source: trunk/anuga_validation/validation_tests/periodic_forcing/wave.py @ 8067

Last change on this file since 8067 was 8067, checked in by steve, 13 years ago

Pulling together basic validate tests for anuga

File size: 4.8 KB
Line 
1"""Simple water flow example using ANUGA
2
3Will Powers example of a simple sinusoidal wave which showed diffusive effects of
4thefirst order and standard second order method. Problem resolved if "rk2" timestepping
5and higher beta = 2 limiter used. Also new edge limiter with rk2 resolves problem
6"""
7
8#------------------------------------------------------------------------------
9# Import necessary modules
10#------------------------------------------------------------------------------
11
12import sys
13from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross
14from anuga.shallow_water import Domain
15from anuga.shallow_water import Reflective_boundary
16from anuga.shallow_water import Dirichlet_boundary
17from anuga.shallow_water import Time_boundary
18from anuga.shallow_water import Transmissive_boundary
19from anuga.shallow_water import Transmissive_Momentum_Set_Stage_boundary
20from anuga.shallow_water.data_manager import start_screen_catcher, copy_code_files
21
22from math import cos
23from Numeric import zeros, Float
24from time import localtime, strftime, gmtime
25from os import sep
26
27
28
29#-------------------------------------------------------------------------------
30# Copy scripts to time stamped output directory and capture screen
31# output to file
32#-------------------------------------------------------------------------------
33time = strftime('%Y%m%d_%H%M%S',localtime())
34
35output_dir = 'wave_'+time
36output_file = 'wave'
37
38copy_code_files(output_dir,__file__)
39#start_screen_catcher(output_dir+sep)
40
41interactive_visualisation = False
42
43#------------------------------------------------------------------------------
44# Setup domain
45#------------------------------------------------------------------------------
46dx = 1000.
47dy = dx
48L = 100000.
49W = 10*dx
50
51# structured mesh
52points, vertices, boundary = rectangular_cross(int(L/dx), int(W/dy), L, W, (0.0, -W/2))
53
54domain = Domain(points, vertices, boundary) 
55
56domain.set_name(output_file)               
57domain.set_datadir(output_dir) 
58
59#------------------------------------------------------------------------------
60# Setup Algorithm
61#------------------------------------------------------------------------------
62domain.set_timestepping_method('rk2')
63domain.set_default_order(2)
64
65print domain.get_timestepping_method()
66
67domain.use_edge_limiter = True
68domain.tight_slope_limiters = False
69domain.use_centroid_velocities = False
70
71domain.CFL = 1.0
72
73domain.beta_w      = 1.0
74domain.beta_w_dry  = 0.0
75domain.beta_uh     = 1.0
76domain.beta_uh_dry = 0.0
77domain.beta_vh     = 1.0
78domain.beta_vh_dry = 0.0
79
80
81#------------------------------------------------------------------------------
82# Setup initial conditions
83#------------------------------------------------------------------------------
84domain.set_quantity('elevation',-100.0)
85domain.set_quantity('friction', 0.00)
86domain.set_quantity('stage', 0.0)           
87
88#-----------------------------------------------------------------------------
89# Setup boundary conditions
90#------------------------------------------------------------------------------
91from math import sin, pi, exp
92Br = Reflective_boundary(domain)      # Solid reflective wall
93Bt = Transmissive_boundary(domain)    # Continue all values on boundary
94Bd = Dirichlet_boundary([1,0.,0.]) # Constant boundary values
95amplitude = 1
96Bw = Time_boundary(domain=domain,     # Time dependent boundary 
97## Sine wave
98                  f=lambda t: [(-amplitude*sin((1./300.)*t*2*pi)), 0.0, 0.0])
99## Sawtooth?
100#                   f=lambda t: [(-8.0*(sin((1./180.)*t*2*pi))+(1./2.)*sin((2./180.)*t*2*pi)+(1./3.)*sin((3./180.)*t*2*pi)), 0.0, 0.0])
101## Sharp rise, linear fall
102#                   f=lambda t: [(5.0*(-((t-0.)/300.)*(t<300.)-cos((t-300.)*2.*pi*(1./240.))*(t>=300. and t<420.)+(1.-(t-420.)/300.)*(t>=420. and t <720.))), 0.0, 0.0])
103#                   f=lambda t: [amplitude*(1.-2.*(pi*(1./720.)*(t-720.))**2)/exp((pi*(1./720.)*(t-720.))**2) , 0.0, 0.0])
104#                   f=lambda t: [(-8.0*sin((1./720.)*t*2*pi))*((t<720.)-0.5*(t<360.)), 0.0, 0.0])
105
106# Associate boundary tags with boundary objects
107domain.set_boundary({'left': Bw, 'right': Bt, 'top': Br, 'bottom': Br})
108
109
110#===============================================================================
111if interactive_visualisation:
112    from anuga.visualiser import RealtimeVisualiser
113    vis = RealtimeVisualiser(domain)
114    vis.render_quantity_height("stage", zScale =10000, dynamic=True)
115    vis.colour_height_quantity('stage', (1.0, 0.5, 0.5))
116    vis.start()
117#===============================================================================
118
119
120#------------------------------------------------------------------------------
121# Evolve system through time
122#------------------------------------------------------------------------------
123
124for t in domain.evolve(yieldstep = 50.0, finaltime = 60*60.):
125    domain.write_time()
126    if interactive_visualisation:
127        vis.update()
128
129if interactive_visualisation:
130    vis.evolveFinished()
131
Note: See TracBrowser for help on using the repository browser.