[8213] | 1 | """Example of shallow water wave equation analytical solution of the |
---|
| 2 | one-dimensional Carrier and Greenspan wave run-up treated as a two-dimensional solution. |
---|
| 3 | |
---|
| 4 | Copyright 2004 |
---|
| 5 | Christopher Zoppou, Stephen Roberts, Ole Nielsen, Duncan Gray |
---|
| 6 | Geoscience Australia |
---|
| 7 | |
---|
| 8 | Modified by Sudi Mungkasi, ANU, 2011 |
---|
| 9 | |
---|
| 10 | Specific methods pertaining to the 2D shallow water equation |
---|
| 11 | are imported from shallow_water |
---|
| 12 | for use with the generic finite volume framework |
---|
| 13 | |
---|
| 14 | Conserved quantities are h, uh and vh stored as elements 0, 1 and 2 in the |
---|
| 15 | numerical vector named conserved_quantities. |
---|
| 16 | """ |
---|
| 17 | |
---|
| 18 | #------------------- |
---|
| 19 | # Module imports |
---|
| 20 | import sys |
---|
| 21 | import anuga |
---|
| 22 | from math import sqrt, cos, sin, pi |
---|
| 23 | from numpy import asarray |
---|
| 24 | from time import localtime, strftime, gmtime |
---|
| 25 | |
---|
| 26 | #------------------------------------------------------------------------------- |
---|
| 27 | # Copy scripts to time stamped output directory and capture screen |
---|
| 28 | # output to file |
---|
| 29 | #------------------------------------------------------------------------------- |
---|
| 30 | time = strftime('%Y%m%d_%H%M%S',localtime()) |
---|
| 31 | |
---|
| 32 | output_dir = 'transient_carrier_greenspan_'+time |
---|
| 33 | output_file = 'transient_carrier_greenspan' |
---|
| 34 | |
---|
| 35 | #anuga.copy_code_files(output_dir,__file__) |
---|
| 36 | #start_screen_catcher(output_dir+'_') |
---|
| 37 | |
---|
| 38 | |
---|
| 39 | #------------------- |
---|
| 40 | #Convenience functions |
---|
| 41 | #------------------- |
---|
| 42 | def imag(a): |
---|
| 43 | return a.imag |
---|
| 44 | |
---|
| 45 | def real(a): |
---|
| 46 | return a.real |
---|
| 47 | |
---|
| 48 | |
---|
| 49 | #------------------------------------------------------------------------------ |
---|
| 50 | # Setup domain |
---|
| 51 | #------------------------------------------------------------------------------ |
---|
| 52 | dx = 10. |
---|
| 53 | dy = dx |
---|
| 54 | L = 100. |
---|
| 55 | W = 10*dx |
---|
| 56 | |
---|
| 57 | # structured mesh |
---|
| 58 | points, vertices, boundary = anuga.rectangular_cross(int(L/dx), int(W/dy), L, W, (0.0, -W/2)) |
---|
| 59 | |
---|
| 60 | domain = anuga.Domain(points, vertices, boundary) |
---|
| 61 | |
---|
| 62 | domain.set_name(output_file) |
---|
| 63 | domain.set_datadir(output_dir) |
---|
| 64 | |
---|
| 65 | #------------------------------------------------------------------------------ |
---|
| 66 | # Setup Algorithm |
---|
| 67 | #------------------------------------------------------------------------------ |
---|
| 68 | domain.set_default_order(2) |
---|
| 69 | domain.set_timestepping_method(2) |
---|
| 70 | domain.set_beta(0.7) |
---|
| 71 | domain.set_CFL(0.6) |
---|
| 72 | |
---|
| 73 | |
---|
| 74 | #----------------------- |
---|
| 75 | #Define the boundary condition |
---|
| 76 | #----------------------- |
---|
| 77 | def stage_setup(x,t): |
---|
| 78 | vh = 0 |
---|
| 79 | alpha = 0.1 |
---|
| 80 | eta = 0.1 |
---|
| 81 | a = 1.5*sqrt(1.+0.9*eta) |
---|
| 82 | l_0 = 200. |
---|
| 83 | ii = complex(0,1) |
---|
| 84 | g = 9.81 |
---|
| 85 | v_0 = sqrt(g*l_0*alpha) |
---|
| 86 | v1 = 0. |
---|
| 87 | |
---|
| 88 | sigma_max = 100. |
---|
| 89 | sigma_min = -100. |
---|
| 90 | for j in range (1,50): |
---|
| 91 | sigma0 = (sigma_max+sigma_min)/2. |
---|
| 92 | lambda_prime = 2./a*(t/sqrt(l_0/alpha/g)+v1) |
---|
| 93 | sigma_prime = sigma0/a |
---|
| 94 | const = (1.-ii*lambda_prime)**2+sigma_prime**2 |
---|
| 95 | |
---|
| 96 | v1 = 8.*eta/a*imag(1./const**(3./2.) \ |
---|
| 97 | -3./4.*(1.-ii*lambda_prime)/const**(5./2.)) |
---|
| 98 | |
---|
| 99 | x1 = -v1**2/2.-a**2*sigma_prime**2/16.+eta \ |
---|
| 100 | *real(1.-2.*(5./4.-ii*lambda_prime) \ |
---|
| 101 | /const**(3./2.)+3./2.*(1.-ii*lambda_prime)**2 \ |
---|
| 102 | /const**(5./2.)) |
---|
| 103 | |
---|
| 104 | neta1 = x1 + a*a*sigma_prime**2/16. |
---|
| 105 | |
---|
| 106 | v_star1 = v1*v_0 |
---|
| 107 | x_star1 = x1*l_0 |
---|
| 108 | neta_star1 = neta1*alpha*l_0 |
---|
| 109 | stage = neta_star1 |
---|
| 110 | z = stage - x_star1*alpha |
---|
| 111 | uh = z*v_star1 |
---|
| 112 | |
---|
| 113 | if x_star1-x > 0: |
---|
| 114 | sigma_max = sigma0 |
---|
| 115 | else: |
---|
| 116 | sigma_min = sigma0 |
---|
| 117 | |
---|
| 118 | if abs(abs(sigma0)-100.) < 10: |
---|
| 119 | #solution does not converge because bed is dry |
---|
| 120 | stage = 0. |
---|
| 121 | uh = 0. |
---|
| 122 | z = 0. |
---|
| 123 | |
---|
| 124 | return [stage, uh, vh] |
---|
| 125 | |
---|
| 126 | def boundary_stage(t): |
---|
| 127 | x = -200 |
---|
| 128 | return stage_setup(x,t) |
---|
| 129 | |
---|
| 130 | |
---|
| 131 | #------------------------------------------------------------------------------- |
---|
| 132 | #Initial condition |
---|
| 133 | #------------------------------------------------------------------------------- |
---|
| 134 | t_star1 = 0.0 |
---|
| 135 | slope = -0.1 |
---|
| 136 | |
---|
| 137 | #Set bed-elevation and friction(None) |
---|
| 138 | def x_slope(x,y): |
---|
| 139 | n = x.shape[0] |
---|
| 140 | z = 0*x |
---|
| 141 | for i in range(n): |
---|
| 142 | z[i] = -slope*x[i] |
---|
| 143 | return z |
---|
| 144 | domain.set_quantity('elevation', x_slope) |
---|
| 145 | |
---|
| 146 | #Set the water depth |
---|
| 147 | def stage(x,y): |
---|
| 148 | z = x_slope(x,y) |
---|
| 149 | n = x.shape[0] |
---|
| 150 | w = 0*x |
---|
| 151 | for i in range(n): |
---|
| 152 | w[i], uh, vh = stage_setup(x[i],t_star1) |
---|
| 153 | h = w[i] - z[i] |
---|
| 154 | if h < 0: |
---|
| 155 | h = 0 |
---|
| 156 | w[i] = z[i] |
---|
| 157 | return w |
---|
| 158 | domain.set_quantity('stage', stage) |
---|
| 159 | |
---|
| 160 | |
---|
| 161 | #----------------------------------------------------------------------------- |
---|
| 162 | # Setup boundary conditions |
---|
| 163 | #------------------------------------------------------------------------------ |
---|
| 164 | Br = anuga.Reflective_boundary(domain) |
---|
| 165 | Bt = anuga.Time_boundary(domain, boundary_stage) |
---|
| 166 | |
---|
| 167 | # Associate boundary tags with boundary objects |
---|
| 168 | domain.set_boundary({'left': Bt, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
| 169 | |
---|
| 170 | ##visualize = True |
---|
| 171 | ##if visualize: |
---|
| 172 | ## from anuga.visualiser import RealtimeVisualiser |
---|
| 173 | ## vis = RealtimeVisualiser(domain) |
---|
| 174 | ## vis.render_quantity_height("elevation", zScale=3.0, offset = 0.01, dynamic=False) |
---|
| 175 | ## vis.render_quantity_height("stage", zScale = 3.0, dynamic=True, opacity = 0.6, wireframe=False) |
---|
| 176 | ## #vis.colour_height_quantity('stage', (lambda q:q['stage'], 1.0, 2.0)) |
---|
| 177 | ## vis.colour_height_quantity('stage', (0.4, 0.6, 0.4)) |
---|
| 178 | ## vis.start() |
---|
| 179 | ## time.sleep(2.0) |
---|
| 180 | |
---|
| 181 | #domain.visualise = True |
---|
| 182 | |
---|
| 183 | |
---|
| 184 | #------------------------------------------------------------------------------ |
---|
| 185 | # Evolve system through time |
---|
| 186 | #------------------------------------------------------------------------------ |
---|
| 187 | import time |
---|
| 188 | t0 = time.time() |
---|
| 189 | for t in domain.evolve(yieldstep = 1., finaltime = 1000): |
---|
| 190 | domain.write_time() |
---|
| 191 | #print boundary_stage(domain.time) |
---|
| 192 | #if visualize: vis.update() |
---|
| 193 | |
---|
| 194 | #if visualize: vis.evolveFinished() |
---|
| 195 | print 'That took %.2f seconds' %(time.time()-t0) |
---|
| 196 | |
---|