymax). |
---|
619 | |
---|
620 | (Actually it is just inside this region, to avoid polygon-boundary issues, see below) |
---|
621 | |
---|
622 | Then we find those points which are actually inside the polygon. |
---|
623 | |
---|
624 | The x/y point spacing on the trial-grid will be close to |
---|
625 | approx_grid_spacing, but we ensure there are at least 3x3 points on the trial grid. |
---|
626 | Also, we reduce the spacing so that the min_x+R and max_x-R |
---|
627 | are both similarly close to the polygon extents [see definition of R below] |
---|
628 | |
---|
629 | INPUTS: |
---|
630 | polygon -- the polygon in ANUGA format (list of lists of ordered xy points) |
---|
631 | |
---|
632 | approx_grid_spacing -- the approximate x,y grid spacing |
---|
633 | |
---|
634 | eps -- 'trial-grid' of points has x range from min_polygon_x+R to |
---|
635 | max_polygon_x - R, where R = (max_polygon_x-min_polygon_x)*eps |
---|
636 | ( and similarly for y). |
---|
637 | |
---|
638 | This makes it more likely that points are inside the |
---|
639 | polygon, not on the boundaries. Points on the boundaries can confuse the |
---|
640 | point-in-polygon routine |
---|
641 | |
---|
642 | OUTPUTS: A n x 2 numpy array of points in the polygon |
---|
643 | """ |
---|
644 | |
---|
645 | # Get polygon extent |
---|
646 | polygonArr=numpy.array(polygon) |
---|
647 | poly_xmin=polygonArr[:,0].min() |
---|
648 | poly_xmax=polygonArr[:,0].max() |
---|
649 | poly_ymin=polygonArr[:,1].min() |
---|
650 | poly_ymax=polygonArr[:,1].max() |
---|
651 | |
---|
652 | # Make a 'grid' of points which covers the polygon |
---|
653 | xGridCount=max( numpy.ceil( (poly_xmax-poly_xmin)/approx_grid_spacing[0]+1. ).astype(int), 3) |
---|
654 | R=(poly_xmax-poly_xmin)*eps |
---|
655 | Xvals=numpy.linspace(poly_xmin+R,poly_xmax-R, xGridCount) |
---|
656 | yGridCount=max( numpy.ceil( (poly_ymax-poly_ymin)/approx_grid_spacing[1]+1. ).astype(int), 3) |
---|
657 | R=(poly_ymax-poly_ymin)*eps |
---|
658 | Yvals=numpy.linspace(poly_ymin+R,poly_ymax-R, yGridCount) |
---|
659 | |
---|
660 | xGrid,yGrid=numpy.meshgrid(Xvals,Yvals) |
---|
661 | Grid=numpy.vstack([xGrid.flatten(),yGrid.flatten()]).transpose() |
---|
662 | |
---|
663 | # Now find the xy values which are actually inside the polygon |
---|
664 | polpath=path.Path(polygonArr) |
---|
665 | keepers=[] |
---|
666 | for i in range(len(Grid[:,0])): |
---|
667 | if(polpath.contains_point(Grid[i,:])): |
---|
668 | keepers=keepers+[i] |
---|
669 | #import pdb |
---|
670 | #pdb.set_trace() |
---|
671 | xyInside=Grid[keepers,:] |
---|
672 | |
---|
673 | return(xyInside) |
---|
674 | |
---|
675 | ######################################################################### |
---|
676 | # Function to search for pattern matches in a string (turns out to be useful) |
---|
677 | def matchInds(pattern, stringList): |
---|
678 | """ |
---|
679 | Find indices in stringList which match pattern |
---|
680 | """ |
---|
681 | #matches=[ (pattern in stringList[i]) for i in range(len(stringList))] |
---|
682 | matches=[] |
---|
683 | for i in range(len(stringList)): |
---|
684 | if pattern in stringList[i]: |
---|
685 | matches.append(i) |
---|
686 | return matches |
---|
687 | |
---|
688 | |
---|
689 | ########################################################################### |
---|
690 | # |
---|
691 | # Less generic utilities below |
---|
692 | # |
---|
693 | # These are more 'anuga-specific' than above, aiming to make nice interfaces |
---|
694 | # in ANUGA scripts |
---|
695 | # |
---|
696 | ############################################################################ |
---|
697 | |
---|
698 | |
---|
699 | def add_intersections_to_domain_features(bounding_polygonIn, |
---|
700 | breakLinesIn={ }, riverWallsIn={ }, point_movement_threshold=0., |
---|
701 | verbose=True): |
---|
702 | """ |
---|
703 | If bounding polygon / breaklines /riverwalls intersect with each other, then |
---|
704 | add intersection points. |
---|
705 | |
---|
706 | INPUTS: |
---|
707 | bounding_polygonIn -- the bounding polygon in ANUGA format |
---|
708 | breakLinesIn -- the breaklines dictionary |
---|
709 | riverWallsIn -- the riverWalls dictionary |
---|
710 | |
---|
711 | point_movement_threshold -- if points on lines are < this distance |
---|
712 | from intersection points, then they are replaced with the intersection point. |
---|
713 | This can prevent overly close points from breaking the mesh generation |
---|
714 | |
---|
715 | OUTPUT: |
---|
716 | List with bounding_polygon,breakLines,riverwalls |
---|
717 | """ |
---|
718 | |
---|
719 | bounding_polygon=copy.copy(bounding_polygonIn) |
---|
720 | breakLines=copy.copy(breakLinesIn) |
---|
721 | riverWalls=copy.copy(riverWallsIn) |
---|
722 | |
---|
723 | # Clean intersections of breakLines with itself |
---|
724 | if(verbose): |
---|
725 | print 'Cleaning breakline intersections' |
---|
726 | if(len(breakLines)>0): |
---|
727 | kbl=breakLines.keys() |
---|
728 | for i in range(len(kbl)): |
---|
729 | n1=kbl[i] |
---|
730 | for j in range(len(kbl)): |
---|
731 | if(i>=j): |
---|
732 | continue |
---|
733 | n2=kbl[j] |
---|
734 | # Convert breaklines to wkb format |
---|
735 | bl1=ListPts2Wkb(breakLines[n1],geometry_type='line') |
---|
736 | bl2=ListPts2Wkb(breakLines[n2],geometry_type='line') |
---|
737 | # Add intersection points |
---|
738 | bl1, bl2 =addIntersectionPtsToLines(bl1, bl2,\ |
---|
739 | point_movement_threshold=point_movement_threshold, |
---|
740 | verbose=verbose, nameFlag=n1+' intersects '+ n2) |
---|
741 | breakLines[n1]=Wkb2ListPts(bl1) |
---|
742 | breakLines[n2]=Wkb2ListPts(bl2) |
---|
743 | |
---|
744 | |
---|
745 | # Clean intersections of riverWalls with itself |
---|
746 | if(verbose): |
---|
747 | print 'Cleaning riverWall intersections' |
---|
748 | if(len(riverWalls)>0): |
---|
749 | krw=riverWalls.keys() |
---|
750 | for i in range(len(krw)): |
---|
751 | n1=krw[i] |
---|
752 | for j in range(len(krw)): |
---|
753 | if(i>=j): |
---|
754 | continue |
---|
755 | n2=krw[j] |
---|
756 | # Convert breaklines to wkb format |
---|
757 | rw1=ListPts2Wkb(riverWalls[n1],geometry_type='line') |
---|
758 | rw2=ListPts2Wkb(riverWalls[n2],geometry_type='line') |
---|
759 | # Add intersection points |
---|
760 | rw1, rw2 =addIntersectionPtsToLines(rw1, rw2,\ |
---|
761 | point_movement_threshold=point_movement_threshold,\ |
---|
762 | verbose=verbose, nameFlag=n1+' intersects '+ n2) |
---|
763 | riverWalls[n1]=Wkb2ListPts(rw1) |
---|
764 | riverWalls[n2]=Wkb2ListPts(rw2) |
---|
765 | |
---|
766 | # Clean intersections of breaklines with riverwalls |
---|
767 | if(verbose): |
---|
768 | print 'Cleaning breakLine-riverWall intersections' |
---|
769 | if( (len(riverWalls)>0) and (len(breakLines)>0)): |
---|
770 | krw=riverWalls.keys() |
---|
771 | kbl=breakLines.keys() |
---|
772 | for i in range(len(krw)): |
---|
773 | n1=krw[i] |
---|
774 | for j in range(len(kbl)): |
---|
775 | n2=kbl[j] |
---|
776 | # Convert breaklines to wkb format |
---|
777 | rw1=ListPts2Wkb(riverWalls[n1],geometry_type='line') |
---|
778 | bw2=ListPts2Wkb(breakLines[n2],geometry_type='line') |
---|
779 | # Add intersection points |
---|
780 | rw1, bw2 =addIntersectionPtsToLines(rw1, bw2,\ |
---|
781 | point_movement_threshold=point_movement_threshold,\ |
---|
782 | verbose=verbose, nameFlag=n1+' intersects '+ n2) |
---|
783 | riverWalls[n1]=Wkb2ListPts(rw1) |
---|
784 | breakLines[n2]=Wkb2ListPts(bw2) |
---|
785 | |
---|
786 | |
---|
787 | # Clean intersections of bounding polygon and riverwalls |
---|
788 | if(verbose): |
---|
789 | print 'Cleaning bounding_poly-riverWall intersections' |
---|
790 | if( (len(riverWalls)>0)): |
---|
791 | krw=riverWalls.keys() |
---|
792 | for i in range(len(krw)): |
---|
793 | n1=krw[i] |
---|
794 | # Convert breaklines to wkb format |
---|
795 | rw1=ListPts2Wkb(riverWalls[n1],geometry_type='line') |
---|
796 | bp2=ListPts2Wkb(bounding_polygon,geometry_type='line', appendFirstOnEnd=True) |
---|
797 | # Add intersection points |
---|
798 | rw1, bp2 =addIntersectionPtsToLines(rw1, bp2,\ |
---|
799 | point_movement_threshold=point_movement_threshold,\ |
---|
800 | verbose=verbose, nameFlag='Bounding Pol intersects '+ n1) |
---|
801 | riverWalls[n1]=Wkb2ListPts(rw1) |
---|
802 | # Since the bounding polygon is a loop, the first/last points are the same |
---|
803 | # If one of these was moved, the other should be moved too. Since we |
---|
804 | # will drop the last bounding_polygon point, we only need to worry about the first |
---|
805 | bounding_polygon=Wkb2ListPts(bp2,removeLast=False) |
---|
806 | if(bounding_polygon[-1] is not bounding_polygon[0]): |
---|
807 | bounding_polygon[0]=bounding_polygon[-1] |
---|
808 | # Drop the last point |
---|
809 | bounding_polygon=bounding_polygon[:-1] |
---|
810 | |
---|
811 | # Clean intersections of bounding polygon and breaklines |
---|
812 | if(verbose): |
---|
813 | print 'Cleaning bounding_poly-breaklines intersections' |
---|
814 | if( (len(breakLines)>0)): |
---|
815 | kbl=breakLines.keys() |
---|
816 | for i in range(len(kbl)): |
---|
817 | n1=kbl[i] |
---|
818 | # Convert breaklines to wkb format |
---|
819 | bl1=ListPts2Wkb(breakLines[n1],geometry_type='line') |
---|
820 | bp2=ListPts2Wkb(bounding_polygon,geometry_type='line', appendFirstOnEnd=True) |
---|
821 | # Add intersection points |
---|
822 | bl1, bp2 =addIntersectionPtsToLines(bl1, bp2,\ |
---|
823 | point_movement_threshold=point_movement_threshold, |
---|
824 | verbose=verbose, nameFlag='Bounding Pol intersects '+n1) |
---|
825 | breakLines[n1]=Wkb2ListPts(bl1) |
---|
826 | # Since the bounding polygon is a loop, the first/last points are the same |
---|
827 | # If one of these was moved, the other should be moved too. Since we |
---|
828 | # will drop the last bp2 point, we only need to worry about the first |
---|
829 | bounding_polygon=Wkb2ListPts(bp2,removeLast=False) |
---|
830 | if(bounding_polygon[-1] is not bounding_polygon[0]): |
---|
831 | bounding_polygon[0]=bounding_polygon[-1] |
---|
832 | # Drop the last point |
---|
833 | bounding_polygon=bounding_polygon[:-1] |
---|
834 | |
---|
835 | # Remove the extra 0.0 from bounding polygon [this cannot have 3 coordinates] |
---|
836 | bounding_polygon = [ bounding_polygon[i][0:2] for i in range(len(bounding_polygon))] |
---|
837 | # Same for breaklines [although might not matter] |
---|
838 | for n1 in breakLines.keys(): |
---|
839 | breakLines[n1] = [breakLines[n1][i][0:2] for i in range(len(breakLines[n1]))] |
---|
840 | |
---|
841 | # Check that all mesh-boundary points are inside the bounding polygon |
---|
842 | from anuga.geometry.polygon import outside_polygon |
---|
843 | for blCat in [riverWalls, breakLines]: |
---|
844 | for n1 in blCat.keys(): |
---|
845 | l=len(blCat[n1]) |
---|
846 | # Test every point -- means we can strip 3rd coordinate if needed |
---|
847 | for j in range(l): |
---|
848 | isOut=outside_polygon(blCat[n1][j][0:2], bounding_polygon) |
---|
849 | if(len(isOut)>0): |
---|
850 | msg='Breakline/riverwall point '+str(blCat[n1][j][0:2]) +' on '+ n1+\ |
---|
851 | ' is outside the bounding polygon.\n'+\ |
---|
852 | 'Check that it exceeds the bounding polygon by a distance < point_movement_threshold \n'+\ |
---|
853 | ' so it can be moved back onto the polygon' |
---|
854 | print 'Polygon\n ' |
---|
855 | print bounding_polygon |
---|
856 | print 'Line \n' |
---|
857 | print blCat[n1] |
---|
858 | raise Exception, msg |
---|
859 | |
---|
860 | return [bounding_polygon, breakLines, riverWalls] |
---|
861 | |
---|
862 | ################################################################### |
---|
863 | |
---|
864 | def readRegionPtAreas(shapefile, convert_length_to_area=False): |
---|
865 | """ |
---|
866 | Read a point shapefile to define the ANUGA mesh resoutions. |
---|
867 | |
---|
868 | MUST HAVE A SINGLE ATTRIBUTE REPRESENTING THE LENGTHS OF TRIANGLES IN |
---|
869 | REGIONS |
---|
870 | |
---|
871 | INPUT: shapefile -- name of the input shapefile |
---|
872 | convert_length_to_area -- if True, res values are assumed to |
---|
873 | represent triangle side lengths, and are converted to areas with 0.5*res0*res0 |
---|
874 | Note that this might not ensure that the max triangle side length really is res0, but |
---|
875 | it will be of similar magnitude |
---|
876 | If False, attribute values are assumed to represent triangle areas |
---|
877 | |
---|
878 | OUTPUT: list of the form [ [x0,y0,res0], [x1, y1, res1], ...] |
---|
879 | """ |
---|
880 | |
---|
881 | ptData=readShpPtsAndAttributes(shapefile) |
---|
882 | |
---|
883 | # Must have only 1 attribute |
---|
884 | assert len(ptData[2])==1 |
---|
885 | |
---|
886 | numPts=len(ptData[0]) |
---|
887 | outData=[] |
---|
888 | for i in range(numPts): |
---|
889 | if(convert_length_to_area): |
---|
890 | newDat=[ptData[0][i][0], ptData[0][i][1], 0.5*float(ptData[1][i])**2] |
---|
891 | else: |
---|
892 | newDat=[ptData[0][i][0], ptData[0][i][1], float(ptData[1][i])] |
---|
893 | outData.append(newDat) |
---|
894 | |
---|
895 | return outData |
---|
896 | |
---|
897 | ######################################### |
---|
898 | def readListOfBreakLines(shapefileList): |
---|
899 | """ |
---|
900 | Take a list with the names of shapefiles |
---|
901 | |
---|
902 | They are assumed to be '2D breaklines', so we just read their |
---|
903 | coordinates into a dict with their names |
---|
904 | |
---|
905 | Read them in |
---|
906 | |
---|
907 | INPUT: shapefileList -- a list of shapefile names [e.g. from glob.glob('GIS/Breaklines/*.shp')] |
---|
908 | |
---|
909 | OUTPUT: dictionary with breaklines [filenames are keys] |
---|
910 | """ |
---|
911 | |
---|
912 | allBreakLines={} |
---|
913 | for shapefile in shapefileList: |
---|
914 | allBreakLines[shapefile]=readShp_1LineGeo(shapefile) |
---|
915 | |
---|
916 | return allBreakLines |
---|
917 | |
---|
918 | ############################################################################ |
---|
919 | def polygon_from_matching_breaklines(pattern,breakLinesIn, reverse2nd=None): |
---|
920 | """ |
---|
921 | We sometimes have breaklines defining 2 edges of a channel, |
---|
922 | and wish to make a polygon from them |
---|
923 | |
---|
924 | Can do this with the current function |
---|
925 | |
---|
926 | INPUTS: pattern == character string containing pattern which is inside exactly 2 keys in breaklines |
---|
927 | |
---|
928 | breakLines = the breakLinesIn dictionary |
---|
929 | |
---|
930 | reverse2nd = True/False or None. Reverse the order of the 2nd set of edges before making the polygon. |
---|
931 | If None, then we compute the distance between the |
---|
932 | first point on breakline1 and the first/last points on breakline2, and reverse2nd if |
---|
933 | the 'distance from the first point' < 'distance from the last point' |
---|
934 | |
---|
935 | OUTPUT: Polygon made with the 2 breaklines |
---|
936 | """ |
---|
937 | |
---|
938 | breakLines=copy.copy(breakLinesIn) |
---|
939 | bk=breakLines.keys() |
---|
940 | matchers=matchInds(pattern, bk) |
---|
941 | |
---|
942 | if(len(matchers)==0): |
---|
943 | msg = 'Cannot match ' + pattern + 'in breaklines file names' |
---|
944 | raise Exception, msg |
---|
945 | |
---|
946 | if(len(matchers)!=2): |
---|
947 | print 'Need exactly 2 matches, but pattern matched these', bk[matchers] |
---|
948 | |
---|
949 | # There are 2 matches |
---|
950 | |
---|
951 | if(reverse2nd is None): |
---|
952 | # Automatically compute whether we should reverse the 2nd breakline |
---|
953 | bl1_0=breakLines[bk[matchers[0]]][0] |
---|
954 | bl2_0=breakLines[bk[matchers[1]]][0] |
---|
955 | bl2_N=breakLines[bk[matchers[1]]][-1] |
---|
956 | d0 = ((bl1_0[0]-bl2_0[0])**2 + (bl1_0[1]-bl2_0[1])**2) |
---|
957 | dN = ((bl1_0[0]-bl2_N[0])**2 + (bl1_0[1]-bl2_N[1])**2) |
---|
958 | if(d0<dN): |
---|
959 | reverse2nd = True |
---|
960 | else: |
---|
961 | reverse2nd = False |
---|
962 | |
---|
963 | if(reverse2nd): |
---|
964 | breakLines[bk[matchers[1]]].reverse() |
---|
965 | polyOut=breakLines[bk[matchers[0]]] + breakLines[bk[matchers[1]]] |
---|
966 | #polyOut=polyOut+[polyOut[0]] |
---|
967 | return polyOut |
---|
968 | ################### |
---|
969 | |
---|
970 | else: # gdal_available == False |
---|
971 | msg='Failed to import gdal/ogr modules --'\ |
---|
972 | + 'perhaps gdal python interface is not installed.' |
---|
973 | |
---|
974 | |
---|
975 | |
---|
976 | def readShp_1PolyGeo(shapefile, dropLast=True): |
---|
977 | raise ImportError, msg |
---|
978 | |
---|
979 | def readShp_1LineGeo(shapefile): |
---|
980 | raise ImportError, msg |
---|
981 | |
---|
982 | def readShpPtsAndAttributes(shapefile): |
---|
983 | raise ImportError, msg |
---|
984 | |
---|
985 | def ListPts2Wkb( ptsIn, geometry_type='line', appendFirstOnEnd=None): |
---|
986 | raise ImportError, msg |
---|
987 | |
---|
988 | def Wkb2ListPts(wkb_geo, removeLast=False, drop_third_dimension=False): |
---|
989 | raise ImportError, msg |
---|
990 | |
---|
991 | def compute_squared_distance_to_segment(pt, line): |
---|
992 | raise ImportError, msg |
---|
993 | |
---|
994 | def find_nearest_segment(pt, segments): |
---|
995 | raise ImportError, msg |
---|
996 | |
---|
997 | def shift_point_on_line(pt, lineIn, nearest_segment_index): |
---|
998 | raise ImportError, msg |
---|
999 | |
---|
1000 | def insert_intersection_point(intersectionPt, line_pts, point_movement_threshold,verbose=False): |
---|
1001 | raise ImportError, msg |
---|
1002 | |
---|
1003 | def check_polygon_is_small(intersection, buf, tol2=100.): |
---|
1004 | raise ImportError, msg |
---|
1005 | |
---|
1006 | def addIntersectionPtsToLines(L1,L2, point_movement_threshold=0.0, buf=1.0e-06, tol2 = 100, |
---|
1007 | verbose=True, nameFlag=''): |
---|
1008 | raise ImportError, msg |
---|
1009 | |
---|
1010 | |
---|
1011 | def rasterValuesAtPoints(xy, rasterFile, band=1): |
---|
1012 | raise ImportError, msg |
---|
1013 | |
---|
1014 | |
---|
1015 | def gridPointsInPolygon(polygon, approx_grid_spacing=[1.,1.], eps=1.0e-06): |
---|
1016 | raise ImportError, msg |
---|
1017 | |
---|
1018 | |
---|
1019 | def matchInds(pattern, stringList): |
---|
1020 | raise ImportError, msg |
---|
1021 | |
---|
1022 | |
---|
1023 | def add_intersections_to_domain_features(bounding_polygonIn, |
---|
1024 | breakLinesIn={ }, riverWallsIn={ }, point_movement_threshold=0., |
---|
1025 | verbose=True): |
---|
1026 | raise ImportError, msg |
---|
1027 | |
---|
1028 | |
---|
1029 | def readRegionPtAreas(shapefile, convert_length_to_area=False): |
---|
1030 | raise ImportError, msg |
---|
1031 | |
---|
1032 | def readListOfBreakLines(shapefileList): |
---|
1033 | raise ImportError, msg |
---|
1034 | |
---|
1035 | def polygon_from_matching_breaklines(pattern,breakLinesIn, reverse2nd=None): |
---|
1036 | raise ImportError, msg |
---|
1037 | ################### |
---|
1038 | |
---|
1039 | |
---|