1 | """ |
---|
2 | Simple water flow example using ANUGA |
---|
3 | |
---|
4 | Water driven up a linear slope and time varying boundary, |
---|
5 | similar to a beach environment |
---|
6 | |
---|
7 | This is a very simple test of the parallel algorithm using the simplified parallel API |
---|
8 | """ |
---|
9 | |
---|
10 | |
---|
11 | #------------------------------------------------------------------------------ |
---|
12 | # Import necessary modules |
---|
13 | #------------------------------------------------------------------------------ |
---|
14 | import unittest |
---|
15 | import os |
---|
16 | import sys |
---|
17 | #import pypar |
---|
18 | import numpy as num |
---|
19 | |
---|
20 | from anuga import Domain |
---|
21 | from anuga import Reflective_boundary |
---|
22 | from anuga import Dirichlet_boundary |
---|
23 | from anuga import Time_boundary |
---|
24 | from anuga import Transmissive_boundary |
---|
25 | |
---|
26 | from anuga import rectangular_cross_domain |
---|
27 | |
---|
28 | |
---|
29 | from anuga_parallel.interface import distribute, myid, numprocs, send, receive, barrier, finalize |
---|
30 | |
---|
31 | #-------------------------------------------------------------------------- |
---|
32 | # Setup parameters |
---|
33 | #-------------------------------------------------------------------------- |
---|
34 | yieldstep = 0.25 |
---|
35 | finaltime = 6.0 |
---|
36 | nprocs = 4 |
---|
37 | N = 25 |
---|
38 | M = 25 |
---|
39 | verbose = True |
---|
40 | |
---|
41 | #--------------------------------- |
---|
42 | # Setup Functions |
---|
43 | #--------------------------------- |
---|
44 | def topography(x,y): |
---|
45 | return -x/2 |
---|
46 | |
---|
47 | ########################################################################### |
---|
48 | # Setup Test |
---|
49 | ########################################################################## |
---|
50 | def evolution_test(parallel=False, G = None, seq_interpolation_points=None): |
---|
51 | |
---|
52 | #-------------------------------------------------------------------------- |
---|
53 | # Setup computational domain and quantities |
---|
54 | #-------------------------------------------------------------------------- |
---|
55 | domain = rectangular_cross_domain(M, N) |
---|
56 | domain.set_quantity('elevation', topography) # Use function for elevation |
---|
57 | domain.set_quantity('friction', 0.0) # Constant friction |
---|
58 | domain.set_quantity('stage', expression='elevation') # Dry initial stage |
---|
59 | |
---|
60 | #-------------------------------------------------------------------------- |
---|
61 | # Create the parallel domain |
---|
62 | #-------------------------------------------------------------------------- |
---|
63 | if parallel: |
---|
64 | if myid == 0 and verbose : print 'DISTRIBUTING PARALLEL DOMAIN' |
---|
65 | domain = distribute(domain, verbose=False) |
---|
66 | |
---|
67 | #-------------------------------------------------------------------------- |
---|
68 | # Setup domain parameters |
---|
69 | #-------------------------------------------------------------------------- |
---|
70 | domain.set_name('runup') # Set sww filename |
---|
71 | domain.set_datadir('.') # Set output dir |
---|
72 | |
---|
73 | domain.set_default_order(1) |
---|
74 | domain.set_quantities_to_be_stored(None) |
---|
75 | |
---|
76 | |
---|
77 | #------------------------------------------------------------------------------ |
---|
78 | # Setup boundary conditions |
---|
79 | # This must currently happen *AFTER* domain has been distributed |
---|
80 | #------------------------------------------------------------------------------ |
---|
81 | |
---|
82 | Br = Reflective_boundary(domain) # Solid reflective wall |
---|
83 | Bd = Dirichlet_boundary([-0.2,0.,0.]) # Constant boundary values |
---|
84 | |
---|
85 | # Associate boundary tags with boundary objects |
---|
86 | domain.set_boundary({'left': Br, 'right': Bd, 'top': Br, 'bottom': Br}) |
---|
87 | |
---|
88 | #------------------------------------------------------------------------------ |
---|
89 | # Find which sub_domain in which the interpolation points are located |
---|
90 | # |
---|
91 | # Sometimes the interpolation points sit exactly |
---|
92 | # between to centroids, so in the parallel run we |
---|
93 | # reset the interpolation points to the centroids |
---|
94 | # found in the sequential run |
---|
95 | #------------------------------------------------------------------------------ |
---|
96 | interpolation_points = [[0.4,0.5], [0.6,0.5], [0.8,0.5], [0.9,0.5]] |
---|
97 | |
---|
98 | if parallel: |
---|
99 | interpolation_points = seq_interpolation_points |
---|
100 | |
---|
101 | |
---|
102 | gauge_values = [] |
---|
103 | tri_ids = [] |
---|
104 | for i, point in enumerate(interpolation_points): |
---|
105 | gauge_values.append([]) # Empty list for timeseries |
---|
106 | |
---|
107 | #if is_inside_polygon(point, domain.get_boundary_polygon()): |
---|
108 | try: |
---|
109 | k = domain.get_triangle_containing_point(point) |
---|
110 | if domain.tri_full_flag[k] == 1: |
---|
111 | tri_ids.append(k) |
---|
112 | else: |
---|
113 | tri_ids.append(-1) |
---|
114 | except: |
---|
115 | tri_ids.append(-2) |
---|
116 | |
---|
117 | |
---|
118 | if verbose: print 'P%d has points = %s' %(myid, tri_ids) |
---|
119 | |
---|
120 | if not parallel: |
---|
121 | c_coord = domain.get_centroid_coordinates() |
---|
122 | interpolation_points = [] |
---|
123 | for id in tri_ids: |
---|
124 | if id<1: |
---|
125 | print 'ERROR: All interpolation points be within the sequential domain!' |
---|
126 | interpolation_points.append(c_coord[id,:]) |
---|
127 | |
---|
128 | #------------------------------------------------------------------------------ |
---|
129 | # Evolve system through time |
---|
130 | #------------------------------------------------------------------------------ |
---|
131 | time = [] |
---|
132 | |
---|
133 | if parallel: |
---|
134 | if myid == 0 and verbose: print 'PARALLEL EVOLVE' |
---|
135 | else: |
---|
136 | if myid == 0 and verbose: print 'SEQUENTIAL EVOLVE' |
---|
137 | |
---|
138 | |
---|
139 | for t in domain.evolve(yieldstep = yieldstep, finaltime = finaltime): |
---|
140 | if myid == 0 and verbose : domain.write_time() |
---|
141 | |
---|
142 | # Record time series at known points |
---|
143 | time.append(domain.get_time()) |
---|
144 | |
---|
145 | stage = domain.get_quantity('stage') |
---|
146 | |
---|
147 | for i in range(4): |
---|
148 | if tri_ids[i] > -1: |
---|
149 | gauge_values[i].append(stage.centroid_values[tri_ids[i]]) |
---|
150 | |
---|
151 | |
---|
152 | #---------------------------------------- |
---|
153 | # Setup test arrays during sequential run |
---|
154 | #---------------------------------------- |
---|
155 | if not parallel: |
---|
156 | G = [] |
---|
157 | for i in range(4): |
---|
158 | G.append(gauge_values[i]) |
---|
159 | |
---|
160 | success = True |
---|
161 | |
---|
162 | for i in range(4): |
---|
163 | if tri_ids[i] > -1: |
---|
164 | success = success and num.allclose(gauge_values[i], G[i]) |
---|
165 | |
---|
166 | assert_(success) |
---|
167 | |
---|
168 | return G, interpolation_points |
---|
169 | |
---|
170 | # Test an nprocs-way run of the shallow water equations |
---|
171 | # against the sequential code. |
---|
172 | |
---|
173 | class Test_parallel_sw_flow(unittest.TestCase): |
---|
174 | def test_parallel_sw_flow(self): |
---|
175 | print "Expect this test to fail if not run from the parallel directory." |
---|
176 | result = os.system("mpirun -np %d python test_parallel_sw_flow.py" % nprocs) |
---|
177 | assert_(result == 0) |
---|
178 | |
---|
179 | # Because we are doing assertions outside of the TestCase class |
---|
180 | # the PyUnit defined assert_ function can't be used. |
---|
181 | def assert_(condition, msg="Assertion Failed"): |
---|
182 | if condition == False: |
---|
183 | #pypar.finalize() |
---|
184 | raise AssertionError, msg |
---|
185 | |
---|
186 | if __name__=="__main__": |
---|
187 | if numprocs == 1: |
---|
188 | runner = unittest.TextTestRunner() |
---|
189 | suite = unittest.makeSuite(Test_parallel_sw_flow, 'test') |
---|
190 | runner.run(suite) |
---|
191 | else: |
---|
192 | |
---|
193 | #------------------------------------------ |
---|
194 | # Run the sequential code on each processor |
---|
195 | # and save results at 4 gauge stations to |
---|
196 | # array G |
---|
197 | #------------------------------------------ |
---|
198 | barrier() |
---|
199 | if myid == 0 and verbose: print 'SEQUENTIAL START' |
---|
200 | |
---|
201 | G , interpolation_points = evolution_test(parallel=False) |
---|
202 | G = num.array(G,num.float) |
---|
203 | |
---|
204 | barrier() |
---|
205 | |
---|
206 | #------------------------------------------ |
---|
207 | # Run the code code and compare sequential |
---|
208 | # results at 4 gauge stations |
---|
209 | #------------------------------------------ |
---|
210 | if myid ==0 and verbose: print 'PARALLEL START' |
---|
211 | |
---|
212 | evolution_test(parallel=True, G=G, seq_interpolation_points = interpolation_points) |
---|
213 | |
---|
214 | finalize() |
---|
215 | |
---|
216 | |
---|