1 | """ |
---|
2 | Class Quantity - Implements values at each 1d element |
---|
3 | |
---|
4 | To create: |
---|
5 | |
---|
6 | Quantity(domain, vertex_values) |
---|
7 | |
---|
8 | domain: Associated domain structure. Required. |
---|
9 | |
---|
10 | vertex_values: N x 2 array of values at each vertex for each element. |
---|
11 | Default None |
---|
12 | |
---|
13 | If vertex_values are None Create array of zeros compatible with domain. |
---|
14 | Otherwise check that it is compatible with dimenions of domain. |
---|
15 | Otherwise raise an exception |
---|
16 | """ |
---|
17 | |
---|
18 | import numpy |
---|
19 | |
---|
20 | |
---|
21 | |
---|
22 | class Quantity: |
---|
23 | |
---|
24 | |
---|
25 | def __init__(self, domain, vertex_values=None): |
---|
26 | #Initialise Quantity using optional vertex values. |
---|
27 | |
---|
28 | from anuga_1d.base.generic_domain import Generic_domain |
---|
29 | |
---|
30 | msg = 'First argument in Quantity.__init__ ' |
---|
31 | msg += 'must be of class Generic_domain (or a subclass thereof)' |
---|
32 | assert isinstance(domain, Generic_domain), msg |
---|
33 | |
---|
34 | if vertex_values is None: |
---|
35 | N = domain.number_of_elements |
---|
36 | self.vertex_values = numpy.zeros((N, 2), numpy.float) |
---|
37 | else: |
---|
38 | self.vertex_values = numpy.array(vertex_values, numpy.float) |
---|
39 | |
---|
40 | N, V = self.vertex_values.shape |
---|
41 | assert V == 2,\ |
---|
42 | 'Two vertex values per element must be specified' |
---|
43 | |
---|
44 | |
---|
45 | msg = 'Number of vertex values (%d) must be consistent with'\ |
---|
46 | %N |
---|
47 | msg += 'number of elements in specified domain (%d).'\ |
---|
48 | %domain.number_of_elements |
---|
49 | |
---|
50 | assert N == domain.number_of_elements, msg |
---|
51 | |
---|
52 | self.domain = domain |
---|
53 | |
---|
54 | #Allocate space for other quantities |
---|
55 | self.centroid_values = numpy.zeros(N, numpy.float) |
---|
56 | self.centroid_backup_values = numpy.zeros(N, numpy.float) |
---|
57 | #self.edge_values = numpy.zeros((N, 2), numpy.float) |
---|
58 | #edge values are values of the ends of each interval |
---|
59 | |
---|
60 | #Intialise centroid values |
---|
61 | self.interpolate() |
---|
62 | |
---|
63 | |
---|
64 | |
---|
65 | #Allocate space for boundary values |
---|
66 | #L = len(domain.boundary) |
---|
67 | self.boundary_values = numpy.zeros(2, numpy.float) #assumes no parrellism |
---|
68 | |
---|
69 | #Allocate space for updates of conserved quantities by |
---|
70 | #flux calculations and forcing functions |
---|
71 | |
---|
72 | self.N = domain.number_of_elements |
---|
73 | N = self.N |
---|
74 | self.explicit_update = numpy.zeros(N, numpy.float ) |
---|
75 | self.semi_implicit_update = numpy.zeros(N, numpy.float ) |
---|
76 | |
---|
77 | self.gradients = numpy.zeros(N, numpy.float) |
---|
78 | self.qmax = numpy.zeros(self.centroid_values.shape, numpy.float) |
---|
79 | self.qmin = numpy.zeros(self.centroid_values.shape, numpy.float) |
---|
80 | |
---|
81 | #These are taken from domain but can be set for each quantity |
---|
82 | # if so desired |
---|
83 | self.beta = 0.0 |
---|
84 | self.limiter = 'vanleer' |
---|
85 | |
---|
86 | |
---|
87 | self.beta_p = numpy.zeros(N,numpy.float) |
---|
88 | self.beta_m = numpy.zeros(N,numpy.float) |
---|
89 | self.beta_x = numpy.zeros(N,numpy.float) |
---|
90 | |
---|
91 | |
---|
92 | self.dx = numpy.zeros((N,2), numpy.float) |
---|
93 | self.phi = numpy.zeros(N, numpy.float) |
---|
94 | |
---|
95 | |
---|
96 | def __len__(self): |
---|
97 | """ |
---|
98 | Returns number of intervals. |
---|
99 | """ |
---|
100 | return self.centroid_values.shape[0] |
---|
101 | |
---|
102 | def __neg__(self): |
---|
103 | """Negate all values in this quantity giving meaning to the |
---|
104 | expression -Q where Q is an instance of class Quantity |
---|
105 | """ |
---|
106 | |
---|
107 | Q = Quantity(self.domain) |
---|
108 | Q.set_values_from_numeric(-self.vertex_values) |
---|
109 | return Q |
---|
110 | |
---|
111 | |
---|
112 | |
---|
113 | def __add__(self, other): |
---|
114 | """Add to self anything that could populate a quantity |
---|
115 | |
---|
116 | E.g other can be a constant, an array, a function, another quantity |
---|
117 | (except for a filename or points, attributes (for now)) |
---|
118 | - see set_values_from_numeric for details |
---|
119 | """ |
---|
120 | |
---|
121 | Q = Quantity(self.domain) |
---|
122 | Q.set_values_from_numeric(other) |
---|
123 | |
---|
124 | result = Quantity(self.domain) |
---|
125 | result.set_values_from_numeric(self.vertex_values + Q.vertex_values) |
---|
126 | return result |
---|
127 | |
---|
128 | def __radd__(self, other): |
---|
129 | """Handle cases like 7+Q, where Q is an instance of class Quantity |
---|
130 | """ |
---|
131 | |
---|
132 | return self + other |
---|
133 | |
---|
134 | def __sub__(self, other): |
---|
135 | return self + -other # Invoke self.__neg__() |
---|
136 | |
---|
137 | def __mul__(self, other): |
---|
138 | """Multiply self with anything that could populate a quantity |
---|
139 | |
---|
140 | E.g other can be a constant, an array, a function, another quantity |
---|
141 | (except for a filename or points, attributes (for now)) |
---|
142 | - see set_values_from_numeric for details |
---|
143 | """ |
---|
144 | |
---|
145 | if isinstance(other, Quantity): |
---|
146 | Q = other |
---|
147 | else: |
---|
148 | Q = Quantity(self.domain) |
---|
149 | Q.set_values_from_numeric(other) |
---|
150 | |
---|
151 | result = Quantity(self.domain) |
---|
152 | |
---|
153 | # The product of vertex_values, edge_values and centroid_values |
---|
154 | # are calculated and assigned directly without using |
---|
155 | # set_values_from_numeric (which calls interpolate). Otherwise |
---|
156 | # centroid values wouldn't be products from q1 and q2 |
---|
157 | result.vertex_values = self.vertex_values * Q.vertex_values |
---|
158 | result.centroid_values = self.centroid_values * Q.centroid_values |
---|
159 | |
---|
160 | return result |
---|
161 | |
---|
162 | def __rmul__(self, other): |
---|
163 | """Handle cases like 3*Q, where Q is an instance of class Quantity |
---|
164 | """ |
---|
165 | |
---|
166 | return self * other |
---|
167 | |
---|
168 | def __div__(self, other): |
---|
169 | """Divide self with anything that could populate a quantity |
---|
170 | |
---|
171 | E.g other can be a constant, an array, a function, another quantity |
---|
172 | (except for a filename or points, attributes (for now)) |
---|
173 | - see set_values_from_numeric for details |
---|
174 | |
---|
175 | Zero division is dealt with by adding an epsilon to the divisore |
---|
176 | FIXME (Ole): Replace this with native INF once we migrate to NumPy |
---|
177 | """ |
---|
178 | |
---|
179 | if isinstance(other, Quantity): |
---|
180 | Q = other |
---|
181 | else: |
---|
182 | Q = Quantity(self.domain) |
---|
183 | Q.set_values_from_numeric(other) |
---|
184 | |
---|
185 | result = Quantity(self.domain) |
---|
186 | |
---|
187 | # The quotient of vertex_values, edge_values and centroid_values |
---|
188 | # are calculated and assigned directly without using |
---|
189 | # set_values_from_numeric (which calls interpolate). Otherwise |
---|
190 | # centroid values wouldn't be quotient of q1 and q2 |
---|
191 | result.vertex_values = self.vertex_values/(Q.vertex_values + epsilon) |
---|
192 | result.centroid_values = self.centroid_values/(Q.centroid_values + epsilon) |
---|
193 | |
---|
194 | return result |
---|
195 | |
---|
196 | def __rdiv__(self, other): |
---|
197 | """Handle cases like 3/Q, where Q is an instance of class Quantity |
---|
198 | """ |
---|
199 | |
---|
200 | return self / other |
---|
201 | |
---|
202 | def __pow__(self, other): |
---|
203 | """Raise quantity to (numerical) power |
---|
204 | |
---|
205 | As with __mul__ vertex values are processed entry by entry |
---|
206 | while centroid and edge values are re-interpolated. |
---|
207 | |
---|
208 | Example using __pow__: |
---|
209 | Q = (Q1**2 + Q2**2)**0.5 |
---|
210 | """ |
---|
211 | |
---|
212 | if isinstance(other, Quantity): |
---|
213 | Q = other |
---|
214 | else: |
---|
215 | Q = Quantity(self.domain) |
---|
216 | Q.set_values_from_numeric(other) |
---|
217 | |
---|
218 | result = Quantity(self.domain) |
---|
219 | |
---|
220 | # The power of vertex_values, edge_values and centroid_values |
---|
221 | # are calculated and assigned directly without using |
---|
222 | # set_values_from_numeric (which calls interpolate). Otherwise |
---|
223 | # centroid values wouldn't be correct |
---|
224 | result.vertex_values = self.vertex_values ** other |
---|
225 | result.centroid_values = self.centroid_values ** other |
---|
226 | |
---|
227 | return result |
---|
228 | |
---|
229 | def set_values_from_numeric(self, numeric): |
---|
230 | |
---|
231 | x = numpy.array([1.0,2.0]) |
---|
232 | y = [1.0,2.0] |
---|
233 | |
---|
234 | if type(numeric) == type(y): |
---|
235 | self.set_values_from_array(numeric) |
---|
236 | elif type(numeric) == type(x): |
---|
237 | self.set_values_from_array(numeric) |
---|
238 | elif callable(numeric): |
---|
239 | self.set_values_from_function(numeric) |
---|
240 | elif isinstance(numeric, Quantity): |
---|
241 | self.set_values_from_quantity(numeric) |
---|
242 | else: # see if it's coercible to a float (float, int or long, etc) |
---|
243 | try: |
---|
244 | numeric = float(numeric) |
---|
245 | except ValueError: |
---|
246 | msg = ("Illegal type for variable 'numeric': %s" % type(numeric)) |
---|
247 | raise Exception(msg) |
---|
248 | self.set_values_from_constant(numeric) |
---|
249 | |
---|
250 | def set_values_from_constant(self,numeric): |
---|
251 | |
---|
252 | self.vertex_values[:,:] = numeric |
---|
253 | self.centroid_values[:,] = numeric |
---|
254 | |
---|
255 | |
---|
256 | def set_values_from_array(self,numeric): |
---|
257 | |
---|
258 | self.vertex_values[:,:] = numeric |
---|
259 | self.interpolate() |
---|
260 | |
---|
261 | |
---|
262 | def set_values_from_quantity(self,quantity): |
---|
263 | |
---|
264 | self.vertex_values[:,:] = quantity.vertex_values |
---|
265 | self.centroid_values[:,] = quantity.centroid_values |
---|
266 | |
---|
267 | def set_values_from_function(self,function): |
---|
268 | |
---|
269 | self.vertex_values[:,:] = map(function, self.domain.vertices) |
---|
270 | self.centroid_values[:,] = map(function, self.domain.centroids) |
---|
271 | |
---|
272 | |
---|
273 | def interpolate(self): |
---|
274 | """ |
---|
275 | Compute interpolated values at centroid |
---|
276 | Pre-condition: vertex_values have been set |
---|
277 | """ |
---|
278 | |
---|
279 | N = self.vertex_values.shape[0] |
---|
280 | for i in range(N): |
---|
281 | v0 = self.vertex_values[i, 0] |
---|
282 | v1 = self.vertex_values[i, 1] |
---|
283 | |
---|
284 | self.centroid_values[i] = (v0 + v1)/2.0 |
---|
285 | |
---|
286 | |
---|
287 | |
---|
288 | |
---|
289 | def set_values(self, X, location='vertices'): |
---|
290 | """Set values for quantity |
---|
291 | |
---|
292 | X: Compatible list, Numeric array (see below), constant or function |
---|
293 | location: Where values are to be stored. |
---|
294 | Permissible options are: vertices, centroid |
---|
295 | Default is "vertices" |
---|
296 | |
---|
297 | In case of location == 'centroid' the dimension values must |
---|
298 | be a list of a Numerical array of length N, N being the number |
---|
299 | of elements in the mesh. Otherwise it must be of dimension Nx2 |
---|
300 | |
---|
301 | The values will be stored in elements following their |
---|
302 | internal ordering. |
---|
303 | |
---|
304 | If values are described a function, it will be evaluated at specified points |
---|
305 | |
---|
306 | If selected location is vertices, values for centroid and edges |
---|
307 | will be assigned interpolated values. |
---|
308 | In any other case, only values for the specified locations |
---|
309 | will be assigned and the others will be left undefined. |
---|
310 | """ |
---|
311 | |
---|
312 | if location not in ['vertices', 'centroids', 'unique_vertices']: |
---|
313 | msg = 'Invalid location: %s, (possible choices vertices, centroids, unique_vertices)' %location |
---|
314 | raise Exception(msg) |
---|
315 | |
---|
316 | if X is None: |
---|
317 | msg = 'Given values are None' |
---|
318 | raise Exception(msg) |
---|
319 | |
---|
320 | import types |
---|
321 | |
---|
322 | if callable(X): |
---|
323 | #Use function specific method |
---|
324 | self.set_function_values(X, location) |
---|
325 | |
---|
326 | elif type(X) in [types.FloatType, types.IntType, types.LongType]: |
---|
327 | |
---|
328 | self.centroid_values[:,] = float(X) |
---|
329 | self.vertex_values[:,:] = float(X) |
---|
330 | |
---|
331 | elif isinstance(X, Quantity): |
---|
332 | self.set_array_values(X.vertex_values, location) |
---|
333 | |
---|
334 | else: |
---|
335 | #Use array specific method |
---|
336 | self.set_array_values(X, location) |
---|
337 | |
---|
338 | if location == 'vertices' or location == 'unique_vertices': |
---|
339 | #Intialise centroid |
---|
340 | self.interpolate() |
---|
341 | |
---|
342 | if location == 'centroid': |
---|
343 | self.extrapolate_first_order() |
---|
344 | |
---|
345 | |
---|
346 | |
---|
347 | |
---|
348 | |
---|
349 | def set_function_values(self, f, location='vertices'): |
---|
350 | """Set values for quantity using specified function |
---|
351 | |
---|
352 | f: x -> z Function where x and z are arrays |
---|
353 | location: Where values are to be stored. |
---|
354 | Permissible options are: vertices, centroid |
---|
355 | Default is "vertices" |
---|
356 | """ |
---|
357 | |
---|
358 | if location == 'centroids': |
---|
359 | |
---|
360 | P = self.domain.centroids |
---|
361 | self.set_values(f(P), location) |
---|
362 | else: |
---|
363 | #Vertices |
---|
364 | |
---|
365 | P = self.domain.get_vertices() |
---|
366 | |
---|
367 | for i in range(2): |
---|
368 | |
---|
369 | self.vertex_values[:,i] = f(P[:,i]) |
---|
370 | |
---|
371 | def set_array_values(self, values, location='vertices'): |
---|
372 | """Set values for quantity |
---|
373 | |
---|
374 | values: Numeric array |
---|
375 | location: Where values are to be stored. |
---|
376 | Permissible options are: vertices, centroid, unique_vertices |
---|
377 | Default is "vertices" |
---|
378 | |
---|
379 | In case of location == 'centroid' the dimension values must |
---|
380 | be a list of a Numerical array of length N, N being the number |
---|
381 | of elements in the mesh. If location == 'unique_vertices' the |
---|
382 | dimension values must be a list or a Numeric array of length N+1. |
---|
383 | Otherwise it must be of dimension Nx2 |
---|
384 | |
---|
385 | The values will be stored in elements following their |
---|
386 | internal ordering. |
---|
387 | |
---|
388 | If selected location is vertices, values for centroid |
---|
389 | will be assigned interpolated values. |
---|
390 | In any other case, only values for the specified locations |
---|
391 | will be assigned and the others will be left undefined. |
---|
392 | """ |
---|
393 | |
---|
394 | |
---|
395 | values = numpy.array(values).astype(numpy.float) |
---|
396 | |
---|
397 | N = self.centroid_values.shape[0] |
---|
398 | |
---|
399 | |
---|
400 | if location == 'centroids': |
---|
401 | msg = 'Number of values must match number of elements' |
---|
402 | assert values.shape[0] == N, msg |
---|
403 | assert len(values.shape) == 1, 'Values array must be 1d' |
---|
404 | |
---|
405 | for i in range(N): |
---|
406 | self.centroid_values[i] = values[i] |
---|
407 | |
---|
408 | self.vertex_values[:,0] = values |
---|
409 | self.vertex_values[:,1] = values |
---|
410 | |
---|
411 | if location == 'vertices': |
---|
412 | msg = 'Number of values must match number of elements' |
---|
413 | assert values.shape[0] == N, msg |
---|
414 | assert len(values.shape) == 2, 'Values array must be 2d' |
---|
415 | msg = 'Array must be N x 2' |
---|
416 | assert values.shape[1] == 2, msg |
---|
417 | |
---|
418 | self.vertex_values[:,:] = values[:,:] |
---|
419 | |
---|
420 | if location == 'unique_vertices': |
---|
421 | msg = 'Number of values must match number of elements +1' |
---|
422 | assert values.shape[0] == N+1, msg |
---|
423 | assert len(values.shape) == 1, 'Values array must be 1d' |
---|
424 | |
---|
425 | self.vertex_values[:,0] = values[0:-1] |
---|
426 | self.vertex_values[:,1] = values[1:N+1] |
---|
427 | |
---|
428 | |
---|
429 | |
---|
430 | |
---|
431 | |
---|
432 | def get_values(self, location='vertices', indices = None): |
---|
433 | """get values for quantity |
---|
434 | |
---|
435 | return X, Compatible list, Numeric array (see below) |
---|
436 | location: Where values are to be stored. |
---|
437 | Permissible options are: vertices, centroid |
---|
438 | and unique vertices. Default is 'vertices' |
---|
439 | |
---|
440 | In case of location == 'centroids' the dimension values must |
---|
441 | be a list of a Numerical array of length N, N being the number |
---|
442 | of elements. Otherwise it must be of dimension Nx3 |
---|
443 | |
---|
444 | The returned values with be a list the length of indices |
---|
445 | (N if indices = None). Each value will be a list of the three |
---|
446 | vertex values for this quantity. |
---|
447 | |
---|
448 | Indices is the set of element ids that the operation applies to. |
---|
449 | |
---|
450 | """ |
---|
451 | |
---|
452 | |
---|
453 | if location not in ['vertices', 'centroids', 'unique vertices']: |
---|
454 | msg = 'Invalid location: %s' %location |
---|
455 | raise Exception(msg) |
---|
456 | |
---|
457 | import types, numpy |
---|
458 | assert type(indices) in [types.ListType, types.NoneType, |
---|
459 | numpy.array],\ |
---|
460 | 'Indices must be a list or None' |
---|
461 | |
---|
462 | if location == 'centroids': |
---|
463 | if (indices == None): |
---|
464 | indices = range(len(self)) |
---|
465 | return numpy.take(self.centroid_values, indices) |
---|
466 | elif location == 'unique vertices': |
---|
467 | if (indices == None): |
---|
468 | indices=range(self.domain.coordinates.shape[0]) |
---|
469 | vert_values = [] |
---|
470 | #Go through list of unique vertices |
---|
471 | for unique_vert_id in indices: |
---|
472 | cells = self.domain.vertexlist[unique_vert_id] |
---|
473 | |
---|
474 | #In case there are unused points |
---|
475 | if cells is None: |
---|
476 | msg = 'Unique vertex not associated with cells' |
---|
477 | raise Exception(msg) |
---|
478 | |
---|
479 | # Go through all cells, vertex pairs |
---|
480 | # Average the values |
---|
481 | sum = 0 |
---|
482 | for cell_id, vertex_id in cells: |
---|
483 | sum += self.vertex_values[cell_id, vertex_id] |
---|
484 | vert_values.append(sum/len(cells)) |
---|
485 | return numpy.array(vert_values) |
---|
486 | else: |
---|
487 | if (indices == None): |
---|
488 | indices = range(len(self)) |
---|
489 | return numpy.take(self.vertex_values,indices) |
---|
490 | |
---|
491 | |
---|
492 | def get_vertex_values(self, |
---|
493 | x=True, |
---|
494 | smooth = None, |
---|
495 | precision = None, |
---|
496 | reduction = None): |
---|
497 | """Return vertex values like an OBJ format |
---|
498 | |
---|
499 | The vertex values are returned as one sequence in the 1D float array A. |
---|
500 | If requested the coordinates will be returned in 1D arrays X. |
---|
501 | |
---|
502 | The connectivity is represented as an integer array, V, of dimension |
---|
503 | M x 2, where M is the number of volumes. Each row has two indices |
---|
504 | into the X, A arrays defining the element. |
---|
505 | |
---|
506 | if smooth is True, vertex values corresponding to one common |
---|
507 | coordinate set will be smoothed according to the given |
---|
508 | reduction operator. In this case vertex coordinates will be |
---|
509 | de-duplicated. |
---|
510 | |
---|
511 | If no smoothings is required, vertex coordinates and values will |
---|
512 | be aggregated as a concatenation of values at |
---|
513 | vertices 0, vertices 1 |
---|
514 | |
---|
515 | |
---|
516 | Calling convention |
---|
517 | if x is True: |
---|
518 | X,A,V = get_vertex_values |
---|
519 | else: |
---|
520 | A,V = get_vertex_values |
---|
521 | |
---|
522 | """ |
---|
523 | |
---|
524 | |
---|
525 | |
---|
526 | |
---|
527 | if smooth is None: |
---|
528 | smooth = self.domain.smooth |
---|
529 | |
---|
530 | if precision is None: |
---|
531 | precision = numpy.float |
---|
532 | |
---|
533 | if reduction is None: |
---|
534 | reduction = self.domain.reduction |
---|
535 | |
---|
536 | #Create connectivity |
---|
537 | |
---|
538 | if smooth == True: |
---|
539 | |
---|
540 | V = self.domain.get_vertices() |
---|
541 | N = len(self.domain.vertexlist) |
---|
542 | #N = len(self.domain.vertices) |
---|
543 | A = numpy.zeros(N, precision) |
---|
544 | |
---|
545 | #Smoothing loop |
---|
546 | for k in range(N): |
---|
547 | L = self.domain.vertexlist[k] |
---|
548 | #L = self.domain.vertices[k] |
---|
549 | |
---|
550 | #Go through all triangle, vertex pairs |
---|
551 | #contributing to vertex k and register vertex value |
---|
552 | |
---|
553 | if L is None: continue #In case there are unused points |
---|
554 | |
---|
555 | contributions = [] |
---|
556 | for volume_id, vertex_id in L: |
---|
557 | v = self.vertex_values[volume_id, vertex_id] |
---|
558 | contributions.append(v) |
---|
559 | |
---|
560 | A[k] = reduction(contributions) |
---|
561 | |
---|
562 | if x is True: |
---|
563 | #X = self.domain.coordinates[:,0].astype(precision) |
---|
564 | X = self.domain.coordinates[:].astype(precision) |
---|
565 | #Y = self.domain.coordinates[:,1].astype(precision) |
---|
566 | |
---|
567 | #return X, Y, A, V |
---|
568 | return X, A, V |
---|
569 | |
---|
570 | #else: |
---|
571 | return A, V |
---|
572 | else: |
---|
573 | #Don't smooth |
---|
574 | #obj machinery moved to general_mesh |
---|
575 | |
---|
576 | # Create a V like [[0 1 2], [3 4 5]....[3*m-2 3*m-1 3*m]] |
---|
577 | # These vert_id's will relate to the verts created below |
---|
578 | #m = len(self.domain) #Number of volumes |
---|
579 | #M = 3*m #Total number of unique vertices |
---|
580 | #V = reshape(array(range(M)).astype(Int), (m,3)) |
---|
581 | |
---|
582 | #V = self.domain.get_triangles(obj=True) |
---|
583 | V = self.domain.get_vertices |
---|
584 | #FIXME use get_vertices, when ready |
---|
585 | |
---|
586 | A = self.vertex_values.flat |
---|
587 | |
---|
588 | #Do vertex coordinates |
---|
589 | if x is True: |
---|
590 | X = self.domain.get_vertex_coordinates() |
---|
591 | |
---|
592 | #X = C[:,0:6:2].copy() |
---|
593 | #Y = C[:,1:6:2].copy() |
---|
594 | |
---|
595 | return X.flat, A, V |
---|
596 | else: |
---|
597 | return A, V |
---|
598 | |
---|
599 | def get_integral(self): |
---|
600 | """Compute the integral of quantity across entire domain |
---|
601 | """ |
---|
602 | integral = 0 |
---|
603 | for k in range(self.domain.number_of_elements): |
---|
604 | area = self.domain.areas[k] |
---|
605 | qc = self.centroid_values[k] |
---|
606 | integral += qc*area |
---|
607 | |
---|
608 | return integral |
---|
609 | |
---|
610 | def get_beta(self,beta): |
---|
611 | """Get limiting parameter |
---|
612 | """ |
---|
613 | |
---|
614 | return self.beta |
---|
615 | |
---|
616 | def set_beta(self,beta): |
---|
617 | """Set limiting parameter |
---|
618 | """ |
---|
619 | |
---|
620 | #Probably should test that it is not too large |
---|
621 | self.beta = beta |
---|
622 | |
---|
623 | |
---|
624 | def get_limiter(self): |
---|
625 | return self.limiter |
---|
626 | |
---|
627 | def set_limiter(self,limiter): |
---|
628 | |
---|
629 | possible_limiters = \ |
---|
630 | ['pyvolution', 'minmod_steve', 'minmod', 'minmod_kurganov', 'superbee', 'vanleer', 'vanalbada'] |
---|
631 | |
---|
632 | if limiter in possible_limiters: |
---|
633 | self.limiter = limiter |
---|
634 | return |
---|
635 | |
---|
636 | msg = '%s is an incorrect limiter type.\n'% limiter |
---|
637 | msg += 'Possible types are: '+ ", ".join(["%s" % el for el in possible_limiters]) |
---|
638 | raise Exception, msg |
---|
639 | |
---|
640 | def update(self, timestep): |
---|
641 | """Update centroid values based on values stored in |
---|
642 | explicit_update and semi_implicit_update as well as given timestep |
---|
643 | """ |
---|
644 | |
---|
645 | |
---|
646 | #Explicit updates |
---|
647 | self.centroid_values += timestep*self.explicit_update |
---|
648 | |
---|
649 | #Semi implicit updates |
---|
650 | denominator = 1.0-timestep*self.semi_implicit_update |
---|
651 | |
---|
652 | # if sum(numpy.equal(denominator, 0.0)) > 0.0: |
---|
653 | # msg = 'Zero division in semi implicit update. Call Stephen :-)' |
---|
654 | # raise Exception(msg) |
---|
655 | # else: |
---|
656 | # #Update conserved_quantities from semi implicit updates |
---|
657 | # self.centroid_values /= denominator |
---|
658 | # |
---|
659 | |
---|
660 | #Update conserved_quantities from semi implicit updates |
---|
661 | self.centroid_values /= denominator |
---|
662 | |
---|
663 | |
---|
664 | def compute_gradients(self): |
---|
665 | """Compute gradients of piecewise linear function defined by centroids of |
---|
666 | neighbouring volumes. |
---|
667 | """ |
---|
668 | |
---|
669 | |
---|
670 | N = self.centroid_values.shape[0] |
---|
671 | |
---|
672 | |
---|
673 | G = self.gradients |
---|
674 | Q = self.centroid_values |
---|
675 | X = self.domain.centroids |
---|
676 | |
---|
677 | # first element |
---|
678 | |
---|
679 | k = 0 |
---|
680 | |
---|
681 | #Get data |
---|
682 | k0 = k |
---|
683 | k1 = k+1 |
---|
684 | k2 = k+2 |
---|
685 | |
---|
686 | q0 = Q[k0] |
---|
687 | q1 = Q[k1] |
---|
688 | q2 = Q[k2] |
---|
689 | |
---|
690 | x0 = X[k0] #V0 centroid |
---|
691 | x1 = X[k1] #V1 centroid |
---|
692 | x2 = X[k2] |
---|
693 | |
---|
694 | #Gradient |
---|
695 | #G[k] = (q1 - q0)/(x1 - x0) |
---|
696 | |
---|
697 | G[k] = (q1 - q0)*(x2 - x0)*(x2 - x0) - (q2 - q0)*(x1 - x0)*(x1 - x0) |
---|
698 | G[k] /= (x1 - x0)*(x2 - x0)*(x2 - x1) |
---|
699 | |
---|
700 | #last element |
---|
701 | k = N-1 |
---|
702 | |
---|
703 | |
---|
704 | k0 = k |
---|
705 | k1 = k-1 |
---|
706 | k2 = k-2 |
---|
707 | |
---|
708 | q0 = Q[k0] |
---|
709 | q1 = Q[k1] |
---|
710 | q2 = Q[k2] |
---|
711 | |
---|
712 | x0 = X[k0] #V0 centroid |
---|
713 | x1 = X[k1] #V1 centroid |
---|
714 | x2 = X[k2] |
---|
715 | |
---|
716 | #Gradient |
---|
717 | #G[k] = (q1 - q0)/(x1 - x0) |
---|
718 | |
---|
719 | G[k] = (q1 - q0)*(x2 - x0)*(x2 - x0) - (q2 - q0)*(x1 - x0)*(x1 - x0) |
---|
720 | G[k] /= (x1 - x0)*(x2 - x0)*(x2 - x1) |
---|
721 | |
---|
722 | |
---|
723 | #Interior Volume (2 neighbours) |
---|
724 | |
---|
725 | |
---|
726 | q0 = Q[0:-2] |
---|
727 | q1 = Q[1:-1] |
---|
728 | q2 = Q[2:] |
---|
729 | |
---|
730 | x0 = X[0:-2] #V0 centroid |
---|
731 | x1 = X[1:-1] #V1 centroid (Self) |
---|
732 | x2 = X[2:] #V2 centroid |
---|
733 | |
---|
734 | #Gradient |
---|
735 | #G[k] = (q2-q0)/(x2-x0) |
---|
736 | G[1:-1] = ((q0-q1)/(x0-x1)*(x2-x1) - (q2-q1)/(x2-x1)*(x0-x1))/(x2-x0) |
---|
737 | |
---|
738 | |
---|
739 | |
---|
740 | def compute_minmod_gradients(self): |
---|
741 | """Compute gradients of piecewise linear function defined by centroids of |
---|
742 | neighbouring volumes. |
---|
743 | """ |
---|
744 | |
---|
745 | #print 'compute_minmod_gradients' |
---|
746 | from numpy import sign |
---|
747 | |
---|
748 | |
---|
749 | def xmin(a,b): |
---|
750 | from numpy import sign, minimum |
---|
751 | return 0.5*(sign(a)+sign(b))*minimum(abs(a),abs(b)) |
---|
752 | |
---|
753 | def xmic(t,a,b): |
---|
754 | return xmin(t*xmin(a,b), 0.50*(a+b) ) |
---|
755 | |
---|
756 | |
---|
757 | |
---|
758 | N = self.centroid_values.shape[0] |
---|
759 | |
---|
760 | |
---|
761 | G = self.gradients |
---|
762 | Q = self.centroid_values |
---|
763 | X = self.domain.centroids |
---|
764 | |
---|
765 | #----------------- |
---|
766 | #first element |
---|
767 | #----------------- |
---|
768 | k = 0 |
---|
769 | |
---|
770 | k0 = k |
---|
771 | k1 = k+1 |
---|
772 | k2 = k+2 |
---|
773 | |
---|
774 | q0 = Q[k0] |
---|
775 | q1 = Q[k1] |
---|
776 | q2 = Q[k2] |
---|
777 | |
---|
778 | x0 = X[k0] #V0 centroid |
---|
779 | x1 = X[k1] #V1 centroid |
---|
780 | x2 = X[k2] |
---|
781 | |
---|
782 | #Gradient |
---|
783 | #G[k] = (q1 - q0)/(x1 - x0) |
---|
784 | |
---|
785 | G[k] = (q1 - q0)*(x2 - x0)*(x2 - x0) - (q2 - q0)*(x1 - x0)*(x1 - x0) |
---|
786 | G[k] /= (x1 - x0)*(x2 - x0)*(x2 - x1) |
---|
787 | |
---|
788 | #------------------- |
---|
789 | # Last element |
---|
790 | #------------------- |
---|
791 | k = N-1 |
---|
792 | |
---|
793 | k0 = k |
---|
794 | k1 = k-1 |
---|
795 | k2 = k-2 |
---|
796 | |
---|
797 | q0 = Q[k0] |
---|
798 | q1 = Q[k1] |
---|
799 | q2 = Q[k2] |
---|
800 | |
---|
801 | x0 = X[k0] #V0 centroid |
---|
802 | x1 = X[k1] #V1 centroid |
---|
803 | x2 = X[k2] |
---|
804 | |
---|
805 | #Gradient |
---|
806 | #G[k] = (q1 - q0)/(x1 - x0) |
---|
807 | |
---|
808 | G[k] = (q1 - q0)*(x2 - x0)*(x2 - x0) - (q2 - q0)*(x1 - x0)*(x1 - x0) |
---|
809 | G[k] /= (x1 - x0)*(x2 - x0)*(x2 - x1) |
---|
810 | |
---|
811 | |
---|
812 | |
---|
813 | #------------------------------ |
---|
814 | #Interior Volume (2 neighbours) |
---|
815 | #------------------------------ |
---|
816 | |
---|
817 | q0 = Q[0:-2] |
---|
818 | q1 = Q[1:-1] |
---|
819 | q2 = Q[2:] |
---|
820 | |
---|
821 | x0 = X[0:-2] #V0 centroid |
---|
822 | x1 = X[1:-1] #V1 centroid (Self) |
---|
823 | x2 = X[2:] #V2 centroid |
---|
824 | |
---|
825 | # assuming uniform grid |
---|
826 | d1 = (q1 - q0)/(x1-x0) |
---|
827 | d2 = (q2 - q1)/(x2-x1) |
---|
828 | |
---|
829 | #Gradient |
---|
830 | G[1:-1] = xmic( self.beta, d1, d2 ) |
---|
831 | |
---|
832 | |
---|
833 | |
---|
834 | def extrapolate_first_order(self): |
---|
835 | """Extrapolate conserved quantities from centroid to |
---|
836 | vertices for each volume using |
---|
837 | first order scheme. |
---|
838 | """ |
---|
839 | |
---|
840 | qc = self.centroid_values |
---|
841 | qv = self.vertex_values |
---|
842 | |
---|
843 | for i in range(2): |
---|
844 | qv[:,i] = qc |
---|
845 | |
---|
846 | |
---|
847 | def extrapolate_second_order(self): |
---|
848 | """Extrapolate conserved quantities from centroid to |
---|
849 | vertices for each volume using |
---|
850 | second order scheme. |
---|
851 | """ |
---|
852 | |
---|
853 | if self.limiter == "pyvolution": |
---|
854 | self.limit_pyvolution() |
---|
855 | |
---|
856 | elif self.limiter == "minmod_steve": |
---|
857 | self.limit_minmod() |
---|
858 | |
---|
859 | else: |
---|
860 | self.limit_range() |
---|
861 | |
---|
862 | |
---|
863 | |
---|
864 | |
---|
865 | |
---|
866 | def find_qmax_qmin(self): |
---|
867 | """ Find min and max of this and neighbour's centroid values""" |
---|
868 | |
---|
869 | from numpy import maximum, minimum |
---|
870 | |
---|
871 | qmax = self.qmax |
---|
872 | qmin = self.qmin |
---|
873 | |
---|
874 | qc = self.centroid_values |
---|
875 | |
---|
876 | qmax[:] = qc |
---|
877 | qmin[:] = qc |
---|
878 | |
---|
879 | # check left |
---|
880 | qmax[1:] = maximum(qmax[1:], qc[0:-1]) |
---|
881 | qmin[1:] = minimum(qmin[1:], qc[0:-1]) |
---|
882 | |
---|
883 | # check right |
---|
884 | qmax[0:-1] = maximum(qmax[0:-1], qc[1:]) |
---|
885 | qmin[0:-1] = minimum(qmin[0:-1], qc[1:]) |
---|
886 | |
---|
887 | |
---|
888 | |
---|
889 | # for k in range(N): |
---|
890 | # qmax[k] = qmin[k] = qc[k] |
---|
891 | # for i in range(2): |
---|
892 | # n = self.domain.neighbours[k,i] |
---|
893 | # if n >= 0: |
---|
894 | # qn = qc[n] #Neighbour's centroid value |
---|
895 | # |
---|
896 | # qmin[k] = min(qmin[k], qn) |
---|
897 | # qmax[k] = max(qmax[k], qn) |
---|
898 | |
---|
899 | |
---|
900 | |
---|
901 | def limit_minmod(self): |
---|
902 | #Z = self.gradients |
---|
903 | #print "gradients 1",Z |
---|
904 | self.compute_minmod_gradients() |
---|
905 | #print "gradients 2", Z |
---|
906 | |
---|
907 | G = self.gradients |
---|
908 | V = self.domain.vertices |
---|
909 | qc = self.centroid_values |
---|
910 | qv = self.vertex_values |
---|
911 | |
---|
912 | x = self.domain.centroids |
---|
913 | |
---|
914 | x0 = V[:,0] |
---|
915 | x1 = V[:,1] |
---|
916 | |
---|
917 | #Extrapolate |
---|
918 | qv[:,0] = qc + G*(x0-x) |
---|
919 | qv[:,1] = qc + G*(x1-x) |
---|
920 | |
---|
921 | # #Check each triangle |
---|
922 | # for k in range(self.domain.number_of_elements): |
---|
923 | # #Centroid coordinates |
---|
924 | # x = self.domain.centroids[k] |
---|
925 | # |
---|
926 | # #vertex coordinates |
---|
927 | # x0, x1 = V[k,:] |
---|
928 | # |
---|
929 | # #Extrapolate |
---|
930 | # qv[k,0] = qc[k] + G[k]*(x0-x) |
---|
931 | # qv[k,1] = qc[k] + G[k]*(x1-x) |
---|
932 | |
---|
933 | |
---|
934 | def limit_pyvolution(self): |
---|
935 | """ |
---|
936 | Limit slopes for each volume to eliminate artificial variance |
---|
937 | introduced by e.g. second order extrapolator |
---|
938 | |
---|
939 | This is an unsophisticated limiter as it does not take into |
---|
940 | account dependencies among quantities. |
---|
941 | |
---|
942 | precondition: |
---|
943 | vertex values are estimated from gradient |
---|
944 | postcondition: |
---|
945 | vertex values are updated |
---|
946 | """ |
---|
947 | |
---|
948 | |
---|
949 | N = self.domain.number_of_elements |
---|
950 | beta = self.domain.beta |
---|
951 | #beta = 0.8 |
---|
952 | |
---|
953 | self.compute_gradients() |
---|
954 | |
---|
955 | |
---|
956 | G = self.gradients |
---|
957 | V = self.domain.vertices |
---|
958 | C = self.domain.centroids |
---|
959 | qc = self.centroid_values |
---|
960 | qv = self.vertex_values |
---|
961 | |
---|
962 | V0 = V[:,0] |
---|
963 | V1 = V[:,1] |
---|
964 | |
---|
965 | # Extrapolate to vertices |
---|
966 | qv[:,0] = qc + G*(V0-C) |
---|
967 | qv[:,1] = qc + G*(V1-C) |
---|
968 | |
---|
969 | |
---|
970 | # Find max and min values |
---|
971 | self.find_qmax_qmin() |
---|
972 | |
---|
973 | qmax = self.qmax |
---|
974 | qmin = self.qmin |
---|
975 | |
---|
976 | #Diffences between centroids and maxima/minima |
---|
977 | dqmax = qmax - qc |
---|
978 | dqmin = qmin - qc |
---|
979 | |
---|
980 | #Deltas between vertex and centroid values |
---|
981 | dq = numpy.zeros(qv.shape, numpy.float) |
---|
982 | |
---|
983 | dq[:,0] = qv[:,0] - qc |
---|
984 | dq[:,1] = qv[:,1] - qc |
---|
985 | |
---|
986 | phi = numpy.ones(qc.shape, numpy.float) |
---|
987 | |
---|
988 | r0 = numpy.where(dq[:,0]>0.0,dqmax/dq[:,0],1.0) |
---|
989 | r0 = numpy.where(dq[:,0]<0.0,dqmin/dq[:,0],r0) |
---|
990 | |
---|
991 | r1 = numpy.where(dq[:,1]>0.0,dqmax/dq[:,1],1.0) |
---|
992 | r1 = numpy.where(dq[:,1]<0.0,dqmin/dq[:,1],r1) |
---|
993 | |
---|
994 | phi = numpy.min(r0*beta,numpy.min(r1*beta,1.0)) |
---|
995 | |
---|
996 | qv[:,0] = qc + phi*dq[:,0] |
---|
997 | qv[:,1] = qc + phi*dq[:,1] |
---|
998 | |
---|
999 | # #Phi limiter |
---|
1000 | # for k in range(N): |
---|
1001 | # |
---|
1002 | # #Find the gradient limiter (phi) across vertices |
---|
1003 | # phi = 1.0 |
---|
1004 | # for i in range(2): |
---|
1005 | # r = 1.0 |
---|
1006 | # if (dq[k,i] > 0): r = dqmax[k]/dq[k,i] |
---|
1007 | # if (dq[k,i] < 0): r = dqmin[k]/dq[k,i] |
---|
1008 | # |
---|
1009 | # phi = min( min(r*beta, 1), phi ) |
---|
1010 | # |
---|
1011 | # #Then update using phi limiter |
---|
1012 | # for i in range(2): |
---|
1013 | # qv[k,i] = qc[k] + phi*dq[k,i] |
---|
1014 | |
---|
1015 | def limit_range(self): |
---|
1016 | import sys |
---|
1017 | |
---|
1018 | from limiters_python import minmod, minmod_kurganov, minmod_kurganov_old, maxmod, vanleer, vanalbada |
---|
1019 | |
---|
1020 | limiter = self.get_limiter() |
---|
1021 | #print limiter |
---|
1022 | |
---|
1023 | #print 'limit_range' |
---|
1024 | N = self.N |
---|
1025 | qc = self.centroid_values |
---|
1026 | qv = self.vertex_values |
---|
1027 | xc = self.domain.centroids |
---|
1028 | x0 = self.domain.vertices[:,0] |
---|
1029 | x1 = self.domain.vertices[:,1] |
---|
1030 | |
---|
1031 | beta_p = self.beta_p |
---|
1032 | beta_m = self.beta_m |
---|
1033 | beta_x = self.beta_x |
---|
1034 | phi = self.phi |
---|
1035 | dx = self.dx |
---|
1036 | |
---|
1037 | |
---|
1038 | beta_p[1:] = (qc[1:]-qc[:-1])/(xc[1:]-xc[:-1]) |
---|
1039 | beta_m[:-1] = beta_p[1:] |
---|
1040 | beta_x[1:-1] = (qc[2:]-qc[:-2])/(xc[2:]-xc[:-2]) |
---|
1041 | |
---|
1042 | dx[:,0] = x0 - xc |
---|
1043 | dx[:,1] = x1 - xc |
---|
1044 | |
---|
1045 | phi[0] = (qc[1] - qc[0])/(xc[1] - xc[0]) |
---|
1046 | phi[N-1] = (qc[N-1] - qc[N-2])/(xc[N-1] - xc[N-2]) |
---|
1047 | |
---|
1048 | |
---|
1049 | if limiter == "minmod": |
---|
1050 | phi[1:-1] = minmod(beta_p[1:-1],beta_m[1:-1]) |
---|
1051 | |
---|
1052 | elif limiter == "vanleer": |
---|
1053 | phi[1:-1] = vanleer(beta_p[1:-1],beta_m[1:-1]) |
---|
1054 | |
---|
1055 | elif limiter == "vanalbada": |
---|
1056 | phi[1:-1] = vanalbada(beta_p[1:-1],beta_m[1:-1]) |
---|
1057 | |
---|
1058 | elif limiter == "minmod_kurganov": |
---|
1059 | theta = self.beta |
---|
1060 | phi[1:-1] = minmod_kurganov(theta*beta_p[1:-1],theta*beta_m[1:-1], beta_x[1:-1]) |
---|
1061 | |
---|
1062 | elif limiter == "superbee": |
---|
1063 | slope1 = minmod(beta_m[1:-1],2.0*beta_p[1:-1]) |
---|
1064 | slope2 = minmod(2.0*beta_m[1:-1],beta_p[1:-1]) |
---|
1065 | phi[1:-1] = maxmod(slope1,slope2) |
---|
1066 | |
---|
1067 | else: |
---|
1068 | msg = 'Unknown limiter' |
---|
1069 | raise Exception, msg |
---|
1070 | |
---|
1071 | |
---|
1072 | |
---|
1073 | qv[:,0] = qc + phi*dx[:,0] |
---|
1074 | qv[:,1] = qc + phi*dx[:,1] |
---|
1075 | |
---|
1076 | |
---|
1077 | |
---|
1078 | |
---|
1079 | def limit_steve_slope(self): |
---|
1080 | |
---|
1081 | import sys |
---|
1082 | |
---|
1083 | from util import minmod, minmod_kurganov, maxmod, vanleer |
---|
1084 | |
---|
1085 | N = self.domain.number_of_elements |
---|
1086 | limiter = self.domain.limiter |
---|
1087 | limiter_type = self.domain.limiter_type |
---|
1088 | |
---|
1089 | qc = self.centroid_values |
---|
1090 | qv = self.vertex_values |
---|
1091 | |
---|
1092 | #Find min and max of this and neighbour's centroid values |
---|
1093 | beta_p = numpy.zeros(N,numpy.float) |
---|
1094 | beta_m = numpy.zeros(N,numpy.float) |
---|
1095 | beta_x = numpy.zeros(N,numpy.float) |
---|
1096 | C = self.domain.centroids |
---|
1097 | X = self.domain.vertices |
---|
1098 | |
---|
1099 | for k in range(N): |
---|
1100 | |
---|
1101 | n0 = self.domain.neighbours[k,0] |
---|
1102 | n1 = self.domain.neighbours[k,1] |
---|
1103 | |
---|
1104 | if (n0 >= 0) & (n1 >= 0): |
---|
1105 | # Check denominator not zero |
---|
1106 | if (qc[k+1]-qc[k]) == 0.0: |
---|
1107 | beta_p[k] = float(sys.maxint) |
---|
1108 | beta_m[k] = float(sys.maxint) |
---|
1109 | else: |
---|
1110 | #STEVE LIMIT |
---|
1111 | beta_p[k] = (qc[k]-qc[k-1])/(qc[k+1]-qc[k]) |
---|
1112 | beta_m[k] = (qc[k+2]-qc[k+1])/(qc[k+1]-qc[k]) |
---|
1113 | |
---|
1114 | #Deltas between vertex and centroid values |
---|
1115 | dq = numpy.zeros(qv.shape, numpy.float) |
---|
1116 | for i in range(2): |
---|
1117 | dq[:,i] =self.domain.vertices[:,i]-self.domain.centroids |
---|
1118 | |
---|
1119 | #Phi limiter |
---|
1120 | for k in range(N): |
---|
1121 | |
---|
1122 | phi = 0.0 |
---|
1123 | if limiter == "flux_minmod": |
---|
1124 | #FLUX MINMOD |
---|
1125 | phi = minmod_kurganov(1.0,beta_m[k],beta_p[k]) |
---|
1126 | elif limiter == "flux_superbee": |
---|
1127 | #FLUX SUPERBEE |
---|
1128 | phi = max(0.0,min(1.0,2.0*beta_m[k]),min(2.0,beta_m[k]))+max(0.0,min(1.0,2.0*beta_p[k]),min(2.0,beta_p[k]))-1.0 |
---|
1129 | elif limiter == "flux_muscl": |
---|
1130 | #FLUX MUSCL |
---|
1131 | phi = max(0.0,min(2.0,2.0*beta_m[k],2.0*beta_p[k],0.5*(beta_m[k]+beta_p[k]))) |
---|
1132 | elif limiter == "flux_vanleer": |
---|
1133 | #FLUX VAN LEER |
---|
1134 | phi = (beta_m[k]+abs(beta_m[k]))/(1.0+abs(beta_m[k]))+(beta_p[k]+abs(beta_p[k]))/(1.0+abs(beta_p[k]))-1.0 |
---|
1135 | |
---|
1136 | #Then update using phi limiter |
---|
1137 | n = self.domain.neighbours[k,1] |
---|
1138 | if n>=0: |
---|
1139 | #qv[k,0] = qc[k] - 0.5*phi*(qc[k+1]-qc[k]) |
---|
1140 | #qv[k,1] = qc[k] + 0.5*phi*(qc[k+1]-qc[k]) |
---|
1141 | qv[k,0] = qc[k] + 0.5*phi*(qv[k,0]-qc[k]) |
---|
1142 | qv[k,1] = qc[k] + 0.5*phi*(qv[k,1]-qc[k]) |
---|
1143 | else: |
---|
1144 | qv[k,i] = qc[k] |
---|
1145 | |
---|
1146 | def backup_centroid_values(self): |
---|
1147 | # Call correct module function |
---|
1148 | # (either from this module or C-extension) |
---|
1149 | #backup_centroid_values(self) |
---|
1150 | |
---|
1151 | self.centroid_backup_values[:,] = (self.centroid_values).astype('f') |
---|
1152 | |
---|
1153 | def saxpy_centroid_values(self,a,b): |
---|
1154 | # Call correct module function |
---|
1155 | # (either from this module or C-extension) |
---|
1156 | self.centroid_values[:,] = (a*self.centroid_values + b*self.centroid_backup_values).astype('f') |
---|
1157 | |
---|
1158 | |
---|
1159 | |
---|
1160 | |
---|
1161 | |
---|
1162 | if __name__ == "__main__": |
---|
1163 | #from domain import Domain |
---|
1164 | |
---|
1165 | from anuga_1d.base.generic_domain import Generic_domain as Domain |
---|
1166 | |
---|
1167 | |
---|
1168 | def newLinePlot(title='Simple Plot'): |
---|
1169 | import pylab as g |
---|
1170 | g.ion() |
---|
1171 | g.hold(False) |
---|
1172 | g.title(title) |
---|
1173 | g.xlabel('x') |
---|
1174 | g.ylabel('y') |
---|
1175 | g.show() |
---|
1176 | |
---|
1177 | |
---|
1178 | def linePlot(x,y): |
---|
1179 | import pylab as g |
---|
1180 | g.plot(x.flat,y.flat) |
---|
1181 | g.show() |
---|
1182 | |
---|
1183 | |
---|
1184 | def closePlots(): |
---|
1185 | import pylab as g |
---|
1186 | g.close('all') |
---|
1187 | |
---|
1188 | |
---|
1189 | import pylab as g |
---|
1190 | |
---|
1191 | points1 = [0.0, 1.0, 2.0, 3.0] |
---|
1192 | vertex_values = [[1.0,2.0],[4.0,5.0],[-1.0,2.0]] |
---|
1193 | |
---|
1194 | D1 = Domain(points1) |
---|
1195 | |
---|
1196 | Q1 = Quantity(D1, vertex_values) |
---|
1197 | |
---|
1198 | print Q1.vertex_values |
---|
1199 | print Q1.centroid_values |
---|
1200 | |
---|
1201 | new_vertex_values = [[2.0,1.0],[3.0,4.0],[-2.0,4.0]] |
---|
1202 | |
---|
1203 | Q1.set_values(new_vertex_values) |
---|
1204 | |
---|
1205 | print Q1.vertex_values |
---|
1206 | print Q1.centroid_values |
---|
1207 | |
---|
1208 | new_centroid_values = [20,30,40] |
---|
1209 | Q1.set_values(new_centroid_values,'centroids') |
---|
1210 | |
---|
1211 | print Q1.vertex_values |
---|
1212 | print Q1.centroid_values |
---|
1213 | |
---|
1214 | class FunClass: |
---|
1215 | def __init__(self,value): |
---|
1216 | self.value = value |
---|
1217 | |
---|
1218 | def __call__(self,x): |
---|
1219 | return self.value*(x**2) |
---|
1220 | |
---|
1221 | |
---|
1222 | fun = FunClass(1.0) |
---|
1223 | Q1.set_values(fun,'vertices') |
---|
1224 | |
---|
1225 | print Q1.vertex_values |
---|
1226 | print Q1.centroid_values |
---|
1227 | |
---|
1228 | Xc = Q1.domain.vertices |
---|
1229 | Qc = Q1.vertex_values |
---|
1230 | print Xc |
---|
1231 | print Qc |
---|
1232 | |
---|
1233 | Qc[1,0] = 3 |
---|
1234 | |
---|
1235 | Q1.extrapolate_second_order() |
---|
1236 | #Q1.limit_minmod() |
---|
1237 | |
---|
1238 | newLinePlot('plots') |
---|
1239 | linePlot(Xc,Qc) |
---|
1240 | raw_input('press return') |
---|
1241 | |
---|
1242 | points2 = numpy.arange(10) |
---|
1243 | D2 = Domain(points2) |
---|
1244 | |
---|
1245 | Q2 = Quantity(D2) |
---|
1246 | Q2.set_values(fun,'vertices') |
---|
1247 | Xc = Q2.domain.vertices |
---|
1248 | Qc = Q2.vertex_values |
---|
1249 | linePlot(Xc,Qc) |
---|
1250 | raw_input('press return') |
---|
1251 | |
---|
1252 | |
---|
1253 | Q2.extrapolate_second_order() |
---|
1254 | #Q2.limit_minmod() |
---|
1255 | Xc = Q2.domain.vertices |
---|
1256 | Qc = Q2.vertex_values |
---|
1257 | print Q2.centroid_values |
---|
1258 | print Qc |
---|
1259 | linePlot(Xc,Qc) |
---|
1260 | raw_input('press return') |
---|
1261 | |
---|
1262 | |
---|
1263 | for i in range(10): |
---|
1264 | import pylab as g |
---|
1265 | g.hold(True) |
---|
1266 | fun = FunClass(i/10.0) |
---|
1267 | Q2.set_values(fun,'centroids') |
---|
1268 | Q2.extrapolate_second_order() |
---|
1269 | #Q2.limit_minmod() |
---|
1270 | Qc = Q2.vertex_values |
---|
1271 | linePlot(Xc,Qc) |
---|
1272 | g.show() |
---|
1273 | raw_input('press return') |
---|
1274 | |
---|
1275 | raw_input('press return to quit') |
---|
1276 | |
---|
1277 | closePlots() |
---|