source: trunk/anuga_validation/convergence_study/wave.py @ 8831

Last change on this file since 8831 was 8067, checked in by steve, 14 years ago

Pulling together basic validate tests for anuga

File size: 4.7 KB
Line 
1"""Simple water flow example using ANUGA
2
3Will Powers example of a simple sinusoidal wave which showed diffusive effects of
4thefirst order and standard second order method. Problem resolved if "rk2" timestepping
5and higher beta = 2 limiter used. Also new edge limiter with rk2 resolves problem
6"""
7
8#------------------------------------------------------------------------------
9# Import necessary modules
10#------------------------------------------------------------------------------
11
12import sys
13from anuga import rectangular_cross
14from anuga import Domain
15from anuga import Reflective_boundary
16from anuga import Dirichlet_boundary
17from anuga import Time_boundary
18from anuga import Transmissive_boundary
19from anuga import Transmissive_momentum_set_stage_boundary
20#from anuga.data_manager import start_screen_catcher, copy_code_files
21
22from math import cos
23import numpy as num
24from time import localtime, strftime, gmtime
25from os import sep
26
27
28
29#-------------------------------------------------------------------------------
30# Copy scripts to time stamped output directory and capture screen
31# output to file
32#-------------------------------------------------------------------------------
33time = strftime('%Y%m%d_%H%M%S',localtime())
34
35output_dir = 'wave_'+time
36output_file = 'wave'
37
38#copy_code_files(output_dir,__file__)
39#start_screen_catcher(output_dir+sep)
40
41interactive_visualisation = True
42
43#------------------------------------------------------------------------------
44# Setup domain
45#------------------------------------------------------------------------------
46dx = 1000.
47dy = dx
48L = 100000.
49W = 10*dx
50
51# structured mesh
52points, vertices, boundary = rectangular_cross(int(L/dx), int(W/dy), L, W, (0.0, -W/2))
53
54domain = Domain(points, vertices, boundary) 
55
56domain.set_name(output_file)               
57domain.set_datadir(output_dir) 
58
59#------------------------------------------------------------------------------
60# Setup Algorithm
61#------------------------------------------------------------------------------
62
63domain.set_timestepping_method(2)
64domain.set_default_order(2)
65
66print domain.get_timestepping_method()
67
68#domain.use_edge_limiter = True
69#domain.tight_slope_limiters = False
70#domain.use_centroid_velocities = False
71
72domain.set_beta(1.9)
73
74domain.CFL = 1.0
75
76#domain.beta_w      = 1.0
77#domain.beta_w_dry  = 0.0
78#domain.beta_uh     = 1.0
79#domain.beta_uh_dry = 0.0
80#domain.beta_vh     = 1.0
81#domain.beta_vh_dry = 0.0
82
83
84#------------------------------------------------------------------------------
85# Setup initial conditions
86#------------------------------------------------------------------------------
87domain.set_quantity('elevation',-100.0)
88domain.set_quantity('friction', 0.00)
89domain.set_quantity('stage', 0.0)           
90
91#-----------------------------------------------------------------------------
92# Setup boundary conditions
93#------------------------------------------------------------------------------
94from math import sin, pi, exp
95Br = Reflective_boundary(domain)      # Solid reflective wall
96Bt = Transmissive_boundary(domain)    # Continue all values on boundary
97Bd = Dirichlet_boundary([1,0.,0.]) # Constant boundary values
98amplitude = 1
99Bw = Time_boundary(domain=domain,     # Time dependent boundary 
100## Sine wave
101                  f=lambda t: [(-amplitude*sin((1./300.)*t*2*pi)), 0.0, 0.0])
102## Sawtooth?
103#                   f=lambda t: [(-8.0*(sin((1./180.)*t*2*pi))+(1./2.)*sin((2./180.)*t*2*pi)+(1./3.)*sin((3./180.)*t*2*pi)), 0.0, 0.0])
104## Sharp rise, linear fall
105#                   f=lambda t: [(5.0*(-((t-0.)/300.)*(t<300.)-cos((t-300.)*2.*pi*(1./240.))*(t>=300. and t<420.)+(1.-(t-420.)/300.)*(t>=420. and t <720.))), 0.0, 0.0])
106#                   f=lambda t: [amplitude*(1.-2.*(pi*(1./720.)*(t-720.))**2)/exp((pi*(1./720.)*(t-720.))**2) , 0.0, 0.0])
107#                   f=lambda t: [(-8.0*sin((1./720.)*t*2*pi))*((t<720.)-0.5*(t<360.)), 0.0, 0.0])
108
109# Associate boundary tags with boundary objects
110domain.set_boundary({'left': Bw, 'right': Bt, 'top': Br, 'bottom': Br})
111
112
113#===============================================================================
114if interactive_visualisation:
115    from anuga.visualiser import RealtimeVisualiser
116    vis = RealtimeVisualiser(domain)
117    vis.render_quantity_height("stage", zScale =10000, dynamic=True)
118    vis.colour_height_quantity('stage', (1.0, 0.5, 0.5))
119    vis.start()
120#===============================================================================
121
122
123#------------------------------------------------------------------------------
124# Evolve system through time
125#------------------------------------------------------------------------------
126
127for t in domain.evolve(yieldstep = 50.0, finaltime = 60*60.):
128    domain.write_time()
129    if interactive_visualisation:
130        vis.update()
131
132if interactive_visualisation:
133    vis.evolveFinished()
134
Note: See TracBrowser for help on using the repository browser.