1 | #include "Python.h" |
---|
2 | #include "numpy/arrayobject.h" |
---|
3 | #include "math.h" |
---|
4 | #include <stdio.h> |
---|
5 | const double pi = 3.14159265358979; |
---|
6 | |
---|
7 | |
---|
8 | // Shared code snippets |
---|
9 | #include "util_ext.h" |
---|
10 | |
---|
11 | |
---|
12 | |
---|
13 | |
---|
14 | |
---|
15 | |
---|
16 | |
---|
17 | |
---|
18 | //========================================================================= |
---|
19 | // Python Glue |
---|
20 | //========================================================================= |
---|
21 | |
---|
22 | PyObject *limit_minmod_ext(PyObject *self, PyObject *args) { |
---|
23 | |
---|
24 | PyObject |
---|
25 | *domain, |
---|
26 | *quantity; |
---|
27 | |
---|
28 | PyArrayObject |
---|
29 | *qco, |
---|
30 | *qvo, |
---|
31 | *xco, |
---|
32 | *xvo; |
---|
33 | |
---|
34 | double *qc, |
---|
35 | *qv, |
---|
36 | *xc, |
---|
37 | *xv; |
---|
38 | |
---|
39 | double a, b; |
---|
40 | double phi, dx0, dx1; |
---|
41 | int N, k, k2; |
---|
42 | |
---|
43 | |
---|
44 | // Convert Python arguments to C |
---|
45 | if (!PyArg_ParseTuple(args, "O", &quantity)) { |
---|
46 | PyErr_SetString(PyExc_RuntimeError, "quantity_ext.c: limit_minmod_ext could not parse input"); |
---|
47 | return NULL; |
---|
48 | } |
---|
49 | |
---|
50 | |
---|
51 | domain = PyObject_GetAttrString(quantity, "domain"); |
---|
52 | |
---|
53 | //printf("B = %p\n",(void*)domain); |
---|
54 | if (!domain) { |
---|
55 | printf("quantity_ext.c: Could not obtain python object"); |
---|
56 | fflush(stdout); |
---|
57 | PyErr_SetString(PyExc_RuntimeError, "quantity_ext.c: Could not obtain python object domain"); |
---|
58 | return NULL; |
---|
59 | } |
---|
60 | |
---|
61 | |
---|
62 | |
---|
63 | N = get_python_integer(quantity,"N"); |
---|
64 | |
---|
65 | qco = get_consecutive_array(quantity, "centroid_values"); |
---|
66 | qvo = get_consecutive_array(quantity, "vertex_values"); |
---|
67 | xco = get_consecutive_array(domain, "centroids"); |
---|
68 | xvo = get_consecutive_array(domain, "vertices"); |
---|
69 | |
---|
70 | qc = (double *) qco -> data; |
---|
71 | qv = (double *) qvo -> data; |
---|
72 | xc = (double *) xco -> data; |
---|
73 | xv = (double *) xvo -> data; |
---|
74 | |
---|
75 | |
---|
76 | for (k=0; k<N; k++) { |
---|
77 | k2 = 2*k; |
---|
78 | if (k == 0) { |
---|
79 | phi = (qc[1]-qc[0])/(xc[1] - xc[0]); |
---|
80 | } |
---|
81 | else if (k==N-1) { |
---|
82 | phi = (qc[N-1] - qc[N-2])/(xc[N-1] - xc[N-2]); |
---|
83 | } |
---|
84 | else { |
---|
85 | a = (qc[k]-qc[k-1])/(xc[k]-xc[k-1]); |
---|
86 | b = (qc[k+1]-qc[k])/(xc[k+1]-xc[k]); |
---|
87 | //c = (qc[K+1]-qc[k-1])/(xc[k+1]-xc[k-1]); |
---|
88 | |
---|
89 | phi = 0.0; |
---|
90 | if ((fabs(a) < fabs(b)) & (a*b >= 0.0 )) { |
---|
91 | phi = a; |
---|
92 | } |
---|
93 | if ((fabs(b) < fabs(a)) & (a*b >= 0.0 )) { |
---|
94 | phi = b; |
---|
95 | } |
---|
96 | |
---|
97 | } |
---|
98 | |
---|
99 | dx0 = xv[k2] - xc[k]; |
---|
100 | dx1 = xv[k2+1] - xc[k]; |
---|
101 | |
---|
102 | |
---|
103 | qv[k2] = qc[k] + phi*dx0; |
---|
104 | qv[k2+1] = qc[k] + phi*dx1; |
---|
105 | } |
---|
106 | |
---|
107 | |
---|
108 | Py_DECREF(qco); |
---|
109 | Py_DECREF(qvo); |
---|
110 | Py_DECREF(xco); |
---|
111 | Py_DECREF(xvo); |
---|
112 | |
---|
113 | // Return updated flux timestep |
---|
114 | return Py_BuildValue(""); |
---|
115 | } |
---|
116 | |
---|
117 | |
---|
118 | //==================================================================== |
---|
119 | PyObject *limit_minmod_kurganov_ext(PyObject *self, PyObject *args) { |
---|
120 | |
---|
121 | PyObject |
---|
122 | *domain, |
---|
123 | *quantity; |
---|
124 | |
---|
125 | PyArrayObject |
---|
126 | *qco, |
---|
127 | *qvo, |
---|
128 | *xco, |
---|
129 | *xvo; |
---|
130 | |
---|
131 | double *qc, |
---|
132 | *qv, |
---|
133 | *xc, |
---|
134 | *xv; |
---|
135 | |
---|
136 | double a, b, c; |
---|
137 | double phi, dx0, dx1; |
---|
138 | double theta; |
---|
139 | int N, k, k2; |
---|
140 | |
---|
141 | |
---|
142 | // Convert Python arguments to C |
---|
143 | if (!PyArg_ParseTuple(args, "O", &quantity)) { |
---|
144 | PyErr_SetString(PyExc_RuntimeError, "quantity_ext.c: limit_minmod_kurganov_ext could not parse input"); |
---|
145 | return NULL; |
---|
146 | } |
---|
147 | |
---|
148 | |
---|
149 | domain = PyObject_GetAttrString(quantity, "domain"); |
---|
150 | |
---|
151 | //printf("B = %p\n",(void*)domain); |
---|
152 | if (!domain) { |
---|
153 | printf("quantity_ext.c: Could not obtain python object"); |
---|
154 | fflush(stdout); |
---|
155 | PyErr_SetString(PyExc_RuntimeError, "quantity_ext.c: Could not obtain python object domain"); |
---|
156 | return NULL; |
---|
157 | } |
---|
158 | |
---|
159 | |
---|
160 | |
---|
161 | N = get_python_integer(quantity,"N"); |
---|
162 | theta = get_python_double(quantity,"beta"); |
---|
163 | |
---|
164 | |
---|
165 | //printf("beta = %f",theta); |
---|
166 | //fflush(stdout); |
---|
167 | |
---|
168 | qco = get_consecutive_array(quantity, "centroid_values"); |
---|
169 | qvo = get_consecutive_array(quantity, "vertex_values"); |
---|
170 | xco = get_consecutive_array(domain, "centroids"); |
---|
171 | xvo = get_consecutive_array(domain, "vertices"); |
---|
172 | |
---|
173 | qc = (double *) qco -> data; |
---|
174 | qv = (double *) qvo -> data; |
---|
175 | xc = (double *) xco -> data; |
---|
176 | xv = (double *) xvo -> data; |
---|
177 | |
---|
178 | |
---|
179 | for (k=0; k<N; k++) { |
---|
180 | k2 = 2*k; |
---|
181 | if (k == 0) { |
---|
182 | phi = (qc[1]-qc[0])/(xc[1] - xc[0]); |
---|
183 | } |
---|
184 | else if (k==N-1) { |
---|
185 | phi = (qc[N-1] - qc[N-2])/(xc[N-1] - xc[N-2]); |
---|
186 | } |
---|
187 | else { |
---|
188 | a = (qc[k]-qc[k-1])/(xc[k]-xc[k-1]); |
---|
189 | b = (qc[k+1]-qc[k])/(xc[k+1]-xc[k]); |
---|
190 | c = (qc[k+1]-qc[k-1])/(xc[k+1]-xc[k-1]); |
---|
191 | |
---|
192 | phi = 0.0; |
---|
193 | if ((sign(a)*sign(b) > 0.0) & (sign(a)*sign(c) >= 0.0 )) { |
---|
194 | phi = sign(a)*min(theta*min(fabs(a),fabs(b)),fabs(c)); |
---|
195 | } |
---|
196 | |
---|
197 | |
---|
198 | } |
---|
199 | |
---|
200 | dx0 = xv[k2] - xc[k]; |
---|
201 | dx1 = xv[k2+1] - xc[k]; |
---|
202 | |
---|
203 | |
---|
204 | qv[k2] = qc[k] + phi*dx0; |
---|
205 | qv[k2+1] = qc[k] + phi*dx1; |
---|
206 | } |
---|
207 | |
---|
208 | |
---|
209 | Py_DECREF(qco); |
---|
210 | Py_DECREF(qvo); |
---|
211 | Py_DECREF(xco); |
---|
212 | Py_DECREF(xvo); |
---|
213 | |
---|
214 | // Return updated flux timestep |
---|
215 | return Py_BuildValue(""); |
---|
216 | } |
---|
217 | |
---|
218 | |
---|
219 | //==================================================================== |
---|
220 | PyObject *limit_vanleer_ext(PyObject *self, PyObject *args) { |
---|
221 | |
---|
222 | PyObject |
---|
223 | *domain, |
---|
224 | *quantity; |
---|
225 | |
---|
226 | PyArrayObject |
---|
227 | *qco, |
---|
228 | *qvo, |
---|
229 | *xco, |
---|
230 | *xvo; |
---|
231 | |
---|
232 | double *qc, |
---|
233 | *qv, |
---|
234 | *xc, |
---|
235 | *xv; |
---|
236 | |
---|
237 | double a, b; |
---|
238 | double phi, dx0, dx1; |
---|
239 | double theta; |
---|
240 | int N, k, k2; |
---|
241 | |
---|
242 | |
---|
243 | // Convert Python arguments to C |
---|
244 | if (!PyArg_ParseTuple(args, "O", &quantity)) { |
---|
245 | PyErr_SetString(PyExc_RuntimeError, "quantity_ext.c: limit_vanleer_ext could not parse input"); |
---|
246 | return NULL; |
---|
247 | } |
---|
248 | |
---|
249 | |
---|
250 | domain = PyObject_GetAttrString(quantity, "domain"); |
---|
251 | |
---|
252 | //printf("B = %p\n",(void*)domain); |
---|
253 | if (!domain) { |
---|
254 | printf("quantity_ext.c: Could not obtain python object"); |
---|
255 | fflush(stdout); |
---|
256 | PyErr_SetString(PyExc_RuntimeError, "quantity_ext.c: Could not obtain python object domain"); |
---|
257 | return NULL; |
---|
258 | } |
---|
259 | |
---|
260 | |
---|
261 | |
---|
262 | N = get_python_integer(quantity,"N"); |
---|
263 | theta = get_python_double(quantity,"beta"); |
---|
264 | |
---|
265 | |
---|
266 | //printf("beta = %f",theta); |
---|
267 | //fflush(stdout); |
---|
268 | |
---|
269 | qco = get_consecutive_array(quantity, "centroid_values"); |
---|
270 | qvo = get_consecutive_array(quantity, "vertex_values"); |
---|
271 | xco = get_consecutive_array(domain, "centroids"); |
---|
272 | xvo = get_consecutive_array(domain, "vertices"); |
---|
273 | |
---|
274 | qc = (double *) qco -> data; |
---|
275 | qv = (double *) qvo -> data; |
---|
276 | xc = (double *) xco -> data; |
---|
277 | xv = (double *) xvo -> data; |
---|
278 | |
---|
279 | |
---|
280 | for (k=0; k<N; k++) { |
---|
281 | k2 = 2*k; |
---|
282 | if (k == 0) { |
---|
283 | phi = (qc[1]-qc[0])/(xc[1] - xc[0]); |
---|
284 | } |
---|
285 | else if (k==N-1) { |
---|
286 | phi = (qc[N-1] - qc[N-2])/(xc[N-1] - xc[N-2]); |
---|
287 | } |
---|
288 | else { |
---|
289 | a = (qc[k]-qc[k-1])/(xc[k]-xc[k-1]); |
---|
290 | b = (qc[k+1]-qc[k])/(xc[k+1]-xc[k]); |
---|
291 | //c = (qc[k+1]-qc[k-1])/(xc[k+1]-xc[k-1]); |
---|
292 | |
---|
293 | |
---|
294 | phi = 0.0; |
---|
295 | if ((fabs(a)+fabs(b)) > 1.0e-12) { |
---|
296 | phi = (a*fabs(b)+fabs(a)*b)/(fabs(a)+fabs(b)); |
---|
297 | } |
---|
298 | //printf("phi = %f",phi); |
---|
299 | //fflush(stdout); |
---|
300 | |
---|
301 | } |
---|
302 | |
---|
303 | dx0 = xv[k2] - xc[k]; |
---|
304 | dx1 = xv[k2+1] - xc[k]; |
---|
305 | |
---|
306 | |
---|
307 | qv[k2] = qc[k] + phi*dx0; |
---|
308 | qv[k2+1] = qc[k] + phi*dx1; |
---|
309 | } |
---|
310 | |
---|
311 | |
---|
312 | Py_DECREF(qco); |
---|
313 | Py_DECREF(qvo); |
---|
314 | Py_DECREF(xco); |
---|
315 | Py_DECREF(xvo); |
---|
316 | |
---|
317 | // Return updated flux timestep |
---|
318 | return Py_BuildValue(""); |
---|
319 | } |
---|
320 | |
---|
321 | |
---|
322 | //==================================================================== |
---|
323 | PyObject *limit_vanalbada_ext(PyObject *self, PyObject *args) { |
---|
324 | |
---|
325 | PyObject |
---|
326 | *domain, |
---|
327 | *quantity; |
---|
328 | |
---|
329 | PyArrayObject |
---|
330 | *qco, |
---|
331 | *qvo, |
---|
332 | *xco, |
---|
333 | *xvo; |
---|
334 | |
---|
335 | double *qc, |
---|
336 | *qv, |
---|
337 | *xc, |
---|
338 | *xv; |
---|
339 | |
---|
340 | double a, b; |
---|
341 | //double c; |
---|
342 | double phi, dx0, dx1; |
---|
343 | double theta; |
---|
344 | int N, k, k2; |
---|
345 | |
---|
346 | |
---|
347 | // Convert Python arguments to C |
---|
348 | if (!PyArg_ParseTuple(args, "O", &quantity)) { |
---|
349 | PyErr_SetString(PyExc_RuntimeError, "quantity_ext.c: limit_vanalbada_ext could not parse input"); |
---|
350 | return NULL; |
---|
351 | } |
---|
352 | |
---|
353 | |
---|
354 | domain = PyObject_GetAttrString(quantity, "domain"); |
---|
355 | |
---|
356 | //printf("B = %p\n",(void*)domain); |
---|
357 | if (!domain) { |
---|
358 | printf("quantity_ext.c: Could not obtain python object"); |
---|
359 | fflush(stdout); |
---|
360 | PyErr_SetString(PyExc_RuntimeError, "quantity_ext.c: Could not obtain python object domain"); |
---|
361 | return NULL; |
---|
362 | } |
---|
363 | |
---|
364 | |
---|
365 | |
---|
366 | N = get_python_integer(quantity,"N"); |
---|
367 | theta = get_python_double(quantity,"beta"); |
---|
368 | |
---|
369 | |
---|
370 | //printf("beta = %f",theta); |
---|
371 | //fflush(stdout); |
---|
372 | |
---|
373 | qco = get_consecutive_array(quantity, "centroid_values"); |
---|
374 | qvo = get_consecutive_array(quantity, "vertex_values"); |
---|
375 | xco = get_consecutive_array(domain, "centroids"); |
---|
376 | xvo = get_consecutive_array(domain, "vertices"); |
---|
377 | |
---|
378 | qc = (double *) qco -> data; |
---|
379 | qv = (double *) qvo -> data; |
---|
380 | xc = (double *) xco -> data; |
---|
381 | xv = (double *) xvo -> data; |
---|
382 | |
---|
383 | |
---|
384 | for (k=0; k<N; k++) { |
---|
385 | k2 = 2*k; |
---|
386 | if (k == 0) { |
---|
387 | phi = (qc[1]-qc[0])/(xc[1] - xc[0]); |
---|
388 | } |
---|
389 | else if (k==N-1) { |
---|
390 | phi = (qc[N-1] - qc[N-2])/(xc[N-1] - xc[N-2]); |
---|
391 | } |
---|
392 | else { |
---|
393 | a = (qc[k]-qc[k-1])/(xc[k]-xc[k-1]); |
---|
394 | b = (qc[k+1]-qc[k])/(xc[k+1]-xc[k]); |
---|
395 | //c = (qc[k+1]-qc[k-1])/(xc[k+1]-xc[k-1]); |
---|
396 | |
---|
397 | |
---|
398 | phi = 0.0; |
---|
399 | if (a*a + b*b >= 1.0e-32) { |
---|
400 | phi = (a*a*b+a*b*b)/(a*a+b*b); |
---|
401 | } |
---|
402 | |
---|
403 | |
---|
404 | } |
---|
405 | |
---|
406 | dx0 = xv[k2] - xc[k]; |
---|
407 | dx1 = xv[k2+1] - xc[k]; |
---|
408 | |
---|
409 | |
---|
410 | qv[k2] = qc[k] + phi*dx0; |
---|
411 | qv[k2+1] = qc[k] + phi*dx1; |
---|
412 | } |
---|
413 | |
---|
414 | |
---|
415 | Py_DECREF(qco); |
---|
416 | Py_DECREF(qvo); |
---|
417 | Py_DECREF(xco); |
---|
418 | Py_DECREF(xvo); |
---|
419 | |
---|
420 | // Return updated flux timestep |
---|
421 | return Py_BuildValue(""); |
---|
422 | } |
---|
423 | |
---|
424 | |
---|
425 | |
---|
426 | //------------------------------- |
---|
427 | // Method table for python module |
---|
428 | //------------------------------- |
---|
429 | |
---|
430 | static struct PyMethodDef MethodTable[] = { |
---|
431 | {"limit_minmod_ext", limit_minmod_ext, METH_VARARGS, "Print out"}, |
---|
432 | {"limit_minmod_kurganov_ext", limit_minmod_kurganov_ext, METH_VARARGS, "Print out"}, |
---|
433 | {"limit_vanleer_ext", limit_vanleer_ext, METH_VARARGS, "Print out"}, |
---|
434 | {"limit_vanalbada_ext", limit_vanalbada_ext, METH_VARARGS, "Print out"}, |
---|
435 | {NULL, NULL} |
---|
436 | }; |
---|
437 | |
---|
438 | // Module initialisation |
---|
439 | void initquantity_ext(void){ |
---|
440 | Py_InitModule("quantity_ext", MethodTable); |
---|
441 | import_array(); |
---|
442 | } |
---|