1 | """Class Domain - |
---|
2 | 1D interval domains for finite-volume computations of |
---|
3 | the shallow water wave equation. |
---|
4 | |
---|
5 | This module contains a specialisation of class Generic_domain from module |
---|
6 | generic_domain.py |
---|
7 | consisting of methods specific to Channel flow using the Shallow Water Wave Equation |
---|
8 | |
---|
9 | This particular modification of the Domain class implements the ability to |
---|
10 | vary the width of the 1D channel that the water flows in. As a result the |
---|
11 | conserved variables are different than previous implementations and so are the |
---|
12 | equations. |
---|
13 | |
---|
14 | U_t + E_x = S |
---|
15 | |
---|
16 | where |
---|
17 | |
---|
18 | U = [A, Q] = [b*h, u*b*h] |
---|
19 | E = [Q, Q^2/A + g*b*h^2/2] |
---|
20 | S represents source terms forcing the system |
---|
21 | (e.g. gravity, boundary_stree, friction, wind stress, ...) |
---|
22 | gravity = -g*b*h*z_x |
---|
23 | boundary_stress = 1/2*g*b_x*h^2 |
---|
24 | |
---|
25 | and _t, _x, _y denote the derivative with respect to t, x and y respectiely. |
---|
26 | |
---|
27 | The quantities are |
---|
28 | |
---|
29 | symbol variable name explanation |
---|
30 | A area Wetted area = b*h |
---|
31 | Q discharge flux of water = u*b*h |
---|
32 | x x horizontal distance from origin [m] |
---|
33 | z elevation elevation of bed on which flow is modelled [m] |
---|
34 | h height water height above z [m] |
---|
35 | w stage absolute water level, w = z+h [m] |
---|
36 | u speed in the x direction [m/s] |
---|
37 | uh xmomentum momentum in the x direction [m^2/s] |
---|
38 | b width width of channel |
---|
39 | eta mannings friction coefficient [to appear] |
---|
40 | nu wind stress coefficient [to appear] |
---|
41 | |
---|
42 | The conserved quantities are A, Q |
---|
43 | -------------------------------------------------------------------------- |
---|
44 | For details see e.g. |
---|
45 | Christopher Zoppou and Stephen Roberts, |
---|
46 | Catastrophic Collapse of Water Supply Reservoirs in Urban Areas, |
---|
47 | Journal of Hydraulic Engineering, vol. 127, No. 7 July 1999 |
---|
48 | |
---|
49 | |
---|
50 | John Jakeman, Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou, |
---|
51 | Padarn Wilson, Geoscience Australia, 2008 |
---|
52 | """ |
---|
53 | |
---|
54 | |
---|
55 | from anuga_1d.base.generic_domain import * |
---|
56 | import numpy |
---|
57 | |
---|
58 | |
---|
59 | #Shallow water domain |
---|
60 | class Domain(Generic_domain): |
---|
61 | |
---|
62 | def __init__(self, coordinates, boundary = None, tagged_elements = None): |
---|
63 | |
---|
64 | conserved_quantities = ['area', 'discharge'] |
---|
65 | evolved_quantities = ['area', 'discharge', 'elevation', 'height', 'velocity','width','stage'] |
---|
66 | other_quantities = ['friction'] |
---|
67 | Generic_domain.__init__(self, |
---|
68 | coordinates = coordinates, |
---|
69 | boundary = boundary, |
---|
70 | conserved_quantities = conserved_quantities, |
---|
71 | evolved_quantities = evolved_quantities, |
---|
72 | other_quantities = other_quantities, |
---|
73 | tagged_elements = tagged_elements) |
---|
74 | |
---|
75 | from anuga_1d.config import minimum_allowed_height, g, h0 |
---|
76 | self.minimum_allowed_height = minimum_allowed_height |
---|
77 | self.g = g |
---|
78 | self.h0 = h0 |
---|
79 | self.setstageflag = False |
---|
80 | self.discontinousb = False |
---|
81 | |
---|
82 | |
---|
83 | # forcing terms gravity and boundary stress are included in the flux calculation |
---|
84 | #self.forcing_terms.append(gravity) |
---|
85 | #self.forcing_terms.append(boundary_stress) |
---|
86 | #self.forcing_terms.append(manning_friction) |
---|
87 | |
---|
88 | |
---|
89 | |
---|
90 | #Stored output |
---|
91 | self.store = True |
---|
92 | self.format = 'sww' |
---|
93 | self.smooth = True |
---|
94 | |
---|
95 | |
---|
96 | #Reduction operation for get_vertex_values |
---|
97 | from anuga_1d.base.util import mean |
---|
98 | self.reduction = mean |
---|
99 | #self.reduction = min #Looks better near steep slopes |
---|
100 | |
---|
101 | self.set_quantities_to_be_stored(['area','discharge']) |
---|
102 | |
---|
103 | self.__doc__ = 'channel_domain' |
---|
104 | |
---|
105 | self.check_integrity() |
---|
106 | |
---|
107 | |
---|
108 | def check_integrity(self): |
---|
109 | |
---|
110 | #Check that we are solving the shallow water wave equation |
---|
111 | |
---|
112 | msg = 'First conserved quantity must be "area"' |
---|
113 | assert self.conserved_quantities[0] == 'area', msg |
---|
114 | msg = 'Second conserved quantity must be "discharge"' |
---|
115 | assert self.conserved_quantities[1] == 'discharge', msg |
---|
116 | |
---|
117 | msg = 'First evolved quantity must be "area"' |
---|
118 | assert self.evolved_quantities[0] == 'area', msg |
---|
119 | msg = 'Second evolved quantity must be "discharge"' |
---|
120 | assert self.evolved_quantities[1] == 'discharge', msg |
---|
121 | msg = 'Third evolved quantity must be "elevation"' |
---|
122 | assert self.evolved_quantities[2] == 'elevation', msg |
---|
123 | msg = 'Fourth evolved quantity must be "height"' |
---|
124 | assert self.evolved_quantities[3] == 'height', msg |
---|
125 | msg = 'Fifth evolved quantity must be "velocity"' |
---|
126 | assert self.evolved_quantities[4] == 'velocity', msg |
---|
127 | msg = 'Sixth evolved quantity must be "width"' |
---|
128 | assert self.evolved_quantities[5] == 'width', msg |
---|
129 | msg = 'Seventh evolved quantity must be "stage"' |
---|
130 | assert self.evolved_quantities[6] == 'stage', msg |
---|
131 | |
---|
132 | Generic_domain.check_integrity(self) |
---|
133 | |
---|
134 | def compute_fluxes(self): |
---|
135 | #Call correct module function |
---|
136 | #(either from this module or C-extension) |
---|
137 | compute_fluxes_channel(self) |
---|
138 | |
---|
139 | def distribute_to_vertices_and_edges(self): |
---|
140 | #Call correct module function |
---|
141 | #(either from this module or C-extension) |
---|
142 | #distribute_to_vertices_and_edges_limit_s_v_h(self) |
---|
143 | distribute_to_vertices_and_edges_limit_s_v(self) |
---|
144 | |
---|
145 | def update_derived_quantites(self): |
---|
146 | |
---|
147 | pass |
---|
148 | |
---|
149 | |
---|
150 | |
---|
151 | def initialize_plotting(self, |
---|
152 | stage_lim = [-1.0, 40.0], |
---|
153 | height_lim = [-1.0, 10.0], |
---|
154 | velocity_lim = [-5.0, 5.0]): |
---|
155 | |
---|
156 | import pylab |
---|
157 | pylab.ion() |
---|
158 | |
---|
159 | |
---|
160 | x = self.get_vertices().flatten() |
---|
161 | z = self.quantities['elevation'].vertex_values.flatten() |
---|
162 | w = self.quantities['stage'].vertex_values.flatten() |
---|
163 | h = self.quantities['height'].vertex_values.flatten() |
---|
164 | v = self.quantities['velocity'].vertex_values.flatten() |
---|
165 | |
---|
166 | print x.shape |
---|
167 | print z.shape |
---|
168 | |
---|
169 | self.plot1 = pylab.subplot(311) |
---|
170 | |
---|
171 | self.zplot, = pylab.plot(x, z) |
---|
172 | self.wplot, = pylab.plot(x, w) |
---|
173 | |
---|
174 | self.plot1.set_ylim(stage_lim) |
---|
175 | pylab.xlabel('Position') |
---|
176 | pylab.ylabel('Stage') |
---|
177 | |
---|
178 | self.plot2 = pylab.subplot(312) |
---|
179 | |
---|
180 | self.hplot, = pylab.plot(x, h) |
---|
181 | |
---|
182 | self.plot2.set_ylim(height_lim) |
---|
183 | pylab.xlabel('Position') |
---|
184 | pylab.ylabel('Height') |
---|
185 | |
---|
186 | self.plot3 = pylab.subplot(313) |
---|
187 | |
---|
188 | self.vplot, = pylab.plot(x, v) |
---|
189 | |
---|
190 | self.plot3.set_ylim(velocity_lim) |
---|
191 | |
---|
192 | pylab.xlabel('Position') |
---|
193 | pylab.ylabel('Velocity') |
---|
194 | |
---|
195 | |
---|
196 | def update_plotting(self): |
---|
197 | |
---|
198 | import pylab |
---|
199 | |
---|
200 | #x = self.get_vertices().flatten() |
---|
201 | z = self.quantities['elevation'].vertex_values.flatten() |
---|
202 | w = self.quantities['stage'].vertex_values.flatten() |
---|
203 | h = self.quantities['height'].vertex_values.flatten() |
---|
204 | v = self.quantities['velocity'].vertex_values.flatten() |
---|
205 | |
---|
206 | |
---|
207 | self.zplot.set_ydata(z) |
---|
208 | self.wplot.set_ydata(w) |
---|
209 | self.hplot.set_ydata(h) |
---|
210 | self.vplot.set_ydata(v) |
---|
211 | |
---|
212 | pylab.draw() |
---|
213 | |
---|
214 | |
---|
215 | def hold_plotting(self): |
---|
216 | |
---|
217 | self.update_plotting() |
---|
218 | import pylab |
---|
219 | |
---|
220 | pylab.ioff() |
---|
221 | |
---|
222 | pylab.show() |
---|
223 | |
---|
224 | |
---|
225 | |
---|
226 | def finalize_plotting(self): |
---|
227 | |
---|
228 | pass |
---|
229 | |
---|
230 | |
---|
231 | |
---|
232 | #=============== End of Channel Domain =============================== |
---|
233 | |
---|
234 | #----------------------------------- |
---|
235 | # Compute flux definition with channel |
---|
236 | #----------------------------------- |
---|
237 | def compute_fluxes_channel(domain): |
---|
238 | import sys |
---|
239 | timestep = float(sys.maxint) |
---|
240 | |
---|
241 | area = domain.quantities['area'] |
---|
242 | discharge = domain.quantities['discharge'] |
---|
243 | bed = domain.quantities['elevation'] |
---|
244 | height = domain.quantities['height'] |
---|
245 | velocity = domain.quantities['velocity'] |
---|
246 | width = domain.quantities['width'] |
---|
247 | |
---|
248 | |
---|
249 | from anuga_1d.channel.channel_domain_ext import compute_fluxes_channel_ext |
---|
250 | domain.flux_timestep = compute_fluxes_channel_ext(timestep,domain,area,discharge,bed,height,velocity,width) |
---|
251 | |
---|
252 | #----------------------------------------------------------------------- |
---|
253 | # Distribute to verticies with stage, velocity and channel geometry |
---|
254 | # reconstructed and then extrapolated. |
---|
255 | #----------------------------------------------------------------------- |
---|
256 | def distribute_to_vertices_and_edges_limit_s_v(domain): |
---|
257 | import sys |
---|
258 | from anuga_1d.config import epsilon, h0 |
---|
259 | |
---|
260 | N = domain.number_of_elements |
---|
261 | |
---|
262 | #Shortcuts |
---|
263 | area = domain.quantities['area'] |
---|
264 | discharge = domain.quantities['discharge'] |
---|
265 | bed = domain.quantities['elevation'] |
---|
266 | height = domain.quantities['height'] |
---|
267 | velocity = domain.quantities['velocity'] |
---|
268 | width = domain.quantities['width'] |
---|
269 | stage = domain.quantities['stage'] |
---|
270 | |
---|
271 | #Arrays |
---|
272 | a_C = area.centroid_values |
---|
273 | d_C = discharge.centroid_values |
---|
274 | z_C = bed.centroid_values |
---|
275 | h_C = height.centroid_values |
---|
276 | u_C = velocity.centroid_values |
---|
277 | b_C = width.centroid_values |
---|
278 | w_C = stage.centroid_values |
---|
279 | |
---|
280 | # Calculate height, velocity and stage. |
---|
281 | # Here we assume the conserved quantities and the channel geometry |
---|
282 | # (i.e. bed and width) have been accurately computed in the previous |
---|
283 | # timestep. |
---|
284 | h_C[:] = numpy.where(a_C > 0.0, a_C/b_C, 0.0) |
---|
285 | u_C[:] = numpy.where(a_C > 0.0, d_C/a_C, 0.0) |
---|
286 | |
---|
287 | w_C[:] = h_C + z_C |
---|
288 | |
---|
289 | print w_C |
---|
290 | |
---|
291 | # Extrapolate velocity and stage as well as channel geometry. |
---|
292 | for name in ['velocity', 'stage', 'elevation', 'width']: |
---|
293 | Q = domain.quantities[name] |
---|
294 | if domain.order == 1: |
---|
295 | Q.extrapolate_first_order() |
---|
296 | elif domain.order == 2: |
---|
297 | Q.extrapolate_second_order() |
---|
298 | else: |
---|
299 | raise 'Unknown order' |
---|
300 | |
---|
301 | # Stage, bed, width and velocity have been extrapolated |
---|
302 | w_V = stage.vertex_values |
---|
303 | u_V = velocity.vertex_values |
---|
304 | z_V = bed.vertex_values |
---|
305 | b_V = width.vertex_values |
---|
306 | |
---|
307 | # Need to update these vertex_values |
---|
308 | a_V = area.vertex_values |
---|
309 | h_V = height.vertex_values |
---|
310 | d_V = discharge.vertex_values |
---|
311 | |
---|
312 | # Calculate height and fix up negatives. The main idea here is |
---|
313 | # fix up the wet/dry interface. |
---|
314 | h_V[:,:] = w_V - z_V |
---|
315 | |
---|
316 | h_0 = numpy.where(h_V[:,0] < 0.0, 0.0, h_V[:,0]) |
---|
317 | h_1 = numpy.where(h_V[:,0] < 0.0, h_V[:,1]+h_V[:,0], h_V[:,1]) |
---|
318 | |
---|
319 | h_V[:,0] = h_0 |
---|
320 | h_V[:,1] = h_1 |
---|
321 | |
---|
322 | |
---|
323 | h_0 = numpy.where(h_V[:,1] < 0.0, h_V[:,1]+h_V[:,0], h_V[:,0]) |
---|
324 | h_1 = numpy.where(h_V[:,1] < 0.0, 0.0, h_V[:,1]) |
---|
325 | |
---|
326 | h_V[:,0] = h_0 |
---|
327 | h_V[:,1] = h_1 |
---|
328 | |
---|
329 | |
---|
330 | # Protect against negative and small heights. If we set h to zero |
---|
331 | # we better do the same with velocity (i.e. no water, no velocity). |
---|
332 | h_V[:,:] = numpy.where (h_V <= h0, 0.0, h_V) |
---|
333 | u_V[:,:] = numpy.where (h_V <= h0, 0.0, u_V) |
---|
334 | |
---|
335 | |
---|
336 | # Clean up conserved quantities |
---|
337 | w_V[:] = z_V + h_V |
---|
338 | a_V[:] = b_V * h_V |
---|
339 | d_V[:] = u_V * a_V |
---|
340 | |
---|
341 | |
---|
342 | return |
---|
343 | |
---|
344 | #----------------------------------------------------------------------- |
---|
345 | # Distribute to verticies with stage, height and velocity reconstructed |
---|
346 | # and then extrapolated. |
---|
347 | # In this method, we extrapolate the stage and height out to the vertices. |
---|
348 | # The bed, although given as initial data to the problem, is reconstructed |
---|
349 | # from the stage and height. This ensures consistency of the reconstructed |
---|
350 | # quantities (i.e. w = z + h) as well as protecting against negative |
---|
351 | # heights. |
---|
352 | #----------------------------------------------------------------------- |
---|
353 | def distribute_to_vertices_and_edges_limit_s_v_h(domain): |
---|
354 | import sys |
---|
355 | from anuga_1d.config import epsilon, h0 |
---|
356 | |
---|
357 | N = domain.number_of_elements |
---|
358 | |
---|
359 | #Shortcuts |
---|
360 | area = domain.quantities['area'] |
---|
361 | discharge = domain.quantities['discharge'] |
---|
362 | bed = domain.quantities['elevation'] |
---|
363 | height = domain.quantities['height'] |
---|
364 | velocity = domain.quantities['velocity'] |
---|
365 | width = domain.quantities['width'] |
---|
366 | stage = domain.quantities['stage'] |
---|
367 | |
---|
368 | #Arrays |
---|
369 | a_C = area.centroid_values |
---|
370 | d_C = discharge.centroid_values |
---|
371 | z_C = bed.centroid_values |
---|
372 | h_C = height.centroid_values |
---|
373 | u_C = velocity.centroid_values |
---|
374 | b_C = width.centroid_values |
---|
375 | w_C = stage.centroid_values |
---|
376 | |
---|
377 | # Construct h,u,w from the conserved quantities after protecting |
---|
378 | # conserved quantities from becoming too small. |
---|
379 | a_C[:] = numpy.where( (a_C>h0), a_C, 0.0 ) |
---|
380 | d_C[:] = numpy.where( (a_C>h0), d_C, 0.0 ) |
---|
381 | h_C[:] = numpy.where( (b_C>h0), a_C/(b_C + h0/b_C), 0.0 ) |
---|
382 | u_C[:] = numpy.where( (a_C>h0), d_C/(a_C + h0/a_C), 0.0 ) |
---|
383 | |
---|
384 | # Set the stage |
---|
385 | w_C[:] = h_C + z_C |
---|
386 | |
---|
387 | # Extrapolate "fundamental" quantities. |
---|
388 | # All other quantities will be reconstructed from these. |
---|
389 | for name in ['velocity', 'stage', 'height', 'width']: |
---|
390 | Q = domain.quantities[name] |
---|
391 | if domain.order == 1: |
---|
392 | Q.extrapolate_first_order() |
---|
393 | elif domain.order == 2: |
---|
394 | Q.extrapolate_second_order() |
---|
395 | else: |
---|
396 | raise 'Unknown order' |
---|
397 | |
---|
398 | # These quantities have been extrapolated. |
---|
399 | u_V = velocity.vertex_values |
---|
400 | w_V = stage.vertex_values |
---|
401 | h_V = height.vertex_values |
---|
402 | b_V = width.vertex_values |
---|
403 | |
---|
404 | # These need to be reconstructed |
---|
405 | a_V = area.vertex_values |
---|
406 | d_V = discharge.vertex_values |
---|
407 | z_V = bed.vertex_values |
---|
408 | |
---|
409 | # Reconstruct bed from stage and height. |
---|
410 | z_V[:] = w_V-h_V |
---|
411 | |
---|
412 | # Now reconstruct our conserved quantities from the above |
---|
413 | # reconstructed quantities. |
---|
414 | a_V[:] = b_V*h_V |
---|
415 | d_V[:] = u_V*a_V |
---|
416 | |
---|
417 | return |
---|
418 | |
---|
419 | |
---|
420 | #-------------------------------------------------------- |
---|
421 | #Boundaries - specific to the channel_domain |
---|
422 | #-------------------------------------------------------- |
---|
423 | class Reflective_boundary(Boundary): |
---|
424 | """Reflective boundary returns same conserved quantities as |
---|
425 | those present in its neighbour volume but reflected. |
---|
426 | |
---|
427 | This class is specific to the shallow water equation as it |
---|
428 | works with the momentum quantities assumed to be the second |
---|
429 | and third conserved quantities. |
---|
430 | """ |
---|
431 | |
---|
432 | def __init__(self, domain = None): |
---|
433 | Boundary.__init__(self) |
---|
434 | |
---|
435 | if domain is None: |
---|
436 | msg = 'Domain must be specified for reflective boundary' |
---|
437 | raise msg |
---|
438 | |
---|
439 | #Handy shorthands |
---|
440 | self.normals = domain.normals |
---|
441 | self.area = domain.quantities['area'].vertex_values |
---|
442 | self.discharge = domain.quantities['discharge'].vertex_values |
---|
443 | self.bed = domain.quantities['elevation'].vertex_values |
---|
444 | self.height = domain.quantities['height'].vertex_values |
---|
445 | self.velocity = domain.quantities['velocity'].vertex_values |
---|
446 | self.width = domain.quantities['width'].vertex_values |
---|
447 | self.stage = domain.quantities['stage'].vertex_values |
---|
448 | |
---|
449 | self.evolved_quantities = numpy.zeros(7, numpy.float) |
---|
450 | |
---|
451 | def __repr__(self): |
---|
452 | return 'Reflective_boundary' |
---|
453 | |
---|
454 | |
---|
455 | def evaluate(self, vol_id, edge_id): |
---|
456 | """Reflective boundaries reverses the outward momentum |
---|
457 | of the volume they serve. |
---|
458 | """ |
---|
459 | |
---|
460 | q = self.evolved_quantities |
---|
461 | q[0] = self.area[vol_id, edge_id] |
---|
462 | q[1] = -self.discharge[vol_id, edge_id] |
---|
463 | q[2] = self.bed[vol_id, edge_id] |
---|
464 | q[3] = self.height[vol_id, edge_id] |
---|
465 | q[4] = -self.velocity[vol_id, edge_id] |
---|
466 | q[5] = self.width[vol_id,edge_id] |
---|
467 | q[6] = self.stage[vol_id,edge_id] |
---|
468 | |
---|
469 | return q |
---|
470 | |
---|
471 | class Dirichlet_boundary(Boundary): |
---|
472 | """Dirichlet boundary returns constant values for the |
---|
473 | conserved quantities |
---|
474 | if k>5 and k<15: |
---|
475 | print discharge_ud[k],-g*zx*avg_h*avg_b |
---|
476 | discharge_ud[k] +=-g*zx*avg_h*avg_b """ |
---|
477 | |
---|
478 | |
---|
479 | def __init__(self, evolved_quantities=None): |
---|
480 | Boundary.__init__(self) |
---|
481 | |
---|
482 | if evolved_quantities is None: |
---|
483 | msg = 'Must specify one value for each evolved quantity' |
---|
484 | raise msg |
---|
485 | |
---|
486 | assert len(evolved_quantities) == 7 |
---|
487 | |
---|
488 | self.evolved_quantities=numpy.array(evolved_quantities,numpy.float) |
---|
489 | |
---|
490 | def __repr__(self): |
---|
491 | return 'Dirichlet boundary (%s)' %self.evolved_quantities |
---|
492 | |
---|
493 | def evaluate(self, vol_id=None, edge_id=None): |
---|
494 | return self.evolved_quantities |
---|
495 | |
---|
496 | |
---|
497 | #---------------------------- |
---|
498 | #Standard forcing terms: |
---|
499 | #--------------------------- |
---|
500 | def gravity(domain): |
---|
501 | """Apply gravitational pull in the presence of bed slope |
---|
502 | """ |
---|
503 | |
---|
504 | from util import gradient |
---|
505 | from Numeric import zeros, Float, array, sum |
---|
506 | |
---|
507 | |
---|
508 | |
---|
509 | Area = domain.quantities['area'] |
---|
510 | Discharge = domain.quantities['discharge'] |
---|
511 | Elevation = domain.quantities['elevation'] |
---|
512 | Height = domain.quantities['height'] |
---|
513 | Width = domain.quantities['width'] |
---|
514 | |
---|
515 | discharge_ud = Discharge.explicit_update |
---|
516 | |
---|
517 | |
---|
518 | |
---|
519 | h = Height.vertex_values |
---|
520 | b = Width.vertex_values |
---|
521 | a = Area.vertex_values |
---|
522 | z = Elevation.vertex_values |
---|
523 | |
---|
524 | x = domain.get_vertex_coordinates() |
---|
525 | g = domain.g |
---|
526 | for k in range(domain.number_of_elements): |
---|
527 | avg_h = 0.5*(h[k,0] + h[k,1]) |
---|
528 | avg_b = 0.5*(b[k,0] + b[k,1]) |
---|
529 | |
---|
530 | #Compute bed slope |
---|
531 | x0, x1 = x[k,:] |
---|
532 | z0, z1 = z[k,:] |
---|
533 | zx = gradient(x0, x1, z0, z1) |
---|
534 | |
---|
535 | #Update momentum (explicit update is reset to source values) |
---|
536 | discharge_ud[k]+= -g*zx*avg_h*avg_b |
---|
537 | |
---|
538 | |
---|
539 | def boundary_stress(domain): |
---|
540 | |
---|
541 | from util import gradient |
---|
542 | from Numeric import zeros, Float, array, sum |
---|
543 | |
---|
544 | Area = domain.quantities['area'] |
---|
545 | Discharge = domain.quantities['discharge'] |
---|
546 | Elevation = domain.quantities['elevation'] |
---|
547 | Height = domain.quantities['height'] |
---|
548 | Width = domain.quantities['width'] |
---|
549 | |
---|
550 | discharge_ud = Discharge.explicit_update |
---|
551 | |
---|
552 | h = Height.vertex_values |
---|
553 | b = Width.vertex_values |
---|
554 | a = Area.vertex_values |
---|
555 | z = Elevation.vertex_values |
---|
556 | |
---|
557 | x = domain.get_vertex_coordinates() |
---|
558 | g = domain.g |
---|
559 | |
---|
560 | for k in range(domain.number_of_elements): |
---|
561 | avg_h = 0.5*(h[k,0] + h[k,1]) |
---|
562 | |
---|
563 | |
---|
564 | #Compute bed slope |
---|
565 | x0, x1 = x[k,:] |
---|
566 | b0, b1 = b[k,:] |
---|
567 | bx = gradient(x0, x1, b0, b1) |
---|
568 | |
---|
569 | #Update momentum (explicit update is reset to source values) |
---|
570 | discharge_ud[k] += 0.5*g*bx*avg_h*avg_h |
---|
571 | #stage_ud[k] = 0.0 |
---|
572 | |
---|
573 | |
---|
574 | def manning_friction(domain): |
---|
575 | """Apply (Manning) friction to water momentum |
---|
576 | """ |
---|
577 | |
---|
578 | from math import sqrt |
---|
579 | |
---|
580 | w = domain.quantities['stage'].centroid_values |
---|
581 | z = domain.quantities['elevation'].centroid_values |
---|
582 | h = w-z |
---|
583 | |
---|
584 | uh = domain.quantities['xmomentum'].centroid_values |
---|
585 | eta = domain.quantities['friction'].centroid_values |
---|
586 | |
---|
587 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
588 | |
---|
589 | N = domain.number_of_elements |
---|
590 | eps = domain.minimum_allowed_height |
---|
591 | g = domain.g |
---|
592 | |
---|
593 | for k in range(N): |
---|
594 | if eta[k] >= eps: |
---|
595 | if h[k] >= eps: |
---|
596 | #S = -g * eta[k]**2 * sqrt((uh[k]**2 + vh[k]**2)) |
---|
597 | S = -g * eta[k]**2 * uh[k] |
---|
598 | S /= h[k]**(7.0/3) |
---|
599 | |
---|
600 | #Update momentum |
---|
601 | xmom_update[k] += S*uh[k] |
---|
602 | #ymom_update[k] += S*vh[k] |
---|
603 | |
---|
604 | def linear_friction(domain): |
---|
605 | """Apply linear friction to water momentum |
---|
606 | |
---|
607 | Assumes quantity: 'linear_friction' to be present |
---|
608 | """ |
---|
609 | |
---|
610 | from math import sqrt |
---|
611 | |
---|
612 | w = domain.quantities['stage'].centroid_values |
---|
613 | z = domain.quantities['elevation'].centroid_values |
---|
614 | h = w-z |
---|
615 | |
---|
616 | uh = domain.quantities['xmomentum'].centroid_values |
---|
617 | tau = domain.quantities['linear_friction'].centroid_values |
---|
618 | |
---|
619 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
620 | |
---|
621 | N = domain.number_of_elements |
---|
622 | eps = domain.minimum_allowed_height |
---|
623 | |
---|
624 | for k in range(N): |
---|
625 | if tau[k] >= eps: |
---|
626 | if h[k] >= eps: |
---|
627 | S = -tau[k]/h[k] |
---|
628 | |
---|
629 | #Update momentum |
---|
630 | xmom_update[k] += S*uh[k] |
---|
631 | |
---|
632 | |
---|
633 | |
---|
634 | |
---|
635 | def linearb(domain): |
---|
636 | |
---|
637 | bC = domain.quantities['width'].vertex_values |
---|
638 | |
---|
639 | for i in range(len(bC)-1): |
---|
640 | temp= 0.5*(bC[i,1]+bC[i+1,0]) |
---|
641 | bC[i,1]=temp |
---|
642 | bC[i+1,0]=temp |
---|
643 | |
---|
644 | |
---|
645 | |
---|